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A first-principles order-parameter theory of the fluid-solid transition is presented in this paper. The
thermodynamic potential Q of the system is computed as a function of order parameters A,( = ‘,{i),
proportional to the lattice periodic components of the one-particle density p(¥), K,-’s being the reciprocal-
lattice vectors (RLV) of the crystal. Computation of Q({A;}) is shown to require knowing Q for a fluid
placed in lattice periodic potentials with amplitudes depending on A;. Using systematic nonperturbative

functional methods for calculating the response of the fluid to such potentials, we find Q({A;

. ). The fluid

properties (response functions) determining it are the Fourier coefficients ¢; (= cg )and <, ( = c3 .o of the
direct correlation function c(¥). The system freezes when at constant chemical potentlal w and pressure P, -
locally stable fluid and solid phases [i.e., minima of Q({A; }) with {A;} = 0 and {A,; } 540, respectively] have
the same (). The order-parameter mode most effective in reducing Q({A; }) corresponds to K being of the
smallest-length RLV set (cz is largest for |§|~|K |). In some cases one has to consider a second order

parameter A, with a RLV K

lying near the second peak in

¢, The effect of further order-parameter modes

on ) is shown to be small. The theory can be viewed as one of a strongly first-order density-wave phase
transition in a dense classical system. The transition is a purely structural one, occurring when the fluid-

phase structural correlations (measured by

¢;, etc.) are strong enough. This fact has been brought out clearly

by computer experiments but had not been theoretically understood so far. Calculations are presented for
freezing into some simple crystal structures, i.e., fcc, bee, and two-dimensional hep. The input information
is only the crystal structure and the fluid compressibility (related to c,). We obtain as output the freezing
criterion stated as a condition on c; or as a relation between ¢; and c,, the volume change V, the entropy
change As, and the Debye-Waller factor at freezing for various RLV values. The numbers are all in very

good agreement with those available experimentally.

L. INTRODUCTION

Freezing is a basic physical phenomenon, the
most inevitable of all phase changes. All sub-
stances freeze into either a crystalline or a glassy
phase under suitable conditions of pressure and
temperature. We describe in this paper a micro-
scopic structural theory of the classical-fluid—
crystalline-solid transition.! To begin with, we
summarize some salient common features of this
transition brought out by experiments® and by com-
puter experiments.>"® These have not been theo-
retically understood so far. We then mention
briefly other earlier attempts at a theory of melt-
ing or freezing.®”** Our approach is then intro-
duced and is developed in succeeding sections of
this paper; numerical calculations for freezing in-
to simple structures are also presented.

The fact that a system, if sufficiently dense,
probably’® freezes into a crystalline solid has been
brought out by computer experiments.’**®17 Start-
ing from the unexpected phenomenon of hard-
sphere solidification (Alder and Wainwright'?) the
fluid-solid transition has been found to take place
for all classical monatomic systems with purely
_repulsive two-body potentials V(r)=A(r/a)™",
where n ranges from infinity (hard sphere) to unity
(one-component plasma).'’® The transition contin-
ues to exist of course if there is an attractive term
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additionally present.®*

Evidence for the geometrical nature of the tran-
sition is provided by the structural similarity of
dense classical fluids.!®2° The structure factor
S(g) curves (see Fig. 1, for example) are very
similar, and can be simulated by the hard-sphere
structure factor®! (calculated, for example, in the
Percus-Yevick approximation??). The main differ-
ences between S(g) for various liquids are seen
for small and large values of q. For intermediate
values of g, the only scale seems to be g¢,, the val-
ue of g at the highest (first) peak in S(g), which de-
pends on density. S(g/g,,) curves for dense fluids
near freezing are nearly identical in this range.
Verlet*?® observed that near freezing, S(g,,) is
nearly 2.85 for all classical fluids. Computer re-
sults for the Lennard-Jones® 2 liquid along the
melting curve,* for the hard-sphere fluid,?3 the
one-component plasma,? and experimental results
for Ar,? Na,?® Rb,?” Pb,?® all show S(g,,) to be be-
tween 2.8 and 3.1 near freezing. The S(gq,,) values
for fluids freezing into fcc and bece structures
cluster around 2.8 and 3.0, respectively. In the
solid phase, the analogue of Verlet’s rule is per-
haps the Lindemann criterion of melting,® i.e., the
criterion that the mean-square displacement (#?)
scaled by the square of the interatomic separation
rZ: has nearly a constant value (0.01).2°

The freezing parameters of simple fluids are
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FIG. 1. S(g) of a monoatomic liquid near freezing,
with ¢ in units of g, Which is the position of the first
peak. g is identified with |K |, the smallest recip-
rocal-lattice vector of the sohd formed after freezing.
The dominant order parameter corresponds to the den-
sity fluctuation mode with wave vector K j- The second
order parameter corresponds to a mode with wave
vector K,,. | R, |pe/dmax a0d | K, lgoo/dma are shown in
the f1gure as full and broken lines, respectively.

closely related.?-*®* For example, Stishov has
shown from the pressure dependence of the freez-
ing parameters of argon that they tend to those of
an »"!2 fluid (studied on a computer). Longuet-
Higgins and Widom®® showed (see also Rowlinson®!
and Rosenfeld®) that the freezing parameters of
argon at various pressures can be obtained from
those of a hard-sphere fluid by adding a Van der
Waals like term to the computer experimental free
energy.

There are of course freezing parameters which
vary widely from system to system. Examples are
the melting temperature T, and the volume change
at freezing. However, the variation of the former
is largely due to that of the interatomic potential
strength, and disappears if the freezing condition
is expressed as a structural condition of the fluid
[S(gn)=2.85, Verlet’s rule]. The variation in vol-
ume change is primarily due to that in compressi-
bility and its density dependence, which is affected
for example by the attractive tail in the two-body
potential. The entropy change As at freezing also
shows considerable variation, although for many
monatomic systems it has nearly the value k51n2
per atom after the part (As), due solely to volume
change, is separated out.

We now describe briefly the theoretical situation.
Many of the theoretical approaches are not quanti-
tative, and at best derive conditions for the transi-
tion to take place. Very few can be pushed so far
as to calculate freezing parameters. None can ex-
plain the underlying unity of the freezing phenome-
non mentioned above, nor of course the variety in

some freezing parameters. It is fair to say that
much of the information and insight gained in this
field comes from computer experiments.

The first important contribution to the melting
problem is due to Lindemann® whose melting cri-
terion has been mentioned above. It is a criterion
for the absolute instability of the solid phase, ob-
tainable also as a shear instability criterion in a
self-consistent phonon theory.3® It can be used for
calculating T,, if (#%) is known. Obviously, this
temperature need not (and for a first-order transi-
tion such as melting, will not) correspond to that
for the relative stability of the solid vis a vis the
fluid. A straightforward approach for locating T,,
is to calculate the fluid and solid free energies and
to equate them. There are very few systems for
which this can be done accurately enough [Ref. 34
describes a calculation for Na where a T,(P) curve
is obtained]. Clearly this approach yields no in-
sight into the freezing phenomenon, and many pa-
rameters cannot be calculated. Lennard-Jones and
Devonshire® proposed a cell-like model for fluids
which for certain model parameters, and with ad-
ditional short-range correlation between cells,
is capable of reproducing reasonably well the first-
order liquid solid transition in, for example,
argon. The precise relation between this model
(and its parameters) and a real fluid is not clear.
In the dislocation model,*'** the solid is assumed
to melt when it becomes unstable with respect to
spontaneous generation of dislocations. This local
instability criterion has been discussed recently by
Thouless and Kosterlitz'* for the two-dimensional
case, and by Edwards.?® A detailed computer .
analysis of this approach is due to Jensen et al.*”

In the pioneering work of Kirkwood and Monroe,’
an equation for the density p(f) is gbtained by con-
sidering one particle of the system whose coupling
to the N — 1 other particles is turned on to full
strength as the coupling parameter £ ~1. The
equation for p(t) involves the interatomic potential
u(T — '), the density p(r’) and the two-particle cor-
relation function g(F, T/, ¢) for all £. Kirkwood and
Monroe found solidlike solutions for p(T) below a
certain temperature [i.e., {pp=(p% )
—(fp(r)e‘Kt TdT) is of order N]. They discussed
objections to the use of one-particle density to
characterize the solid state.® Their theory has
however four major difficulties, namely, the fol-
lowing: (i) The interatomic potential «(r) is used
explicitly and thus the theory cannot explain the un-
derlying unity of the freezing phenomenon. (ii)
Neither the nature of their approximation [e.g.,
g(F, 1, &) =g(t - T ) iquia ] DOT the effect of these ap-
proxunatwns on the results obtained is clear. (iii)
The phase transition obtained by them for Ar (fcc)
is close to second order. (iv) The numerical re-



sults obtained by them are poor. No significant
progress in formulating a fundamental theory of
freezing along this line has been made since then,
though there have been some attempts.'?!3

In this paper we first formulate the liquid solid
transition problem as an order-parameter theory,
i.e., we show how the thermodynamic potential
can be projected on to the order-parameter space
{1} (related to {p,}) and define the function
2({x,}) (Sec.II). We show there that Q({x,}) can
be found through the calculation of the density
{p(¥)) of a fluid in presence of lattice periodic po-
tentials with partial amplitudes dependent on {x,}.
In Sec. III Systematic functional approximation
methods are applied to find { p(¥)). For the oscil-
latory, moderately strong potential at hand, the
scheme appropriate is formally similar to the hy-
pernetted chain (HNC) approximation used in the
theory of fluid two-particle correlation function.
The first term in the functional Taylor Series is
the dominant term and for completeness (also be-
cause it is significant in some cases) the second
term is discussed in the Appendix. In Sec. IV the
analytical expressions for © and for freezing pa-
rameters are derived. The physical meaning of
our result for 2({1,}) and the freezing mechanism
implied are discussed in this section. Calculations
for freezing parameters are presented in Sec. V.
We first analyze the question of the dominant or-
der-parameter modes, and then describe computa-
tions for fce, bee, and two-dimensional hep struc-
tures. The results are shown to be stable with re-
spect to the inclusion of other order-parameter
modes, and are in excellent agreement with exper-
iment and computer experiment where these re-
sults are available. In addition, we are able to ex-
plain the structural unity of the phenomenon, and
obtain freezing criteria similar to that of Verlet.
We also present results for the Debye-Waller fac-
tor of the crystal structures studied. In Sec. VI
we discuss two objections commonly raised against
a theory of this type, namely that order-parameter
fluctuation effects are not included and that the lat-
tice periodic component of the density is not a good
order parameter. We then mention some open
problems and applications of our approach.

II. PARTITION FUNCTION AND THE ORDER-PARAMETER
' APPROACH

We describe here a method of obtaining an or~ |
der-parameter expression for the thermodynamic
potential . Consider a classical system with
volume V, and N particle Hamiltonian H,. The
grand partition function Z; is given by

Zc=e-BQ=Tr{exP["B(HN-IJ-N)]} ’, (1a)
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where the trace is over the momenta and coordin-
ates of the N particles, and over N. Also, 8=1/
kT and u is the chemical potential., The system
is in the crystalline solid phase if the equilibrium
density ( p(T)) has lattice periodic components, and
in the fluid phase if { p(T)) is independent of T.
Here the density operator for an N-particle system
is p(r)=>] N=1 6(F - ¥,) with Fourier transform p3
=y ;’zl exp(i 4 -T,) representing the density fluctua-
tion operator with wave vector §. If the reciprocal
lattice vectors of the crystalline solid are K,,
(pr,)={pp =0(N) for the solid. Here N is the aver-
age of N over the grand canonical ensemble. In the
fluid ( p,) as well as (p3) for any g, vanish. Be-
cause of this difference, we express and examine
© as a function of order-parameter quantities
{x;} related to { p,). Ideally, one would like to pre-
dict transitions from the fluid without prior speci-
fication of the other phase. However, we examine
here the transition from the fluid to specific crys-
talline phases (e.g., fcc, bee). This makes the
theoretical development precise, and enables us to
reliably compute other freezing parameters which
can be compared with experimental results for
these structures.

The order parameters A, are defined and intro-
duced as follows. Consider the normalized Gaus-
sian

fexP(—lM‘eipglz)(iD\#) =1,

where since A, and p, are complex (¢; is a real
constant, with a value chosen later) we integrate
from —« to +o over the real and imaginary parts
AF and Af of A,. It is identically true that

exp(—BQ)=Tr{f---fI;I (—‘%‘-)\

X C‘XP(—'M‘ € P:'z) (1b)
X exp [-B(Hy—uN)] ¢ .

If in Eq. (1b) the order of taking the trace and of
integration over A,’s is interchanged, we have

owtcper- [ TI(2)

x exp[-p2{r,})], (2a)

where

’ exp[—ﬁﬂ({h{})] =Tr [exp (—Zi: =€ py '

— BH - uN)] . (@)

We now argue that Q({x;}) is the desired order-
parameter expression. To see this, consider the
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quantity

€x{ px) =exp(BR)Tr {€,p,exp[-BH 4~ uN]} .
(3a)

Again we introduce the Gaussians as in Eq. (1b),
and interchange the order of integration over {x,}
with that of taking the trace. We then write

€, preXp(\Fe, p,) as (8/a0F) exp(A}e,p,) and inte-
grate over \} by parts. We then find that

o o [ T,
x exp[-p({r,})]
=(N\) . (3b)

Thus, (p,) is, apart from a scale factor ¢,, the
expectation value (2,) of A, in the {);} ensemble,
where the statistical mechanical probability of the
system having a given set of values {x‘} is given by
pr;}) =exp(B2) exp[-p2({x,;})]. This justifies our
identification Q({)\,}) as the order-parameter ex-
pression needed. Defining a tempered density ma-
trix

Pix;} =exp<‘z Xy =€ pyl? = BlH Y- #N)> (4a)

the expectation value of a general operator O is
given by

@[+ frstonyo 1]
AL O g )f

The general order-parameter strategy is to cal-
culate 2({1,}) using Eq. (2b), whence (p,) can be
obtained from Eq. (3b). For other physical quan-
tities, Eq. (4) is needed. There is great simplifi-
cation if Q({x,;}) has minima (as it must have for a
stable system). First, we note that the natural
scale of A, is O(N*2) since ( p,) is O(N) and we will
choose ¢, of order (N)"2, Suppose the minima of
Q({r;}) are at {x;}={AT}. {A7}=0 obviously cor-
responds to a fluidlike phase (this is always pres-
ent for ¢, <1) whereas {A7}#0=0(VN ) describes a
crystalline solidlike minimum. Now because the
scale of {),} is O(V¥), the probability distribution
2({x,}) is very sharply peaked around the minima,
with a relative width of order (¥N)™¥2. Further,
since the Q({A7}) for different minima will in gen-
eral differ by a quantity of order N, Q({A}}) for the
lowest minimum {A!"} will exceed that of other
minima by an overwhelming factor of order exp(N).
Therefore, in Eq. (3), expanding p({,}) around
the minima, and retaining only the contribution
from the lowest minimum, we find to relative ac-
curacy N°!, that

& Pr) =2%" . (5a)
Using the same argument in Eq. (4b), we have
(0) =0} \Im} . ' (5b)

Thus, one calculates Q({1,}) and locates its lowest
minimum. If this occurs with {A{"}=0, it is clear
from Eq. (5a) that the stable phase is a fluid. On
the other hand, if it is for {\!"}#0, the system is
a crystalline solid. As the appropriate system
variables are changed, the lowest minimum of
2({1,}) can be expected to shift from that corres-
ponding to a fluid to that for a solid. The freezing
transition occurs when there is both a fluidlike and
a solidlike minimum and the two have the same
thermodynamic potential, i.e., Q({a7}=0)=2{r!"}
#0). Physical properties of the two phases, and
hence the freezing parameters can be obtained
through Eq. (5).

We now discuss the actual method for calculating
Q({x,}), defined in Eq. (2b). Clearly, if the ex-
pectation values ( p,) 2 of interest are O(N), we can
write the exponent of the Gaussian, to a relative

accuracy O(N™!) as
2 2
-2 I e:ml2=Z‘: [—Ai =7 +eilppp g l?

F(2eAR - 263 p,){xi})pg] :

(6)
where (p‘){)\i} is (p, evaluated for a given set of
{1;}. In the right-hand side of Eq. (6), we have as-
sumed <Di>{)\,} =<PT>{>\¢} E(ﬁ-t){x‘} (true for any
centrosymmetric crystal) and therefore take A,
=X.; as well as ¢;=¢€.;. Itis clear from Eq. (6)
that p({1,}) depends independently on A} and on A}
and is a Gaussian of width O(N"¥2) centered around
zero for the former. We can take A{=0, and 1, is
purely real. For brevity, we write Af=2,. Sub-
stituting in Eq. (3), we see that

exp[-BQ({r,})]
=exp [Z: (—)\21. + eﬂ(pi>{>\,}]2)‘|

X Tr<eXP[—3(HN— wN)

+Zi: 2(en; —e5( Pi>{>\i})9i])' ("
Thus

ﬂ({kg})=kaTz G =e2lpdp®)

plus the thermodynamic potential of a fluid in a
periodic potential
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vF)=kaT Y 2(eX p)pn g —en)e’CiT . (8)
i

The system has not actually been placed in an ex-
ternal periodic potential, but the above interpreta-
tion of 2({1,}) enables us to calculate it. To com-
pute Q({r,}), we use the general result

_-a-i—k}(ﬁn({x;})-; xﬁ)=2€k<pk>m}, )

which can be obtained by differentiation from Eq.
(7). Thus, if we calculate (pk>{)\ 1 or the average
density (p( ) for a given {A,} that is, from Eq.
(8), for a given ()] and integrate w1th respect to
{\;}, we can obtain 2({),}). Thus, the technical
problem is one of calculating { p(T)) for a given
one-body potential (%) acting on the fluid (Sec. III).

We point out an important general feature here.
In the classical system at hand, one can always
write ( p(T)) « exp[- Bv«(T)], where v (T) =0 (F)
+0 resp(T), ¥ resp (¥) being the response potential of the
system. We shall calculate v, (T) as a functional
of the density change [(p(F)) - p,] of the system
(Sec. ITI). Now at the minimum of 2({1,}), we have
€(Pr){r,;} =M [Eq. (52)], and thus the “external”
potential v(r) [see Eq. (8)] is zero. If v ., () #0,
one has a self-consistently stable system with lat-
tice periodic density components, i.e., a crystal-
line solid. We emphasize that at the minima, there
is no “external” periodic potential, so that
P{rm}), (Pe){aim, etc., describe the actual sys-
tem and not an artificial or metastable construct.
Our approach enables us to locate the {\}"}’s for
which this occurs, and to calculate physical prop-
erties of the system so spec1f1ed

It is also clear that since v.(*)=0 at the transi-
tion point, the criterion obtained would involve
properties of the actual fluid. In Sec. VI we show
that to fix the phases of (p,), an additional “box
confining” potential is needed. But its effect on the
physical properties is in the ratio of surface to
volume and hence vanishes in the thermodynamic
limit.

III. FLUID IN A PERIODIC POTENTIAL AND (o (r}))

The calculation of density [{ p(T))] when a poten-
tial field is present is a standard problem in the
theory of liquids. It occurs for example in the cal-
culation of the two particle correlation function.'®
If one of the particles is fixed at » =0, and the two
body potential 331~ u(¥,, 0) is regarded as an ex-
ternal potential, [ v(F)o(F)dT, the resulting ( p(¥))
is just the two-body (density) correlation function
g(T) for the separation . The approximation
methods used in this case can be systematized in
a functional scheme.*® The Percus-Yevick approx-
imation results when [{ p(¥)) eﬂ"‘”- po) is expanded

as a functional of density change ( p(¥")) — po and the
first term in the functional Taylor series is re-
tained. The HNC approximation corresponds to ex-
panding In[( p(¥))e®*)/p,] as a functional power
series of { p(F)) — p,. The functional approach has
the advantage of being systematic, in that (at least
in principle, and to some extent in practice) the
higher-order terms in the functional Taylor series
expansion can be retained and their effect can be
evaluated. However, obviously, it is highly de-
sirable to have the first term as the leading one.
This brings one to the question of the choice of a
suitable (functional) approximation scheme.
Experience shows that the Percus-Yevick
scheme gives good results for g(¥) if the inter-
atomic potential is of short range and varies ra-
pidly with distance, as in the case of hard spheres
orargon.’®?* On the other hand, the HNC repre-

“sents g(F) very well for the classical one-compon-

ent plasma,*! i.e., for a system with long-range
interatomic potential. The reason for this is
roughly as follows. If v(T) varies very rapidly with
T, e.g., by more than kgT in a particle correlation
length (average interatomic separation), then the
fluid is unable to respond to the rapidly changing
o(F) and { p(T)) ~e P, The residual effect, i.e.,
response of the fluid, is obtained by expandmg

[ pF)ed - po] as a power series in. Kp® ) = po)-
On the other hand, if v(t) varies slowly with T, as
in a one-component plasma [v(r) ~»"'] then one can
imagine local equilibrium and at each point a ye“(F)
which determines ( p(¥)) via { p(T))/p, =€ Peir (1),

In the HNC one attempts to calculate [vq(F)— v(F)]
as a functional Taylor series in the density change
[(P = po]

In the problem at hand, »(%) of Eq. (8) is a lattice
periodic potential. It is smoothly varying, of long
range and not too large (SkgzT). The HNC is thus
expected to be a better approximation for calculat-
ing (p(¥)) in this case. We therefore consider

[ p(FNe?* D /py ] ==Bloer(F) - v(P)] ,

as a function of the density change [( p( N = pol-
Here p, is the density of the unperturbed fluid.
This scheme is self consistent, because ( p(t)) de-
pends on v, (T) which depends on ( p(¥’)). It is
easily seen that

pra®) =po@) - [ cF-FIpE) - p) dF’,  (10)

where

cF=7)= {a [m(i"—p%ﬁ eﬂv(?>)] /x o(F7) }

(P (TN=pg
(11)

is the fluid phase direct correlation function, [Sg
=(1-c¢3)7']. The effect of fluid phase short-range
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correlations onvg,(f) has thus been included through
c¢(¥-1’). In Eq. (10) we have omitted higher-order
terms (see Appendix for a discussion of these).

We express ( p(t)) and ¢(T) in terms of their Fou-
rier components and substitute in Eq. (10), i.e.,

we write

(pEN=p+V1Y (py e T (12a)
[;

=po(1+m) 0o p,eSi'T, (12b)
1

where 7 is the fractional density change (p - p,)/

Pos and {py),,=Nou;. Further, '

c(?)=NJIZ cae‘;'?. (12¢)
q

Substituting Eqs. (12b) and (12¢) in Eq. (10), we.

have

Bveff(-f) = —ln[< P(;»/Do]

==Coll +Z,: (€ Nok; = 260, = c;p)e’™

-
°r

(13)

where the value of v(¥) [Eq. (8)] has been substi-
tuted. Our aim is to integrate ( p(T)) over i, to get
Q{x,;D [Eq. (9)]. We see from Eq. (13) that ( p(¥))
depends on A; explicitly as well as through the
{xi} dependence of u; and 7. To obtain the latter,
one has to solve self-consistently the coupled
equation (12b) and (13). This complicated problem
can be circumvented by a judicious choice of ;.

A look at Eq. (13) shows that the choice

' €21=Ci/2No’ (14)

eliminates u; completely from its right-hand side,
leading to an effective potential

- 2 1/2 > -
Bveff(r)=_con—z <—N£L> el (15)
1 (

Using the definition Bv.q(¥) =—In[( p(¥))/p,] we have
the following equations for the Fourier components
of{p(r)} [Eq. (12)]:

_ - 2 1/2 > -
Ly=e%mV lfdre iKper exD[Z (WCL) }\‘eiKi r]
o

(16a)

1+n=€%"y"! fd?exp[z: (—231)1/2)« e”zt'?] . (16b)
T \No :

We show in the next section how these equations
can be used to find Q({x,}.

It is also possible to include the effect of the
quadratic term in the functional Taylor series (see
Appendix) and then one gets

>\ 1 (3)..2 l 3 2
=B (r) = con + 2 c53'n? + 2 Z: el

2¢ 1/2
D[ W

i

in®e @l [t am
In Eq. (17),
9
Cég) ==0C +Po<'_c'°'> ’ (18a)
90/ p=p
@op® =g, d¢y (18b)
Cio =Ci,~1=—C;i*tDp o0 /,-,’
. ~fo
and
cg?’i"=—1—pgasge’,,n’_u-i»(c,-,— 1)
X(Cin'— 1)(Ci’+i”" 1). (180)

Here c§3 and ¢{3’ [or ¢{®,] are Fourier transforms
of direct three-particle correlation functions ex-
pressible in terms of the density derivatives of c,
and c;, respectively. The quantity c{3). involves
three density fluctuations, with wave vectors K;,
I—{"u, -_IE,.. —I_f,”, which are members of the re-
ciprocal-lattice vector set {K,}, i.e., the set of
reciprocal-lattice vectors related to each other by
the crystal point group symmetry transformations,
n{® is the number of pairs in the set {K,} that can
add to give a particular member of that set. c¢{3}.
is related to the Fourier transform of the three-
particle correlation functions S as shown in Eq.
(18¢).

IV. THERMODYNAMIC POTENTIAL AND FREEZING
PARAMETERS

We show in this section how the thermodynamic
potential Q({1,}) can be calculated from Eq. (9)
relating ( p,) with 8Q({x,})/ax,, and Eq. (16) defin-
ing ( py) (=N,u,) as functions of A,. We then discuss
the physical meaning of the expression obtained for
Q, and show how various freezing parameters can
be calculated.

It is convenient to work with a reduced -order pa-
rameter

£,=(2¢,/No2, . (19)

This is a quantity of order unity [since x, ~O(NY?)].
Defining the function )

oeh=v [ dfexp@ s,e‘ff‘) . (20)
it is clear from Eq. (16a) that

n=np{ &}/ (1=c,), (21)
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where we have used 1+n=~e" since n «1. Fur-
ther,

(Prdn, =Notts =No(1 +1) a;_ imo({h]  (22a)
=Noo5r — ag {ino £, h+2(1- o)
x inp({£,h]%}. (22b)

Thus, from Eq. (9), we have
BaQ{ &} =pa{ ¢} -pa{op

0o )]

(23)

This equation, representing the thermodynamic
potent1a1 as a function of the order parameters §&;

=(2¢,/N,)21,] is a basic result of our paper. The
physwal mechamsm of freezing implied by Eq.
(23) is the following. Setting up lattice periodic
density fluctuations of partial amplitudes x; re-
quires an energy kzT 2, A;. This is the first term
of Eq. (23). The system condenses (density in-
creases) as a consequence, and this leads to a
pressure AP = (SP/ap)Ap. The consequent lowering
in @ is AQ ==VAP =k yT(1 - ¢,)n from the definition
of compressibility. This is basically the second
term in the above equation. Now for the energy
lowering to be sufficiently large, a given periodic
potential proportional to A; must cause a sizeable
density change. This requires [Eq. (16b)] that the
correlation function c; be large. Thus as the sys-
tem becomes strongly correlated, the attractive
term in Eq. (23) increases, and it is possible to
satisfy the freezing condition '

Ba({¢p=0, _ (24)

for {£,} #0. The relevant {£,} values are deter-
mined by the stability criterion

spaded

0, ’

i.e., one picks {£,.} #0, such that Q({¢,,}) isa
minimum ({ ¢;} =0 is always a local minimum pro-
vided ¢; <1). Equation (25) translates [using Egs.
(20)-(23)] into

(25)

—Ef =(1 +n)(%“) (26a)
=(1 +")792_k Ing, (26b)

where explicitly

=V"fe‘ik‘?exp<z E,e‘if'?>d'f'. (27)
7

If n is neglected in comparison to unity in Egs.

(23) and (26), one has
Baa({ D=2 &} -p2(0p

-N[T (E)-meded]. e

and

g ol
PRl (29)

We note that the compressibility ¢, does not enter
these equations and only the crystal structure and
the structural correlation functions c; do.

Including the quadratic response terms [in the
expression for AQ({ £,})] we find that the integra-
tion over £, canagainbe carried out and that the ex-
pression for BAQ({ £} is now given by -

2 ‘ 2
Ny'sa({ 51}) =Z ('é") -(1- Co)<77+ %)
1 Cy
2 3 1
+ c{,f,’(% + —7-73—> +Z c{P u3 <71 +E>
+?Z cPmmPul. (30)

The third and fourth terms are due to the density
dependence of the compressibility (or ¢,) and of

_ ¢, respectively. The last term is a geometrical

reinforcement effect due to the possibility of three
reciprocal-lattice vectors adding to zero. This can
lower & if ¢{¥,» is negative, and thus the lowering
need not come entirely from the condensation effect
[second term of Eq. (30)]. The fractional density
change 7n is given explicitly as

n=01=c,) *np({£,}, (31a)
where
v &h=0(xD, (31b)
with
=t +cDum+in®cPaud. v (31¢)

The free energy minimum condition (25) can be
written

e & (1+n)<m}l> . (32)

3x.

Equation (25) determines the values of the quan-
tities { £,} for a locally stable solid phase. In case
more than one set {£,} satisfies the minimum con-
dition, we choose the one with lower . The freez-
ing condition (24) gives one relation between the
material parameters c; and ¢, of the fluid. We use
the known compressibility so that ¢, is fixed. If
only one order- parameter mode £, of the recipro-
cal-lattice vector set {K,} is effective in lowering
2, the freezing condition gives the corresponding
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value of c;. If two modes are significant, we ob-
tain a relation between the corresponding ¢,’s for
freezing. to take place. Thus we obtain the struc-
tural criterion for freezing, and not the freezing
temperature [without the intervention of a theory
of the fluid which gives ¢,(T)]. Given {£,}, the
fractional density change n=(p,- p,)/p, can be
directly obtained from Eq. (21). The entropy
change As can be obtained by calculating the free
energy per particle in the fluid and solid phases,
using our expression for £ and standard thermo-
dynamic relations. We find that the entropy loss
As on freezing has two parts, one due to just the
volume change and the other due to the structure
that develops, i.e.,

As=(As), +(As), (33a)
__ -1f9P kT 2 ac
—npll<aT>u——§— (1+7) Z “2‘(6_TL>,,'

(33b)

We can calculate from our theory the lattice peri-
odic components of the solid phase density near
freezing. For the order-parameter modes,

(pp _ by _~ __1 &
N, 1+ "9 149 ¢ ° (34)

s

To find ( p,) for reciprocal-lattice vectors such
that the corresponding order parameter is zero,
we use Eq. (16a), and obtain,

L= pe(l+m)7!

=y (1 +n)'1fd?e"'ih': [exp(‘; &,e‘ii':ﬂ .
(35)

The quantity [i2 is obviously the Debye-Waller fac-
tor, and can be measured in an experiment or a
computer experiment.

V. NUMERICAL RESULTS FOR SIMPLE STRUCTURES

We begin this rather long section with general
remarks on the choice of order parameters and the
calculational procedure. Then the details of
calculations for fcc, bee, and two-dimensional hcp
structures are described and the results are com-
pared with experiment wherever possible. We also
obtain and discuss results for the Debye-Waller
factor for these structures near freezing.

A. Choice of order-parameter modes

The theory developed above is in principle a
many order-parameter theory with one order»pa-

rameter for each reciprocal-lattice vector. How-
ever, 1, or £, should be taken to be the same for
all reciprocal-lattice vectors (same magnitude) of
the set {K,} whose n, vectors K, (@=1,..., n,)
transform into each other under point group trans-
formations from crystal symmetry. Then the
function ¢({£;}) of Eq. (20) can be written

o{eh=v"t fd?exp(? giw,('f')) , (36a)
where
w,(T) =Z exp(ﬂ-{.m ‘7). (36b)

Now, the increase in Q due to a particular order-
parameter mode £, is clearly [see Eq. (23)] small
if the corresponding c, is large. But c7 is sharply
peaked (near freezing) around |q|~|K |, corres-
ponding to the smallest reciprocal-lattice vector
set. Thus, it is possible that taking only one or-
der-parameter mode £; to be nonzero (and all other
£,=0), we might get a good description of freezing.
Very often however, a second order-parameter
mode with its wave vector in the second broad peak
region of ¢ is effective in lowering Q. The re-
quirements for an effective second order-param-
eter mode are that (i) the corresponding c; is
large, (ii) there are many members in the recipro-
cal-lattice vector set {f(:}, and (iii) the density
fluctuations p, couple effectively to the p, and
among themselves to produce spatially homoge-
neous terms (for Q). The first requirement re-
duces the positive £%/2¢, term in AQ. -The second
increases the density condensation, as does the
third. Asanexample, inthe fcc case, lﬁjl [the set
(27/a)(x1,+1,+1)]is close to the first large sharp
peak in c;. In the second peak region, there
are two reciprocal-lattice vector sets (27/a)
(£3,+1,+1) and (27/a)(+2,+2,+2). The former
set has 24 members while the latter has eight.
We therefore choose the former.

The above arguments are general and serve as

‘broad guidelines. The safest procedure, and the

one that we follow, is to compute Q separately with
each of the alternative choices for &;, and to retain
that which leads to the smallest 2. We have also
found that provided a good first-order transition is
obtained with one or two properly chosen order-
parameter modes, inclusion of other modes &, does
not change © and the freezing parameter very
much. This can be understood analytically by ex-
panding the change 62 as a power series in A,. If
Q is at a well-defined solidlike minimum, and if

¢, and n, are small (as they. are by choice), then
50 is seen to be very small. We now discuss some
actual calculations.



B. Computation for the fcc structure

The fce structure (of which two well-studied
examples are argon and the hard-sphere solid) has
eight smallest reciprocal-lattice vectors (2n/a)
(£1, £1, £1)., Assuming that only the single (real)
order-parameter £; associated with density fluctua-
tions of this reciprocal-lattice vector set is non-
zero, the procedure for computing freezing pa-
rameters is as follows. .For a given c; value, we
vary £, until-the stability criterion Eq. (25) or
(26a) is satisfied. We then check if the freezing or
Q equality condition is satisfied, with Eq. (23) for
BaQ({¢,}, and with n given by Eq. (21). The cal-
culation is repeated until the value of c; satisfying
the freezing criterion is found. If a value is used
for the compressibility or ¢,, one finds . Other-
wise the approximate equations (28) and (29) can
be used to obiain &; and c; with crystal structure
(or the set {K,}) as the only input.

The quantities to be numerically calculated are
the integrals ¢({¢,}) and ¢,({£,;}). For the recipro-
cal-lattice vector set (27/a)(z1, +1, 1), Eq. (36b)
gives w,; =8 cosx cosy cosz, and from (36a) one gets

¢(£,-)=1T'3_£"dx_£"dy.£"dz

x exp(8¢; cosxcosycosz).

(37

This integral is evaluated by the n-point Gaussian
quadrature formula. The value of #, generally in
the range of 6-12, is varied till convergence up to
five significant figures is obtained.*

On computing ¢(¢,) and ¢,(£;) for various values
of &;, we find that the approximate equations (28)
and (29) are satisfied for £;=0.62 and ¢;=0.98.
Using the known compressibility value for argon?®*
(c,=—-18.9) and the more accurate equations (23)
and (26), the one order-parameter theory gives
£,;,=0.60 and ¢;=0.95 (these and other freezing

TABLE L. Freézing parameters for
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parameters are listed in Table I under theory I).
The c, value for the hard-sphere system*® (c,
=-49.0) is very nearly the same (Table II, theory
I). The values obtained are to be compared with
the experimental result ¢,~ 0.65.° The discrep-
ancy is quite glaring when phrased in terms of the
structure factor S;=(1- ¢,)"* for which the value
obtained is 20.0, the experimental value being
2.85. The transition obtained is very close to being
second order (c;=1 or S;==, see Sec. VI). The
geometrical reason for expecting this is the follow-
ing.

The fcc structure is a closed structure in
position space and somewhat open in reciprocal
space. There are only eight members in the
smallest reciprocal-lattice vector set (while
for bee this number is twelve). They do not com-
bine to produce an 5 that can lower the BAQ(¢;)
sufficiently to cause a strong first-order transi- -
tion. ‘

We note here the strong mathematical resembl-
ance between the result of our one order-param-
eter approximation and the results of Kirkwood
and Monroe® for the case of argon. Kirkwood and
Monroe considered an equation for the one-particle
density p(T, £) when the coupling between a particle
at T=0 and other particles is turned on (¢, the
fractional coupling strength grows from 0 to 1).
They find equations somewhat similar to Eqs. (28)
and (29) with a quantity B; instead of our c¢;. The
quantity 8, is a (complicated) function of the inter-
atomic potential, the two-particle correlation func-
tion and the temperature. The fact that g; is a
model approximation for ¢, (at least for small
periodic density changes) has been made plausible
by the work of Saitoh and Nagai.?® These authors
made an assumption independent analysis of the
Kirkwood instability criterion,*” g, =1 (for which
the fluid phase becomes unstable with respect to
infinitesmal density fluctuations) and found that
this criterion becomes the somewhat tautological

argon (fcc). Here |§n|=‘§11/2|§j|.

Structure factors

Fractional

Lattice periodic

c,=1-5;1 density density Order parameters
c; c, change 7 a; [ £ én
Theory I 0.95 0.00 0.074 0.59 0.20 0.60 0.00
(one order parameter)
Theory II 0.65 0.23 0.270 0.90 0.75 0.77 0.23
(two order parameters)
Theory III 0.65 0.23 0.166 0.91 0.74 0.71 0.21
(two order parameters with cg’;,)=—110.0)
Experiment 0.65 0.23 0.148 . . co
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TABLE II. Freezing parameters for the hard-sphere system (fcc). Here |K,| =‘5‘1/2|ij.

Structure factors Fractional Lattice periodic
ce=1=571 density density Order parameters
; Cp change 7 H; Hy &; n
Theory I 0.96 0.00 0.029 . 0.57 0.18 0.52 0.00
(one order parameter)
Theory II 0.65 0.26 0.113 0.90 0.75 0.67 - 0.22
(two order parameters)
Theory III 0.65 0.26 0.093 0.90 0.75 0.67 0.22

(two order parameters with 0830)=—183.0).

Experiment 0.65 0.24 0.103

statement that ¢;=1 or S;=». The Kirkwood-
Monroe result of 8, =0.95 which appears to be good
for argon when expressed in terms of temperature
(with a potential and two-particle correlation put
in) is actually rather poor in the light of the above
identification with ¢;. The other freezing param-
eters like n, are too low and the transition is close
to being second order.

The two order-parameter approximation is nec-
essary as well as justifiable because experiment-
ally the second peak of ¢} is more than one-third
of the magnitude of first peak, both in argon and
hard-sphere systems. As already discussed, the
effect of this second peak is included by taking a
nonzero order parameter corresponding to the set
{K,,} for which the number of vectors is large and
for which If(’,,l lies in the region of the second peak.
In case of fcc structure, there are two sets with
magnitudes lying in the second peak region, name-
ly, {K,} =(2n/a)(+3, £1, +1) with 24 vectors and
{ﬁn,} =(2n/a)(+2, +2, +2) with eight vectors. Ob-
viously, the better choice of the second order pa-
rameter £, corresponds to the set {K,} with #,=24.
The effect of the other set {ﬁn,} was also computed
and found to be negligible. The location of [K,| on
the S(g) versus g curve is shown in Fig. 1, where
lﬁjl exactly corresponds to the first peak position.

The computation for the two order-parameter
case proceeds as before; with

o(&;, &) =72 f[fdxdydz exp(&;w, +£,w,),
(38a)
where
w,=8(cos3xcosycosz +cosxcos3ycosz
+cosxcosycos3z). (38b)

The calculation procedure consists in choosing c¢;and
¢ ,and for the givenc,, locating the minimum of &
[using Eq. (25)] in the £, £, plane. We then cal-

culate BAQ and the calculation is repeated by vary-
ing c;, c, until the condition BAQ =0 is satisfied.
We use the 12-point Gaussian quadrature formula
to evaluate the integrals of Eq. (38) and obtain sev-
eral pairs of numbers for c¢; and c, which satisfy
the freezing condition. We have plotted them as a
¢; vs ¢, graph as shown in Fig. 2 for argon. A
similar graph can be drawn for the case of hard
spheres. An interesting feature of this graph is
that it is a straight line with a negative slope,
showing that if ¢, increases, then freezing occurs
for a smaller ¢, and vice versa. A remarkable
property of this graph is that other freezing pa-
rameters like 7, u;, and yu, remain approximately
the same for all values of c; and ¢, on the straight
line. This line can be considered as a freezing line
described in terms of structural correlations.
Above the line, the solid phase is more stable due
to strong structural correlations while below the
line, the fluid phase is more stable. Effects due

0281
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FIG. 2. Curve of calculated values of ¢; and ¢, for
which freezing is possible into the fcc structure.



to other (omitted) order-parameter modes and
three-body correlations broaden this line into a
relatively narrow strip. The actual values of c,
and c, for various conditions of temperature and
pressure will lie on a different curve whose inter-
section with the above straight line determines
T(P) if ¢,(T, P) and c¢,(T, P) are known. Since we
do not have here a theory of the fluid which would
predict or relate c; and c, under the given thermo-
dynamic conditions, we display from the ¢, and c,
values obtained by us, numbers lying closest to the
experimental values near the triple point for
argon, and the freezing density for hard spheres.
These are shown as theory II in Tables I and II for
argonand hard spheres, respectively. For example
the predicted ¢, values are found to agree almost
perfectly with the experimental results in both the
casesifc;is chosen to be the experimentally observed
value 0.65. Tocheckthe influence of other order pa-
rameters, we include additionally in BAQ the ef-
fects of &, corresponding to the set {K,} = (27/a)
(2, +2, 0) with 7, =12,

w,=4(cos2xcos2y +co0s2y cos2z +¢0s2z cos2x)

and w, corresponding to the set {K,} = (21/a)(x2,
42, #2) with n, =8 and

w, =8(cos2x cos2y cos2z).

Detailed computation yields &,~0.005 and &, ~0.03
for transition and none of the numerical values
shown against theory II of Tables I and II vary by
more than five per cent (this is not shown in the
Tables I and II). Thus, we conclude that the two
order-parameter theory is often good enough (and
other order parameters-are set equal to zero
thoughout this paper).*® The vectors of the set
{K,} corresponding to £, combine among them
selves and with those of the set {ﬁ,} corresponding
to the dominant order parameter £, in a highly ef-
fective way so that n increases and the solid phase
is stabilized.

While the two order-parameter theory is very
good as far as c; and c, values are concerned,
Tables I and II clearly show that the value of the
fractional density change 7 is too large (theory II)
in comparison with experiment. As discussed
above, inclusion of more order parameters does
not make any difference to this large values of
(change <4%).

For such a large fractional density change in
dense system, the compressibility changes a great
deal. Experimentally it is known that as one goes
from liquid to solid argon at the freezing point, the
compressibility nearly halves.***** Thus, the as-
sumption of linear response with respect to density
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change, with ¢, as the response coefficient, isphys-
ically unrealistic. The decrease in compressibil-
ity with increasing density will reduce n with re-
spect to the above value. Formally, this effect can
be included by considering quadratic response
terms, i.e., Eq. (17) for v(¥), Eq. (30) for BAQ
and Eq. (32) for the stability condition. The new
response coefficients involved are the density de-
rivatives ¢§) and ¢{Y and the three reciprocal-lat-
tice vector fluctuation term c{%,». Since neither
within the set {K,} nor in the set {K,} can three
reciprocal-lattice vectors add to zero, the term
c{¥,» is not present in the fcc structure. The term
c§3’=-c|‘+p(,(é)ci/ap)p=po can be estimated, e.g.,
from the Verlet-Weis fit* (of a Percus-Yevick-
like equation) to the hard-sphere structure factor.
It turns out for example that ¢{3’=0.08. With this
c§3’, calculation shows that the change in freezing
parameters is small. However, since ¢, decreases
rapidly with increasing density, ¢§’ is quite large
and negative. Keeping only c{3’, we get

par{ &} =Z <—2-§(z-> -(1- Co)<Tl + I’;)

2 3
+c83 L +—1-7—> (39)

2 3

the last being the additional term, The minimum
or stability condition. [Eq. (32)] is unchanged. It
is clear from Eq. (39) that the inclusion of the ¢{3
term does not affect anything except . The exper-
imental values for ¢{3’ are nearly —110.0 for argon
and -183.0 for hard spheres. These values extra-
polate fairly close to the observed c, of the cor-
responding solid phases. Using these values, one
gets numbers for i which are shown against theory
III in Tables I and II, Now there is excellent
agreement between theory and experiment for the
density change 7 also.

The calculation of entropy change using Eq. (33)
requires the knowledge of (8P/87T), , and (3c,/
8Ty, u- The former is easily found from the equa-
tion of state. No experimental information is
available on (8¢;/87T),,. To obtain an estimate,
we use the Percus-Yevick hard sphere expres-
sion* for c,(p) where p is the density, and com-
pute (ac,./aT),,'” by employing the equation of state.
An additional difficulty is due to the fact that some
¢;’s increase with temperature while others de-
crease, We therefore keep only the dominant.term
due to the (9¢,/8T),, where {K,} is the smallest
reciprocal-lattice vector set. For the hard-sphere
fluid at the freezing density, we find

(As),=0.75ky,
(As),=0.54k 5.



2786 T. V. RAMAKRISHNAN AND M. YUSSOUFF 19

Together they add to 1.29%,, fortuitously close to
the experimental value of 1.2k.

An interesting feature of the phase transition in
the fcc structure is the large value of the periodic
density component. [1,., for example, is 0.9. The
liquid solid transition is thus strongly first order.
Our numbers for the [i;’s may be a slight overesti-
mate because we have ignored entirely the nonlin-
ear response coefficients ¢{3’ and ¢{®,. However,
since the best available estimates indicate that
these are small, we do not expect ﬁj; etc. to be too
high by more than about 15%. The Debye-Waller
factor D, =5 is also large.

C. Body-centered-cubic structure

Here we study freezing into bce structure with
particular reference to sodium. The reciprocal
lattice is fcc and the smallest reciprocal-lattice
vector set has 12 members (z,;=12) given by {K,}
=(27/a)(¢1, £1, 0) so that here

-w;=4(cosx cosy +COSY COSZ +COSZ COSX) .

This w, is used to calculate ¢(¢;) [Eq. (36)]. Pro-
ceeding as above in the one order-parameter case,
we find the solution ¢;=0.71 for £;=0.51. Unlike
the case of the fec structure, this is a perfectly
acceptable first-order transition. The difference
arises from the fact that the bee structure is rather
closed in momentum space. There are twelve

- members in the smallest reciprocal-lattice vector
set (in contrast to eight for fcc), and these couple
strongly amongst themselves to promote freezing.
We take the value of ¢,~—40 from compressi-
bility data®®+°° to obtain the results of our theory
for the one order parameter approximation. The
result is shown as theory I in Table III, The value
of c; is quite tolerable but the value of n is almost
double the experimental value. This is to be
contrasted with theory I in Table I for argon where
n is half of its experimental value and for hard
spheres, where 7 is about one third of the experi-

mental value. Therefore one suspects that some
fundamental process is responsible for this basic-
ally different behavior of 5 in fcc and bec struc-
tures. As will be seen below, this process is the
effect of the three-body correlation ¢{?},» whose co-
efficient vanishes for fcc structure but which is
quite significant in bce structure.

The second order parameter £, which is most ef-
fective in the case of bcc lattice corresponds to 24
reciprocal-lattice vector (n,=24) {K,} = (27/a)(«2,
+1, +1) whose magnitude is in the region of the sec-
ond peak of ¢ and for which

w,=8(cos2x cosy cosz +cos2y cosz Cosy
+C€0s2z COSx COSY) .

|K,| in this case is also shown in, Fig. 1.

Then the two order-parameter approximation
yields “best” numbers shown as theory II in Table
ITII. There is reasonably good agreement with ex-
perimental values of c; and ¢, but the value for 7
becomes worse (even higher than theory I). This
is obviously expected and did happen in the case of
fce structures. However, if n is large, the effect
of the density dependence of ¢,, i.e., of the non-
linear term ¢, can be significant. In case of
bee, one finds® that ¢’~ -75. Using this in Eq.
(39), we find that neither the initial density change
nor the density dependence of the compressibility
is large and the reduction in n is marginal. This
leads to an examination of all the other effects that
have not been included. More order parameters
were included in the calculation and it was found
that their effect is again less than a few percent
(as anticipated). Again there is reason to believe
that ¢{y’ would be small and therefore the only sig-
nificant quantity is ¢{?,~ representing a special-
aspect of the three-body correlation.

It is clear from Eq. (30) that ¢{3}. is effective
through»{®’ which gives the number of pairs in the re -
ciprocal-lattice vector set {ﬁ,} such that their sum
is a particular member of this very set. Such

TABLE III. Freezing parameters for sodium (bce). Here IK,| =x/§[§,~|.

Structure factors Fractional Lattice periodic ]
c,=1-51" density density Order parameters
c; Cp change 7 B iy §& . b
Theory I 0.69 0.00 0.048 0.70 0.31 0.48 0.00
(one order parameter)
Theory II 0.63 0.07 0.052 0.71 0.42 - 0.47 0.03
(two order parameters)
Theory III 0.67 0.13 0.029 0.63  0.34 0.42 0.05
(two order parameters, C((,%) =-75.0, cgi)ju ==0.103)
Experiment - 0.66 0.12 0,026 s . .e




combinations do not exist for the fcc structure.
However, for the bce structure such pairs exist.
For example, in the set of the smallest reciprocal-
lattice vectors, we have

(2n/a)(1,1,0)+(27/a)(~1,0,1)=(21/a)(0,1,1).

There are four such pairs in the set {ﬁj} for each
vector K;. Thus n{*=4 and from Eq. (30) one gets
for the bcc structure

Ny'BaR(E,, £,)

_ 885, 1285
Cj Cc,

-(1- co)(n + J;i)

3

where the term for c{),. is omitted. Equation
(31c) becomes

x;= 8, +205 0103 (41a)
and
(41b)

x,=&,.

It is clear from Eq. (40) that an attractive
(~ve)c$?,» additionally lowers AR, and one can have
a solid phase for a relatively small n without sig-
nificantly altering other freezing parameters.
Unfortunately, however, nothing is known about
c$?.. experimentally or theoretically. We
therefore tried various numerical values between
+0.2 to -0.2for ¢\7)~» and computed freezing pa-
rameters. In the case of only one order parameter
&;, we find for ¢{?,,=-0.02, the values ¢;=0.706
and n=0.042. 7 is somewhat lowered, but c; is in
worse accord with experiment. Making ¢{?)» more
negative lowers 7 but the corresponding c; is even
further off from experiment. We alsonotice thata
rather small ¢{?» (=-0.02) has a significant effect '
on freezing parameters. This is because n{®¥=4
(i.e., four pairs can add to produce a member of
the set {K,}), and because y$ is sizeable (u,~0.6
to 0.7) [see Eq. (40)]. Performing a similar cal-
culation for the two order-parameter case, we ob-
tain, for ¢{¥;, in the neighborhood of -0.10, sets of
acceptable freezing parameters. One such (for
¢{¥»=-0.108) is shown in Table III (theory III).
The agreement with experimental values of 1, c,,
and c, is very good indeed. We assume that {3~
has this value in sodium.

We point out an important implication of the cj-?’,,,
term in the framework of the present theory. When
this term is set at zero, we find that for a common
acceptable set of ¢, and ¢, values (corresponding
to fluid being in a particular thermodynamic state)
the bce phase is more stable than the fce phase.
The three-body contribution disfavors the bcc if
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C;-:;)ju’ is positive, and disfavors the fec still further
if it is negative. Thus, depending on the size and
sign of the three-body term, the becc or the fcc
phase will be more stable. It is interesting that

in the pseudopotential theory of metals, the strong-
ly crystal structure sensitive term has been found
to be an effective three ion interaction.5?-53

D. Two-dimensional hcp structure

Aphase transition for hard disks in two dimensions
was found by Alder and Wainwright!®'” through
computer experiments. Here, we apply our theory
to the freezing of this two-dimensional system into
a close packed hexagonal lattice. The smallest
reciprocal-lattice vector set has six members
(ny=6) and

w;=2cos2y+4cosxcosy,

is to be substituted in the expression (36a) for
¢(¢,;). The numerical value of ¢, has been com-
puted by using the Pade approximant fit to equation
of state'®* and the result is ¢, =— 51.5. Using this
the one order-parameter approximation yields re-
sults shown as theory I in Table IV. Comparing
with the only experimentally known quantity, n
=0.,028, we find that the one order parameter theo-
ry requires improvement, since 7, is too low.

In this case, the choice of the second order pa-
rameter is not quite obvious because the c3 vs ¢
curve is not known. Therefore several choices of
the second order parameter £, were tried out and
the one that is found most effective for the transi-
tion corresponds to

{K,} =(0, £2)41/(3a)/?, (+V3, +1)4n/(3a)?,
with #,=6 and ‘
w,=2(cos4y +2 cos2xcos2y).

The freezing parameters computed by using this

¢, are shown as theory II in Table IV. We see that
7 agrees very well with experiment, But the phase
transition is rather close to second order with c;
=0.86. (We get c;=0.86 always and choose c, such
that the corresponding 7 is close to experiment.)
We also note that the fractional density change 7 is
very small and the periodic density component [ ;
=0.68 is rather small for a close-packed structure
(compare, for example, with Tables I and II for
fce structure). The fact that the transition is not
strongly first order leads one to expect that there
will be some softening of lattice modes near melt-
ing. Evidence for this appears in the work of Alder
(Ref. 16, p. 98). The experimental information
available so far is in agreement with our find-
ing that in two dimensions,®® the transition takes
place to a closed-packed hexagonal structure
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TABLE 1V. Freezing parameters for hard disks (closed-packed hexagonal intwo dimensions).

Here |K,|= 2|K |

Structure factors Fractional Lattice periodic
co=1-5;1 density density Order parameters
c; Cp change 7 By Hy &; ¢n
Theory I 0.86 0.00 0.013 °~ 0.51 0.10 0.44 0.00
(one order parameter) .
Thedry II 0.86 0.16 0.025 0.69 0.31 0.60 0.05
(two order parameters)
Experiment oo 0.028 . o
with 7 = 0.025. imated by a Gaussian, fi,=e ***% (Fig. 3). The in-

E. Debye-Waller factor

One of the basic quantities appearing in our finite
amplitude density wave instability theory is the
amplitude of the density wave. In terms of the or-
der parameters £;, the density is

p(F)>/5=exp(; 5;eiff'?) B ED. (42)

We have described above how the set of values &,
at the solidification point is determined. This
being given, (p(r)) is known completely. It is clear
from earlier discussion that we expect { p(T)) to be
dependent mainly on the crystal structure of the
solid and on the (very similar) structural correla-
tions ¢, in the fluid, and to be relatively indepen-
dent of the details of the interatomic potential. We
thus have here another quasiuniversal quantity as-
sociated with freezing. The best way of exhibiting
it is through the Fourier coefficients of { p(T)). We
define

-

~ (p(®) -ik.7 dr _ 1 W - iKpeT 3
-f—ﬁ A f(p(r»e Rrdr
_ e
T 1+q” (43)

The Debye-Waller factor for Bragg diffraction
with wave-vector change K is D,=pu2. We present
below our calculations for fcc and bee structures.
The quantity ( p(¥)) itself can be “measured” di-
rectly in a computer experiment. For example,
Alder'® has presented results which may be related
to ( p(T)) in a two-dimensional hep hard disk solid
at the freezing point.

The periodic component g, has already been
computed for the reciprocal-lattice vectors K,,Kn
for which the order parameters &, £, do not vanish
(e.g., theory III, Tables I-III). We calculate [,
for other reclprocal -lattice vectors {K } using Eq.
(35) with values of {,,} appropriate to theory III
of Tables I and ITII. We find that 3, is well approx-

verse width of the Gaussian has the value A
=0.34/|K | and xr, =0.19/|K,|. Here |K,|is the
length of the smallest reciprocal-lattice vector.

The fact that ( p,) is well fitted by a Gaussian im-
plies a quasiharmonic model for lattice vibrations
as follows. In a monatomic solid, one has

<pk> =N< eﬁzk.;> = (i eiik'.ﬁl> = <iedzk';f> )
i=1 =1

where R (= R°+uj) are the coordmates of the jth
atom, R° being its mean position and uj being the
dlsplacement therefrom. For an assembly of har-

0.8
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FIG. 3. Lattice periodic component {; of the _density
corresponding to the rec1procal—1attlce vector K;
shown as a function of | K;|%/| K,I % (dots). Here K, is
the smallest reciprocal lattlce vector. We have also
plotted —logy, fi; (circles). The results are for bee
structure.
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monic oscillators,

(3 o3 = Nexpl-4(& -5

§=1

For a crystal with cubic symmetry, this is
Nexp[-4K*(u,)?)]. Thus the coefficient of the
Gaussian found by us can be related to the mean-
square displacement. The values quoted above
lead to (u2)Y%/y, . - =0.06 for the fcc structure,
and 0.112 for the bee structure.

The best way of comparing the above theoretical
predictions with experiment would be to measure
( pg) or the Debye-Waller factor, either in an act-
ual experiment or in a computer experiment. At
present, there do not seem to be any reliable ab-
solute measurements on the Debye-Waller factor
at the melting point. No computer experimental
results are available either. However, (ui) has
been determined from computer experiments for
argon, two values quoted®®” being ((u3)/+3, V2
=0.14 and 0.10. Another way of estimating («2) is
by using the Debye model for phonons. With stand-
ard values® for ©,, one finds the values 0.080 and
0.140 for argon and sodium, respectively. The
theoretical numbers are lower, the difference
being large for the fcc structure. This could be
due to the following reasons. We have neglected
the effect of the density increase on ¢;. As density
increases, so does c¢,. This will effectively reduce
the uu,’s. Secondly, the theory developed here is
based on response functions in the fluid state. In
the solid state, these response functions are dia-
gonal in wave vector only up to a reciprocal-lattice
vector, i.e., there are umklapp terms. These
terms stabilize the solid and thus smaller £,’s and
w,’s are sufficient. We note that in the fcc struc-
ture, the density change is large so that the first
effect can be sizeable, whereas for the bcc struc-
ture the density change is small. Also, in the bcc
structure, the presence and inclusion of the third-
order term .} in some sense takes partial account
of the nondiagonality of the response function.
Within the constraints of these limitations, our
predicted numbers are in fair agreement with the
Debye model predictions. An interesting result is
that we obtain a Gaussian fit for the Debye-Waller
factor without any assumption of a quasiharmonic
model for lattice vibrations.

F. High-temperature solid

It is clear from Sec. II that one can discuss not
only the fluid-solid transition, but also the high~
temperature crystalline solid. For ¢, less than the
value c{ at which freezing occurs (i.e., for T>T,),
we calculate Q({,}), see if it has minima for {x.f
#0, and locate the lowest-lying minimum. For

cf=¢,;0.03 there is indeed such a minimum, and
the corresponding Q({7}) lies higher than that of
the fluid. Thus, in this range of ¢; or tempera-
tures above melting point, a metastable solid ex-
ists, and we can locate the absolute thermodynamic
instability limit of the solid. For ¢,>c% (or T
<T,) the crystalline solid has lower Q, and hence
is the thermodynamically stable phase. However,
so long as c; <1 the fluid is metastable. This im-
plies a large metastability region for the fluid,
since cf is only 0.65. Experimentally, the super-
cooling temperature range is much larger than the
superheating temperature range, thus supporting
our result. Since the properties of the solid
phase, e.g., density, Debye-Waller factor, etc.
can be calculated as described in Sec. IV, we have
here a theory of the “hot” solid (T < T,) based not
on lattice dynamics, but on an approach from the
fluid phase.

G. Remarks on computational results

We note that while a first-order liquid solid
transition is easily found in a simple approxima-
tion, obtaining accurate, stable freezing param-
eters requires systematic refinement of the
approximation. This is not surprising since
the freezing transition is strongly first order,
involving large changes in order parameters,
density, etc. Furthermore, it occurs in a dense
system whose structural and thermodynamic prop-
erties depend strongly on density. Because of the
systematic nature of our theory, we are able to
converge quickly to the correct set of order pa-
rameters and nonlinear response terms. The
freezing parameters obtained there from are in
very good agreement with experiment. Our results
are not much altered on inclusion of other order-
parameter modes.

In our calculations for simple structures, we
have predicted many physical quantities near
freezing. There is very good agreement for all
those freezing parameters which have been mea-
sured. For quantities like the lattice periodic den-
sity component and the correlation function in a
two-dimensional (hard disk) fluid, there are no
measurements available near the freezing point to
compare with, We also find that a small attractive
three-body correlation term c¢{?,~ is needed to re-
duce 7 in bce sodium to a value close to that ob-
served. The relative stability of fcc and bece struc-
tures (approached from the fluid side) seems to
depend on the size and sign of ¢{?}» about which no
information exists. In addition to these experi-
mentally testable predictions, we find a few more
results for the actual values of S(g) near freezing,.
For example, in the fcc case, ¢, and ¢, at freezing
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are not fixed, but can be on the curve shown in
Fig. 2. There are no accurate experiments for
S(g) (say as a function of pressure, on the freezing
line) to check whether this is true. Hansen and
Verlet*'®® in their computer study of the freezing
of a Lennard-Jones fluid find that [S(g)] . =2.85
along the freezing line. More extensive experi-
ments are needed. We also find that (c;) .. > (¢;)tec
while (c,)pec <(cp)tec, the difference being small
(see Tables I-III). This is indeed observed, being
strikingly evident in a plot of S(g) (with ¢ properly
scaled) for argon®® (fcc and rubidium?®’ (bcc) in the
same figure.® (The peak value for Na obtained by
Greenfield et al.?® is [ S(q)]max=~ 2.9, whereas for
Rb,27 [S(g) ] pax = 3.1.)

Whether this difference is systematic can be con-
firmed only by accurate and detailed experiment.
The present absolute accuracy of measurement®
of S(q) (~5%) is barely sufficient for this purpose.
(For g in the second peak region, this accuracy
translates into an uncertainty ~20% in c;.)

Of the simple three-dimensional structures, the
simple cubic and the hexagonal close packed have
not yet been investigated computationally. The
former is very strongly disfavored on account of
its poor connectivity, and the latter is interesting
as the unit cell has a basis. Work on these as also
on the relative stability of bec and fcec phases is in
progress. On its completion one might hope to un-
derstand the domains of stability of various simple
crystal structures for monoatomic solids in terms
of fluid phase structural correlations.

VI. DISCUSSION AND CONCLUSION

We first discuss here two objections which are
commonly raised against the type of theory of
freezing presented here, namely that order-pa-
rameter fluctuation effect have been ignored,'® and
that the lattice periodic component of the density
is not a good order parameter.?-®* We then con-
clude by pointing out open problems and applica-
tions of the theory of freezing described above.

A. Fluctuation effects

In the mean-field theory presented here, we have
expressed the thermodynamic potential Q@ as a
function of variables A, related to p,. The effect
of all other density fluctuations, e.g., pg,.3 (3]
small) on © has been included exactly, as it occurs
in the fluid phase, through the direct correlation
function ¢, and other higher-order correlation
functions. The observed c; is influenced by vari-
ous short-range correlations, i.e., coupling among
density fluctuations of various wavevectors. It is
simply that we exhibit Q explicitly only as a func-
tion of a few variables a;.

However, this approach starting from the fluid
is insufficient in one way. Mermin® has shown
that the excitation energy of the density fluctuation
pk,+3 has a part going as kpT(&/K3)(|[( g, )[*/N*?).
Clearly, this is a purely solid-state effect. The
presence of such a term will affect the correlation
functions, but we cannot see this effect in a theory
which uses only fluid phase correlation functions.
This low-lying excitation spectrum is of crucial
qualitative importance, since this together with the
density of states factors for one and two dimen-
sions, leads to the conclusion that a crystalline
phase (i.e., a phase with (pg,) ~0(N)) is self-con-
sistently unstable in one and two dimensions.

Since we do not, by the nature of our scheme, con-
sider (implicitly or explicitly) such a term in the
excitation spectrum of pg 3 and its effect on the
response function ¢;, we may find a fluid solid
transition in one or in two dimensions. Actually,
we find that there is freezing to an hcp phase in
two dimensions, and there is no freezing in one
dimension.

Computer experiments on hard disks show a
phase transition. This is easily reconciled with
the rigorous result due to Mermin.®® The instabil-
ity of the crystalline phase is due to an infrared
divergence effect caused by density fluctuations
PR ,+5 With §~0. Now the computer experiments
are done with finite size systems. Considering a
two-dimensional system with density p and number
of particles N, its size (area) is Np'!. The small-
est value of 6 probed by the computer experiment
is then & pmin~27/(Np )2 or (8mn/2m)(p 1)Y2 ~1/VN.
This is nonzero, and typically (for N =256) ~&.
Because of this effective lower cutoff, there is no
infrared divergence, and a crystalline solid phase
is found. Our theory gives (for 7) a value in ‘
close agreement with the computer experimental
result for hard disks., This implies that the solid
state finite & ni;[~27/(Np 1)¥2] fluctuation effects
are quantitatively small. This is expected since
freezing is a strongly first-order phase transi-
tion and the infrared divergence is only log-
arithmic for two dimensions.

B. Choice of order parameter

We have chosen A; (=¢;p;) as the order pa-
rameter, since in the solid, {p(¥)) has lattice
periodic components. However, if the center-
of-mass coordinate of the system is not fixed, but
can be random (e.g., due to Brownian motion),

{ p(¥)) would be of the form } ( p,)e!*#¢**) where
@ is a random vector, and on the average, the
periodic components of { p(t)) will be blurred out.
It has therefore been suggested that ( p(¥)) is not a
good index of crystalline ordering, but that one
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needs to calculate a five-point function.®* Here,
four points serve to determine the frame in which
the crystalline ordering is probed by the fifth
point. This suggestion while strictly correct, is
obviously impractical and perhaps unnecessary.
The physical reason for the appropriateness of

( p(T)) has been known for a long time. In any con-
densed system with fixed volume V, the position
of its center of mass and its orientation are fixed,
say by imposing suitable external forces. Such re-
straining forces are implicit in all statistical
mechanical calculations in which the configuration
space available to each atom or molecule is re-
stricted to a particular volume V. Thus, if we as-
sume that these external forces or potentials are
present and give the system a fixed center-of-mass
coordinate as well as fixed orientation, the calcu-
lation of { p(T)) is “relieved of all ambiguity,’3®
These potentials can be included in H, [see Eq.
(1)]. We can safely assume them to have no effect
on the fluid phase bulk correlation functions c,,
etc. Thus, the theory developed above can be car-
ried through exactly as before. If the system is
confined to a cubical box of side (V)¥3, and the
density p(F) vanishes on the sides of the box, then
p(T) is expressible as a combination of sine func-
tions rather than exponentials, p(¥)=Y)c, sin(q, - T),
where g, =21n,,/VY3, n,, being a positive inte-
ger.® Calculations for this representation of p(¥)
give results identical with the Fourier exponential
representation results of Sec. III.

C. Applications

It is clear that the problem of melting can be dis-
cussed in a similar way starting from the solid
phase, and calculating 2({x, +1%}) (A corresponds
to the equilibrium value in the solid phase). It can
be shown that there is always a local minimum at
x; +23=0, i.e., a fluid phase. Due to the absence
of homogeneity of space in the solid phase, the
correlation function ¢(¥, ') #¢(T - T’) and hence it
is not diagonal in momentum space. This creates
complications. The advantage in working from the
solid side is that we can calculate the correlation
functions from a good dynamical model, e.g., self-
consistent phonon theory. Calculations are under
way in this direction.

Beyond the liquid-solid transition problem, one
can expect that this approach will be useful in all
first order transitions where structural correla-
tions play an important role. Examples are tran-
sitions between various phases of liquid .crystals.
Using our method, the thermodynamic potential
difference can be expressed in terms of a small
number of structural correlation functions directly

accessible to theory and experiment. The resulting
theory can be expected to be simpler and more ac-
curate than the Kirkwood-Monroe approach which
is the only fundamental approach tried so far.®
For a quantum system, the Hamiltonian does not
commute with, for example, the operator p,, and
so the theory cannot be carried through as it
stands. Extension to cover this case can be done
using time labeled operators. Such functional
methods for quantum systems are well known,*®
Such an extension will be useful not only in discuss-
ing solidification of quantum fluids, e.g., “He, but
also the very important case of electrons in solids.
The latter can be viewed as an electron fluid which
develops lattice periodic components in the density
in the presence of the “external” ion potentials .
disposed on a lattice. Knowing the electron density
and the dependence of system energy on this, could
well constitute a fundamental theory of bonding and
cohesion in solids in which the periodic potential
is not regarded as a weak perturbation, and short-
range correlations in the electron fluid are proper-
ly included.

APPENDIX

Here we discuss the effect-of nonlinear terms in
the potential response (HNC) scheme described in
Sec. ITI. Retaining up to quadratic terms in the
functional Taylor series expansion, Eq. (10) be-
comes -

Boa®)=pv(E)= [ oF - F)(p(F) - po] 4

—5 [ e HEF,EFED - po]

X Kp(E") = po) dT'dE”,  (Ala)
where
B+ T P = a? 1n[< p(;»esv(:)/p()]
O T ) = o E NPT Loty
(A1b)

is the direct three-particle correlation function.
Since ¢®Xr,T’,T”) is a quantity evaluated in the
homogeneous fluid phase, it is a function of the
form ¢®Xf-1’,T— ¥”). Further, since

{p(F)) = po =Py (n +2; uie‘i"?> ,

it is clear from Eq. (Ala) that we need only the
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Fourier components ¢§, ¢§P, c{¥», where

X e'i.(.l"{:'.;') -ia"'(;-:”)d—{‘l di:”

.=p‘2, fc(3)(5/’ Eﬂ)

-3 "r. >r -)ﬂ.*ll - -
X e i(q pi+qTep )dp'dp”.

¢y and ¢f? involve density derivatives of ¢, and c;
00 0i y 0 i

(known experimentally in some cases) whereas
3 (except for ¢”=-3’) is not thus known. To see
thxs we use the definition (Alb) to write

)0 - )

q/-\
@

y
I
=y
=y
1
e

S
]

1 _ -
- O(r-—
oz o
82[ Bu(T) l
. (A2
* SN G oot A2
The second term on the right side of Eq. (A2) can

be written using a well-known result in functional
differentiation,

02Bv(T)

l 8% p(T,)
a( p(E"No( p(F") |,

aﬁv(?{)aﬁv(?’) v=0

3pu(r,) 8Bu(T))
X<a<p<f3> W pE)

8Bu(Ty) >

3 p(E")
x(dT,dT/dT]). (A3)

Using the fact that [8%( p(r,))/380(F])8Bv(F])],-, is
just the fluid three-particle correlation function

SONE,, T, 7)) = ST, - T, T, = £7) = p(T)p(F))p(F])

and Fourier transforming equations (A2) and (A3),
we find

3)
Cq qu--—1+Cq qn, (A4a)
where /
3a 1
CEr";n=—“;)? S ,an-ql-an rC a” s (A4b)
o
and
Ca=cy-1. (Ade)

From Eqs. (Ad4a—-A4c), it is easy to obtain ex-
pressions for the desired Fourler components
c‘ﬁ,L” If one of the vectors q’, q”, or q'+q” is
zero the corresponding c® can be expressed in
terms of density derivative of a two-particle cor-

relation function. In particular,

. 9
1) Céo)='co+p°<8403—> ’ (ASa)
P /p=p, .
. C
() cp=—c=ci®i=-citpo(3d) . (@a5)
p P=Pp

In the general case, we need to know the appropri-
ate Fourier components of the three-particle cor-
relation function, i.e.,

1 -~ o~
(iii) ¢, =-1- = S$31€,€;0€44 40+ (A5c)

We thus see that if the density dependence of the
compressibility and of the structure factor S; are
known, we can calculate the nonlinear response
functions cfg), c§P, {3, c{*L,. However, the general
response function c‘is”i, is not known, since the
three particle correlation function $*® is not known
experimentally. There are theoretical approxima-
tions available for S®, but their accuracy is not
well established.

We now turn to the question of evaluating ,
given a certain set of nonvamshmg c{®,. The
equation (Ala) for Buv . (¥) can be wrxtten

0P ==B0E) + (o + 3 e 4 2 cftiud)
43 (ot + cu e’
i

1 v R, &y T
+ = [J.ill.l.incgg){ne‘( IS M .
2 v *

(A6)

In order to calculate 2, we use the definition
(p(T)) = p, exp[—Bvy;(T)], and then the relation be-
tween 89/0), and { p,) [Eq. (9)]. Since (p(T)) de-
pends on veff(?) which depends on { p(T)), there is a
self-consistency problem to be tackled. In the lin-
ear response case, it was possible to choose a
scale factor €; such that v, (¥) is a function only of
the density fluctuation amplitude or order param-
eter x;, and the self-consistency problem is solved
easily. Clearly this cannot be done now, since
after canceling the term c,;u,; from Eq. (A6), we
are left with terms in v, (r) depending explicitly
on u;, n, etc. It turns out to be still possible to
integrate over X; and obtain Q({x,}). We consider,
to be specific, a case where in the last term of
Eq. (A6), the vectors I_f,., and ff,- » are members of
the same reciprocal-lattice vector set, and add to
ancther member of the same set. Suppose n{®
pairs add to a single member of the set {Ki}

Then, Eq. (A6) can be written

kS 1
i
+Z (2e;n; — 2€2i<p¢>)\'_ +eu+eSum
1
R T (A7)

Using the choice ¢, =(c;/2N,)"?, we can integrate
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over &, to find that
pan{eh =2 (

+ C(a)

2
7
where the equations

(1= com= se@rP - 5 3 e | <tmadlad,

“Ii"

:i> -(1- co)<17 +—T§->
- ) +Z cDuin +3)

> D n®us, (A8)

N R
wlv—- NI:

(A9a)
9 ln(p({x,}) = “‘k , (Agb)
axk 1 +77
and
%=k P+ 30 b . (A9¢)

determine n and u, for given {£,}. At the extrema

pi=£/c;. : (A10)

These equations can be used to calculate freezing
parameters.

We wish to emphasize that there is no reason to
conclude from the inadequacy of the first-order
HNC and Percus-Yevick approximations for
the two particle correlation function in dense
hard-sphere-like fluids that they would be insuf-
ficient here, and consequently that higher-order
response terms are necessarily important. Even
in dense fluids, for a one-component plasma
where V(r,,) varies very slowly (though, overall,
by much more than k,T) the first order or simple
HNC works very well for g(r) and for the equation
of state.*! Our case is much less demanding, with
a smoothly oscillatory v(»), and with |v(»)| s kT
Thus the adequacy of the simple HNC (or “linear
response”) theory here is to be examined on its
own, using the higher-order expressions derived
in this Appendix. This is done in Sec. V.
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