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With the use of the correlation function approach to rnulticomponent systems, the transition temperature is

calculated within the mean-field approximation for a ternary alloy having arbitrary two-body and three-body
interactions and arbitrary concentrations, This expression is studied in certain limiting cases. The concept of
an effective concentration-dependent two-body interaction caused by the presence of three-body potentials is

given justification. However, as has been pointed out for binary alloys and for mean-field approximations in

general, this concept loses validity as the system approaches criticality and long-range correlations become
dominant.

I. INTRODUCTION

The study of multicomponent solid solutions in
general, and binary alloys in particular, has long
occupied the experimental and theoretical inter-
ests of physicists and metallurgists. ' While much
work has been done on binary alloys, the litera-
ture on ternary alloys is sparse in comparison.
Of late, however, interest in ternary. alloys, as
well as in other multicomponent systems, has
increased due to a wealth of systems that have un-
usual or promising physical characteristics. As
examples we might mention the high superconduct-
ing transition temperatures associated with the
Chevrel phases, ' the properties of Nb-W metal
oxides, ' the magnetic behavior of Dy»Fe320„'
the semiconducting properties of Ge-doped
GaAs, ' and such traditional studies as ordering
in Au-Cu-Zn alloys. '

With this renewed interest in multicomponent
systems has come the necessity of understanding
on a microscopic level the origins of their physi-
cal properties. A first step in this direction would
be to consider the effects of structure on static
properties such as the transition temperature, the
short- and long-range order parameters, and
other equilibrium thermodynamic parameters. In
particular we will look at the disordered ternary
alloy as the simplest nontrivial multicomponent
system, and determine the effects of irreducible
static three-body potentials on the transition tem-
perature.

Over the years a number of people have con-
tributed to the theory of ternary alloys. Meijer-
ing' thoroughly studied segregation in ternary mix-
tures based on the free energy of a regular solu-
tion. Wojciechowski' seems to have been one of
the first to attempt to extend the Bragg-Williams
method from the binary alloy to the ternary alloy
of arbitrary concentration, though a number of

others considered the addition of a sma'l amount
of a third component to a binary mixture. ' Mura-
kami, Kachi, Nakanishi, and Takehara, "using
the Bragg-Williams method, have derived self-
consistent equations for the ternary alloy. With
their result for the transition temperature Mura-
kaWi eg gl. are able to reproduce a number of
phase diagrams for three-component systems.
The transition temperature cal.culated by Mura-
kami et pl. , which by the way reduces to Meijer-
ing's result in the regular solution limit, has also
been obtained by de Fontaine" and Ryzhkov» using
the more general method of free energy expan-
sions in reciprocal space. Tahir-Kheli, "using
Green's function techniques, has also obtained the
result of Murakami et aL

All of the above theoretical results have been
calculated in the ordered regime and, with the ex-
ception of de Fontaine and Ryzhkov, have p gn"iori
assumed the existence of sublattices. In the spirit
of static concentration waves, ' de Fontaine and
Ryzhkov have worked in reciprocal space and have
determined the transition temperature by looking
for singularities in a free energy functional.
Another approach to ternary alloys that also in-
vestigates the transition region in reciprocal
space, but by means of the disordered regime, is
that of Tahir-Kheli. " In this method correlation
functions are calculated using high temperature
series expansion techniques, and singularities in
the spatial correlation function in reciprocal space
determine the transition region. This technique
has the advantage that one avoids calculating the
system free energy and begins simply with the
conf igurational energy. Misinterpretations" as-
sociated with this procedure have recently been
removed, "with the result that critical properties
calculated using this correlation function approach
in the disordered regime agree with previous cal-
culations in the oxdered regime, e.g. , the calcu-
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lation of Murakami et al.
The ternary alloy calculations described above,

whether in the ordered or disordered regime, have
for the most part used the mean-field approxima-
tion, and have assumed that the interactions be-
tween atoms are central and pa, irwise (i.e. , two-
body potentials). However, it is well known for
the binary alloy that theoretical methods that go
beyond the mean-field approximation""" signifi-
cantly improve the description of real systems.
Unfortunately such treatments of ternary alloys
are rather limited in number. " Likewise the in-
fluence of interactions other than central pairwise
interactions on the transition region of alloys has
received even less attention in the literature. It
is our intent here to consider specifically the in-
fluence of three-body interactions on the transi-
tion temperature of a ternary alloy. We leave for
future considerations the influence of effects be-
yond the mean-field approximation. "

In Sec. II we shall consider the influence of
three-body interactions in' alloys. Following this
in Sec. III the problem of a ternary alloy with stat-
ic irreducible three-body potentials will be formu-
lated, and for the disordered regime, the two-site
correlation functions will be given in the mean-
field approximation. In Sec. IV the correlation
function approach to multicomponent alloys will
be briefly described and in Sec. V the transition
temperature will be given as a function of the
static irreducible two-body and three-body inter-
actions and arbitrary concentration. This result
will be discussed in terms of appropriate limits
and the concept of an effective concentration-de-
pendent two-body interaction will be discussed.
A brief summary will follow in Sec. VI.

1I. THREE-BODY POTENTIALS

A comprehensive overview of the problem of
many-body interactions in alloys has been given
by Clapp. " We refer the reader to this review
in which a number of justifications are given for
the existence of many-body interactions in alloys.
As a partial updating of that paper we might men-
tion the more recent work on the problems asso-
ciated with the Cauchy relations, " the asymmetries
in the phase diagrams of CuNi, ~-CoFe,"and
P-CuZn, the ground state of CuPt, ' and the i.n-
fluence of size effects" on ordering, or cluster-
ing, in binary alloys.

Quantitative models of the influence of static
three-body interactions in binary alloys, based on
the Ising model, have been introduced by Taggart
and Tahir-Kheli" and Shirley and Wilkins. " In
both of these works the binary systems was as-
sumed to be described by a Hamiltonian of the

fol m

K= —P, g S; 2g— I,(gP)S;S;

-
& P I,(gP f)S;S~S&, (2.1)

(S;)-(T, —T)'. (2 2)

where S' is the z component of a spin-~ vector
(jz= 1) at site g, and p, is an external field (chemi-
cal potential). I,(gp) is an irreducible two-body
interaction between sites g and p, and I,(gp f) is
an irreducible three-body interaction between
sites g, p, and f. We could of course readily ex-
tend (2.1) to include other many-body interactions.
For example a four-spin interaction in (2.1) with
I,(gp f) and p. equal to zero would describe the
ground state of CuPt, and if we also set I,(g p)
equal to zero we can model the order-disorder
ferroelectric KH,PO, (KDP)."

one proposal to explain the asymmetry of the
phase diagrams of AuNi, AlZn, and other sys-
tems is to assume that, in the absence of explicit
three-body interactions, the two-body interaction
I,(gp) is concentration dependent. " However, this
very idea is counter to the basic assumptions of
the static model in which the interaction between
two sites is assumed independent of the local en-
vironment, and hence independent of the concen-
tration. However, the concept of a concentra-
tion-dependent two-body interaction was given
some justification by the work of Taggart and
Tahir-Kheli. " In the mean-field approximation
they find a simple renormalization of the two-body
interaction by the presence of the irreducible
three-body interactions. This renormalization
yields a concentration-dependent two-body inter-
action. As one goes beyond the mean-field ap-
proximation the influence of the three-body inter-
actions on the two-body interactions becomes
much more subtle and the concept of a concentra-
tion-dependent two-body interaction becomes
weaker.

Using the formalism of Tahir-Kheli" and the re-
sults of Taggart and Tahir-Kheli" for binary al-
loys with three-body interactions, Vrijen et pl.
have been able to explain recent diffuse neutron
scattering results for clustering in CuNi systems.
The use of the three-body interaction model was
prompted by the failure of the two-body model in
explaining the copper-rich side of the phase dia-
gram (see also Ref. 23). In addition it is of in-
terest to point out the work of Wood and Grif-
fiths" who, using low temperature expansion
methods, have shown that many-body interactions
change the critical exponent P (T- T,), where
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Here ( ) represents the thermal average and for
an alloy system (S') is proportional to the concen-
tration.

C lapp" has shown that many-body interactions
are necessary to determine the ground state of
CuPt. This alloy possesses two completely equiv-
alent ground state configurations, but only one is
observed. In order to distinguish between ground
states one has to assume the existence of at least
four-body interactions. Interactions such as these,
and three-body interactions, have been shown by
Shirley" to be "caused" by size effects. In other
words the strain energy caused by size effects
produces an interaction that mimics many-body
interactions.

Since one would believe that the many-body ef-
fects that have been observed in binary alloys
would also be seen in ternary alloys, Taggari
and Tahir-Kheli" extended the formalism of
Ref. 29 to ternary systems. They calculated pair
and triplet correlation functions to order (T,/T)'
and (T,/T)', respectively. Within the mean-field
approximation they found that the concept of an ef-
fective concentration-dependent pair-wise inter-
action is valid for the pair correlation function,
but it is not for the triplet correlation function.
In both cases in going beyond the mean-field ap-
proximation, and hence closer to the transition
region, the influence of three-body interactions is
far from trivial. As opposed to binary alloys, ex-
perimental indication of three-body interactions
in ternary alloys appears to be lacking. Perhaps
the most likely candidate for an analysis of three-
body interactions in a ternary alloy would be to
consider a binary alloy with vacancies as a ternary
system. Regardless, any application of the re-
sults of Ref. 34 would require thai we have an ex-
plicit expression for T„ the transition tempera-
ture for ordering or clustering. The transition
temperature in the mean-field, or Bragg-
Williams, approximation has been calculated as a
function of concentration and two-body interactions
by a number of people. ""~' However, calcula-
tions" that explicitly take into account the sim-
plest many-body interaction, the three-body po-
tential, have not derived the transition tempera-
ture. It is our purpose here to calculate the
transition temperature for the ternary system
with explicit static irreducible three-body inter-
actions in the mean-field approximation using the
correlation function approach. " First we will
formulate the problem in Sec. III.

III. FORMULATION AND CORRELATION FUNCTIONS

We will assume that the three-component sys-
tem can be adequately described by static inter-

actions between atoms on a rigid lattice. We
should recall, though, that for a binary system
with pairwise interactions, the effects of atomic
size disparity (strain effects) can cause pseudo-
many-body effects to appear. " The lattice of.~
sites has N„atoms of type v such that+„N„=N.
The configurational energy can be written

H= — V"'(g P)o.vo
1

vy p

Vy PYX
rePef

W vA(gpf ) g vo vg x

/

(3.1)

+1, if a p atom is on site g,
( V

0, otherwise. ~

~

(3.2)

The static two-body interaction between sites g
and p is given by V"'(gp) such that,

v"'(g p) = v'"(g p) = v'"(pg) = v "v(pg),

V"'(gg) = V "(gg) = 0.
(3.3a)

(3.3b)

Likewise the static three-body interaction is as-
sumed to have cyclic symmetry in both atomic and
site labels, i.e. ,

and

W~v( p f) Wvvv(f g p) —W (pf g)

w""( pf)= w""'(p gf)= w""(gf p)

W "'(gp f) = W ""'(gfp),

W"''(gpf}= 0

(3.4a)

(3.4b)

(3.4c)

(3.4d)

whenever any of the site indices g, p,f coincide.
Using the configurational Haniiltonian (3.1) exact

correlation function relations can be derived. "'"
In Ref. 34 this was done by transforming to a gen-
eralized Ising model by means of the spin trans-
formations,

o A L [(38}2+3v j

o s=1 —(S;)',
&c & [(3v)2 3zj

(3.5a)

{3.5b)

(3.5c}

where S' is the z component of a spin-1 vector
(k= 1) on site g. We thus obtain the generalized
Ising Hamiltonian [compare (2.1}j

where the sums over the labels p, p, A. ar e over A,
B,C, and the lattice sums are over all sites g, p, f.

We have introduced the usual occupation oper-
ator g" in order to make the summations unre-
stricted, i.e. ,
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p—,P s; —p.g (s;)'-P & (gp)s;s;-P I (gp)s;(s;)'-P I.(gp)(s;)'(s;)'

—g f,(g pf}s;s;s; g— f,(gpf}s;s;(s;}'-g & (gpf)(s;)'(s;)'s; —Q &,(gp f)(s',)'(s;)'(s;)'

(3.6)

where the explicit relationships between the inter-
actions I,(gp). and I,(gpf) .with V"'(gp) and
W"'~(gpf) are given, for the sake of complete-
ness, in the Appendix. The chemical potentials
p, are determined such that the concentration is
given by

m„m, o"'(g p) = m„m p
—((r "o q),

m„(1 —m„}o.""(gp) = ((r "o",) —m„.

(3.lla)

(3.11b)

vP(g p) ~vP(k )elk (R 'D)

N
(3.12a)

These parameters can be Fourier transformed

m„= N„/N= (o "}. (3.7)

(o ",o c~) = (1 —&„)m„mc —Pmc(l —mc)A, (gP)
—pm„m, A,(g p)+ O(p') (3.8)

The correlation function relations derived using
the Hamiltonian (3.6) can then be expanded for T
& T, in a self-consistent manner so that many-site
correlation functions can be calculated to arbitrary
order (in principle) in P =

(RENT)

(ks is the Boltz-
mann constant). The results of this calculation
for the two-site correlation functions are"

~~P(k) —g ~pP(gp)e-ik (R-9) (3.13b)

IV. CORRELATION FUNCTION APPROACH

and o "'(k) can be shown to be proportional to the
diffuse scattering intensity above T,." The prob-
lem now is to extract from ~"'(k) information
about the transition temperature T,. In Sec. IV
we do this by using the correlation function ap-
proach to multicomponent alloys.

(o"o",}=(m'„)'+ m.„(1—m„)&,+ pm„mcA, (gp)

+ pm„(1 m„)A,(gp)+O(p'). (3.9)

Here we have used the notation (j=1,3)

A,(gp) = m„(1 m„)V",(g p) —m„m, V', (g p)

+3m„'(1-m„)g U","(gpf)

—2m„m,' p V',. '(g pf)
f

+ m„mc(l —&m„)Q V", '(gP'f),
f

(3.10)

and the parameters U&(gp) and U,"'(gpf) are.
linear combinations of the interactions I&(gp) and

I,(gpf) (see Appendix). .We can obtain the other
two-site correlation functions from (3.8) and (3.9)
by interchanging the labels A, B,C, since we are
using grand canonical averaging. We should note
that we have to be careful during this interchange
since the interactions A,.(gp) are concentration
dependent.

Having calculated the two-site correlation func-
tions (it is straightforward to calculate many-site
correlation functions using this technique ) to the
first order in P (the mean-field approximation) we
cari determine the Warren-Cowley" short-range-
order (SRO) parameters o, "'(gp) from

Starting in the disordered regime (T» T,) and
lowering the temperature, the Fourier-trans-
formed SRO parameter, or diffuse scattering
intensity, o "'(k), increases in magnitude until at
some temperature T, and wave vector k, it be-
comes macroscopically large. This state of max-
imum amplitude in o, "(k) defines the critical re-
gion at which the system goes from a disordered
structure to an ordered one. (We admit both clus-
tering and ordering in the "ordered" state in this
approach. ) Inspection of the two-site correlation
function, (3.8} and (3.9), reveals no such singular
behavior. In order to introduce this type of be-
havior into the problem Tahir-Kheli" has proposed
that a self-consistent series inversion be per-
formed. The results for the transition tempera-
ture, SRO parameters" and the interatomic po-
tentials" generated by this procedure are quite
promising for the binary alloy, and for this sys-
tem the series-inversion technique presents no
difficulties. However, for ternary and other multi-
component alloys the simple series inversion
technique does not appear to give the proper re-
sults. ' '~' The solution to this difficulty is to
recognize that for multicomponent systems we
must use a matrix representation for the scatter-
ing intensities. The use of this matrix represen-
tation method has been called the correlation func-
tion approach to multicomponent alloys. " Its
roots, as with the series inversion in binary al-
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loys, are in the classical theory of critical fluc-
tuations. " We refer the interested reader to Ref.
1V, and here outline the salient features.

Using the Fourier-transformed two-site corre-
lation functions given by (3.8} and (3.9}we can
construct a correlation matrix C(k) whose ele-
ments are the SRO parameters n"'(k). This ma-
trix has the form

m„(1 —m„)&""(k) -m„m, &"'(k)

-m„men. c(k ) mc(1 —mc)o. (k)

(4,1)

&SP;& —&S;&' &S;(S;)')—&S;&&(S;)'&

&S;(S;)')—&S;& &(S;)'& &(S;)'(S;)')—&(S;)'&' &„-&

'

(4.2)
where the subscript (k } indicates that we have
Fourier-transformed the components of C(k).
Here we see that C(k) is composed of all two-
site spin correlation functions of the vector
space spanned by S' and (S;)'.

Within the linear approximation in p (the mean-
field approximation) we can explicitly write the
matrix elements of (4.1), using the correlation
functions given in (3.8) and (3.9). C(k) thus be-
comes

C(k) = Co+ pC, (k )+ O(p ), (4.3)
where only three independent SRO parameters are
necessary to describe the ternary alloy (recall
that Q„o"=P„m„=1), and hence we need a matrix
of dimension two. . The numer of independent SRO
parameters becomes more evident if we write
C(k) in terms of the spin variables, i.e. ,

where

Co=

and

m„(1 —m„) -m„mc

-m„mc mc(l —mc)
(4.4)

mzmcA~(k)+ m~(l —un')A, (k) -mc(l —mc)A~(k) —m~yncA, (k)

-m~(1 —m„)A~(k) —m~mcA3(k) m~mcA~(k)+ mz(1 —mc)A, (k) (4 6)

The tilde on A,.(k), i.e. , A,.(k), indicates that, in
these concentration-dependent interactions, we
interchange A and C (see Appendix). We can re-
write (4.3)

c(k) = c,[l+pr, (k)],
where

I',(k) = C,'C, (k).

(4.6)

(4.7)

c(k) =A[1 —p~r(k)]-'. (4.8)

The matrix 6 is determined such that the total
scattering intensity is conserved, i.e. ,

1
Co= —Q C(k),

Looking at (4.8) we see that as T- T,+ and k- k,
the magnitude of the scattering matrix will di-
verge, and hence,

(4.9)

Within our linear, or mean-field, approximation
and in the spirit of the series inversion procedure
for the binary alloy, we can recast (4.6) in the
form

The finiteness of ~b,
~

implies that the critical con-
dition is defined by the relation

~l —pr, (k)
~

-0 when T- T, , k-k, . (4.12)

Thus (4.12) gives us an equation for the critical
temperature P,

' in terms of the concentrations,
and two- and three-body interactions of arbitrary
strength and range. Tahir-Kheli" has used this
procedure to calculate the transition temperature
for ternary alloys with two-body potentials and has
obtained agreement with the results derived pre-
viously, i.e. , Refs. 10-13. Taggart" has used
this technique t;o. derive the transition temperature
for a quaternary alloy with two-body interactions.
We are now prepared to calculate P,' from (4.12)
for the ternary alloy with both two- and three-
body interactions.

V. TRANSITION TEMPERATURE

The critical equation (4.12) is a quadratic equa-
tion in P, in the mean-field approximation for a
three-component system, i.e. ,

or

IC(")I-- when T-T, , k-k, ,

I~I
when T- T, , k-k, .

ll —PI' (k) I

(4.10)

(4.11}

p
' —p '([r,(k,)]" [r,(k,))-&

—( [r,(k,)]"[r,(k,) ]"
—[ri(k, )]"[r,(k,}]")= o, (6 1)
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where [I',(k,)] '~ are the matrix elements of l, (k,).
The coefficients in (5.1) can be expressed explicit-
ly in terms of two- and three-body interactions.
(We will suppress the subscript on k for ease of
notation. ) We first define the two-body ordering
interactions,

and

n'""(gpf) =--'[w'""(gpf)
+ w"'"(gf p)+ w'""(pf g)]

(5.3a}

U""(g P) = V'""(gP) ——,'[V""(gP)+ V""(gP)],

and the symmefrized three-body interactions,

(5.2)

nABc(gpf) —1 [WABC(gpf)+ WABC( f'P)

+ W ABC(pf g) + W ABC(p gf)
+ w""(fgp)+ w""(fpg)].

(5.3b)

The solution to (5.1) can then be written

()-' [r"'(f)~rAc(f)„r'c(f)]„([JA'(f)~rA|'(f)~r"(f)]~

J k J k J k
A B C

A ~B ~A~C ~B~C

—4
rA (f)roc(f) rA (f)J c(f) JAc(f)r c(f))

I

/

2 + 2 +
mAVEB~C PlAVl BiÃC mAPlBrnC

(5.4)

where we have defined the effective concentration
dependent two-body interactions as

j~"(k)= —2m~m, U~ "(k)+ m„m, W~" ~(k)

+m m'W"'"(k)+m, m„(1-3m )n'"'(k)

+ m„m„(1 —3m„)n"'~(k ) —2m, m„m, n""'(k ) .

(5 5)

The behavior of P,
' as a function of concentration

and interaction strength is not readily apparent

from (5.4). However, we can gain some insight
into the behavior of P, by investigating some ap-
propriate limits. It should be stressed, though,
that our result is valid for arbitrary concentra-
tion, arbitrary range of interactions, and arbi-
trary strengths of interactions.

The first interesting limit would be the binary
alloy limit (mc - 0), which should supplement the
results of Taggart and Tahir-Kheli" who used an
expansion to P' and Shirley and Wilkins" who used
a B ' expansion (B equals the number of nearest
neighbors). In this limit (5.4) yields,

P,'= -2m„m U"B(k)+ [m„'(1 —m„)W"""(k)+m'(1 —m )WBBB(k)

+ m„mB(1 —3m„. )n""B(k) + m„mB(1 —3mB)nBB "(k ) ] . (5.5)

Setting the three-body potentials to zero yields
immediately the simple binary alloy result with
only two-body interactions, i.e. ,

P,'=-2m„m U" (k) ~ (5.7)

We also note that, in this mean-field approxima-
tion, we could represent the interaction energy in
(5.&) by an effective concentration-dependent two-
body interaction. A s we pointed out in Ref. 29 this
gives some justification for using concentration-
dependent interactions in order to describe the

phase diagram of AlZn (Ref. 32) for instance.
However, as was also pointed out in Ref. 29 this
concept of a simple concentration-dependent ef-
fective two-body interaction loses validity as one
considers higher-order terms in the P expansion,
and hence more accurate approximations to the
transition region. In that case one would have to

. take explicit account of the lowest order many-
particle interaction, the three-body interaction as
we have done here.

If we look at (5.6) for small deviations from
stoichiornetry, i.e. , m„=-,'+x, m = 2 —x (x «I),
and retain only terms linear in z, we obtain
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P ( ) 1 1 UAB(f)+1

&& [gr AAA(k ) + gr BBB(k) QAAB(f) QBBA(f ) ]

1 ~ [iver AAA(f ) grBBB(f)

—3Q""'(f)+ 3Q"A(f )]+O(~')

(5.8)

The asymmetry of the phase diagram is apparent
from (5.8} as one moves away from the eguicom-
position binary alloy. This becomes even more ap-
parent if we look at the symmetric alloy, "i.e. ,
g —-g, and calculate the difference in transition
temperatures,

P,(x) ' -P,(-x)-'= -,' x [lf """(f)—~'"(f)
3QAAB(k ) + 3QBBA(k ) ] (5 9)

Thus deviations from symmetry about the equi-
composition alloy would give, in this static model,
an indication of the effects of many-body inter-
actions. Likewise complete symmetry would indi-
cate the absence of these interactions. " Since we
do not expect the properties of the ternary alloy to
be appreciably different than those of the binary
alloy, we would expect similar types of behavior
in the ternary system.

For the ternary alloy we first look at the two-
body interaction limit. Thus setting the three-
body interactions to zero, we obtain

P =-m m UAB(k) —m„m UAc(k) —m m UBc(k)

a( [m m U"B(k)+m m U"c(k)+m m UBc(k}] +m„m m f[U" (k}+U" (k)+ U (k)]'
4[UAB(k)UAc(k)+ UAB(k)UBc(k)+ UAc(f)UBc(k)]))1/ 2 (5.10)

which is the same expression calculated by num-
erous other authors. '~" " In the limit of small
concentrations of mc and equicompositions of A
and B, i.e. , m„=mB=2 (1 —mc), mc «1, (5.10)
becomes

P
1 1 UAB(k)

U Ac(f ) UBc(k )x ]. —m 1 — — +0m'
UAB(k )

(5.11)

which has been calculated previously by Prigogine'

and Meijering, ' as well as Tahir-Kheli. "
In order to examine the influence of three-body

interactions we will also look at (5.4) in the limit
that mc «1 and m„= mB= (1 —mc)/2. We can then
compare this result with (5.11). Keeping only
terms linear in m~ we first define the binary
transition temperature by means of (5.6), i.e. ,

p (goal) 1 — 1 UAB(k ) + 1 [~AAA(f ) ~ lir BBB(k)

AAB(k ) QBBA(f ) ]
(5.12)

and thus write for the ternary transition tempera-
ture,

/) 1 [1 m P (//) (UAB(k) [UAc(k) UBc(f)]

~ p (g~)-1 1 [llrAAA(k ) + grBBB(k) 5QAAB(f ) 5QBBA(k)+ 2QAAC(k )

+ 2QBBC(k)+ 2QABC(k) 4QCCA(k) 4QccB(k)]

UAC(k ) [P/BBB(k ) + QAAC(k ) QAAB(f ) QBBC(k ) ]
UBC(k ) [lirAAA(f)+ QBBC(f) QAAC(k ) QBBA(k )]
UAB(f ) [QBBA(k ) QBBC(f)+ QAAB(f ) QAAC(f ) ~ QCCA(f ) + QCCB(f ) 2QABC(k )]

~ 1 (le AAA(f )gt BBB(k) + ~BBB(f)QAAB(k ) + gr AAA(k )QccA(k )

~ lir AAA(k )QBBA(f) + ~BBB(k)QCCB(k ) + ~AAA(f )QCCB(k )

2grAAA(k )QBBC(k ) 2lir BBB(k)QAAC(k )

+ gr BBB(k)QccA(k ) 2 [JrAAA(k ) ~ gr BBB(k)]QABc(k) ~ 2QAAB(k )QAAc(k }

+ 2QBBA(k )QBBC(f) QAAB(k )QBBA(k ) QBBA(f '1QCCB(k )

QAAB(f )QCCA(k) QAAB(k )QCCB(f ) QBBA(k )QCCA(k)

+ 2QAAC(k )QBBC(f) ~ 2[QAAB(k ) +, QBBA(f ) ]QABC(k )

QAAB(f )2 QBBA(k )2 QAAc(k )2 QBBc(k )2)}] + 0(m2) (5.13)
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From (5.13) we see that if the three-body inter-
actions vanish we retrieve (5.11). As would be
expected in this particular limit the transition-
temperature behavior is dominated by the binary
transition. However, we also see that even in

this simple limit the influence of three-body po-
tentials is far from trivial if we desire to explicit-
ly take them into account.

VI. SUMMARY

Using the correlation function approach to multi-
component alloys we have calculated the transition
temperature in the mean-field approximation for a
ternary alloy having both two- and three-body po-
tentials. Our result is valid for arbitrary concen-
trations, arbitrary range, and strength of inter-
actions, and should apply to both clustering and
ordering systems. We see that within the mean-
field approximation we can represent the inter-
actions by effective concentration-dependent two-

body interactions. That is to say, the interactions
J'"(k ) are concentration dependent.

Using high temperature expansion techniques,
iI we went to higher order approximations in P
we would systematically include multisite corre-
lation functions to higher orders in our calculation
of the pair correlation function. Thus our results
should describe a smaller neighborhood of the
critical point. However, as this point is ap-
proached the three-body interactions will manifest
themselves in such a manner that a simple linear
renormalization, i.e. , Z~"(k), of the two-body po-
tential is no longer possible. This linear renor-
malization is characteristic of the mean-field ap-
proximation.
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APPENDIX

The relations between the interactions in the spin representation and the occupation-operator represen-
tation are given by

I&(gp)= —8 I v"'(gP)+ v"(gp))+8+ Iw"' (g'f P)+ W""(Pfg) —W""'(g p f) w"'(gp—f)]

(A. la)

I (gp)= [v"'(g p) —v"(g p)]+-' [v"(g p) —v""(gp)]+2+ [w""(gf p) —w" (gf p))

+4+ [w""(gfP) —w""(Pfg)+ w'"(gPf) —w""'(gpf)]1

f
(A.1b)

I,(g p)=-.' [v"'(g p)+ v"(gp) —v"(gp)] --.' [v""(gp)+ v"(gp)+2v"'(gp)1

+ g[w""(gf.-p)+ w""(pIg)+ w"'(g f p)+ w'~'(pf g) —2w "(gpf))
f

—
8 p Iw""(gf P)+ W""(Pfg)+ W""'(gpf)+ W"'(gPf))

f

I.(gpf) =.—'. [W""'(gPf) —W""(gpf)+ W""'(gf P)+ W""'(Pfg) —W""(gfp)

"(Pfg)+ W (gpf) —W (gPf)1

I (gP f) = —[2W (gPf)+ 2W ce(gPf) —2W "(gf P) —2W (pf g) —W (gPf)
Wccc@Pf) WAAc@Pf)+ WAAc(gf P)

+ WAAG(pf g) cWcA(
gfp)

+Wcck (gf'p) + WccA(pf' g) ]

I (gpf) =
—,', [w"'(gpf) —w"""(gPf)+ w""'(gpf) w""'(g fP) w""'(pf g—) w""(gpf-)-

+ WccA(gf P) + WccA(P fg) 4WBBA(gPf) 4WBBc(gPf ) + 2WAAB(gf P)

+ 2w~~e(p fg) —2W (gf'P) —2W (Pf g)

+ 2W""(fgP)+ 2W""(fPg) —2W""(gpf) 2W""(Pgf)]—

(A. lc)

(A. ld)

(A.le)

(A. 1f)
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ancl,

I.(gpf) = —„', ÃW"'(g pf) —W"""(gpf) —W'"(g pf) —W""'(graf) —W""'(gf»
WAAC(pf g) WCCA( pf)
WCCA(g f p) WCCA(p f g) 4WBBA+ pf) 4WBBA(gf p) 4WBBA(pf )

4WBBC/gp f) 4WBBC( fp)

4 WB Bc(Pf g) + 2WABC(g Pf) + 2WAB c(gfP) + 2 WABc(p f) + 2 WABc( pf )

2WABC(f P) 2WABc(f Pg)+ 2WAAB( Pf) 2W" B( f P) 2WAAB(Pf )

+ 2W"'(gf p)+ 2W"'(gp f)+ 2W"'(pf g)j.
The parameters U&(gp) and Uz'(gpf), j =1,3, are given in terms of I,(gp) and I&(gpf) by

U"(gp) = 2I,(gp) -2I.(g p)

Uc(g p) = 2I,(g p) —2I,(g p) —2I,(gp),
U,""(gp f) = 3I,(gp f) + I,(gp f) - I,(gp f) - 3I,(gp f),
Ug (g pf) = 3I4(g pf) —3I5(gpf)+ 3I6(gpf) —3I (gpf),
P~+c(gPf) = —6I,(gPf) + 2I,(gPf) + 2I,(g Pf ) —6I,(gPf),
U". (g p) = -U;(g p),
U'. (g p) = -U,"(gP),

U3 "(gpf) = -Ui"(gpf»
U "(gpf) = -U""(gpf)
UAC( pf) UAC(gpf)

where ihe tilde implies that we interchange A and C.

(A.1g)

(A.2a)

(A.2b)

(A. 2c)

(A. 2d)

(A.2e)

(A. 3a)

(A. 3b)

(A.3c)

(A.3d)

(A. 3e)
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