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By explicit construction we show the existence of an exact renormalization group for triangular Ising
models with only nearest-neighbor interactions. The recursion relations take the form of a set of three
quasilinear first-order partial differential equations for the interactions. We determine a nontrivial fixed point
and study the linearized flow around it. This yields the specific-heat exponent o = 0, in agreement with the
Onsager and Houtappel solutions, and demonstrates universality. The free energy is expressed as the
trajectory integral of an explicitly given function of the interactions.

I. INTRODUCTION

The fundamental idea of the renormalization
group (RG) approach to critical phenomena is to
calculate the partition function of a system by
successively thinning out its degrees of freedom.
To this end an iteration procedure is set up in
each step of which a certain fraction of the vari-
ables of the system is summed out. Upon such a
partial trace operation a new system appears,
similar to the original one, but with fewer degrees
of freedom and with different, renormalized, in-
teraction constants. The mapping of the original
set of interaction constants, say, K, onto a re-
normalized set K’ constitutes an RG transforma-
tion. Renormalization theory shows that the criti-
cal properties of a system are directly related to
the fixed-point properties of the RG transforma-
tion, and that properties of the system away from
criticality can be obtained by studying the RG
transformation along its irajectory in K space.

If in one iteration step a finite fraction of all
degrees of freedom is summed out, then the RG
transformation will be a discrete transformation,
and the trajectory in K space will be a discrete
sequence of points. If, on the other hand, in each
iteration only an infinitesimal fraction of the de-
grees of freedom is summed out, then the RG
transformation will take a differential form and
lead to a continuous flow in K space. Formal
properties of the RG are most easily discussed if
one has the equations in differential form. For
such discussions one may consult the articles by
Wilson' and Wegner and Houghton,? and the re-
views by Wilson and Kogut,® Wilson,* Ma, Fisher,®
and Wegner.” Practical calculations with differ-
ential RG equations have, almost without excep-
tion,® been carried out in momentum space. In
one iteration one integrates on an infinitesimal
shell” of wave numbers g just below some cutoff
wave number g =A, or, alternatively, uses Wil-
son’s method® of incomplete integration.
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In contrast to these momentum-space methods,
the real-space approach® is directly inspired upon
Kadanoff’s original block-spin ideas!?: it offers
a technique of calculating the renormalized inter-
actions between the block spins. Since a block
always contains an integer number of spins, the
block-spin method necessarily leads to discrete '
RG transformations. In practice the block-spin
procedure cannot be carried through exc¢ept in
certain simple cases.!! For the other cases of
interest several approximation schemes have been
developed® and extensively used.

The purpose of this paper is to show that real-
space renormalization can be cast in differential
form. That this is feasible was already reported
in a short letter.’? The intuitive idea, expressed
in Sec. II, is to map a given lattice system into a
system with infinitesimally larger lattice spacing,
and thus out of registry with the first. In Sec. III
we show how on the basis of this idea exact differ-
ential RG equations can be obtained for a triangu-
lar Ising model. Our equations for this model in-
volve only three nearest-neighbor interactions,
K,, K,, and K,. When deriving the equations we
are led to consider these interactions as position-
dependent quantities. Thus our basic RG recur-
sion relation, Eq. (3.16), is a set of three coupled
partial differential equations for the functions K;
(:=1,2,3). The independent variables are the two
spatial coordinates T and a parameter ¢ which
measures the distance along the RG trajectory.

In Sec. IV we discuss various properties of the
equations. In Sec. V we find a nontrivial fixed-
point solution. The fixed point corresponds to a
nonhomogeneous lattice. In Sec. VI we expand the
RG equations about the fixed point such as to ob-
tain a linear flow problem. We isolate the eigen-
value equation in the temperature direction and
find that it has a unique eigenvalue y,=1, in
agreement with the exact results by Onsager!® and
Houtappel.' The corresponding space of eigen-
functions is infinitely degenerate. We interpret
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this feature as an expression of universality within
the class of triangular Ising lattices with aniso-
tropic nearest-neighbor interactions. In Sec. VII
we derive an expression for the free energy as the
trajectory integral over an explicitly given function
of the interactions. In Sec. VII we present our
conclusions and several further comments.

II. INTUITIVE BACKGROUND

We intend to construct a real-space RG trans-
formation which reduces infinitesimally the num-
ber of degrees of freedom. Our idea is to accom-
plish this by relating the Hamiltonians of two sim-
ilar lattices which differ infinitesimally in lattice
constant, To be specific we consider a triangular
lattice £ of Ising spins 3, which has lattice con-
stant @ and the shape of an equilateral triangle
with side of length L. Hence there are L/a+1
lattice sites along each side. This system will be
mapped onto a similar triangular lattice £, also
of length L, but with one less lattice site along
each side. Thus the lattice constant of £’ is larger
than that of £ by the fractional amount 6a/a =a/
(L = a). The number of spins in £ and £’ also
differ by a fraction of order a/L, which becomes
infinitesimal in the limit L - «~. Figure 1 shows
the systems £ and £’, denoted by circles and
crosses, respectively. :

Let s and s’ stand for the spin configurations on
£ and £, respectively. Suppose that a Hamilto-
nian 3C(s) is given on £. The mapping of ¥ (s) onto
the renormalized Hamiltonian 3¢’(s’) on £’ then
takes the usual form?

e®ED =3 P(s’, 5)e% . C(2.1)

Here P(s’,s) is a projection operator (weight fac-
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FIG. 1. Triangular lattices £ (the unrenormalized sys-
tem: circles) and & (the renormalized system: crosses)
have sides of equal length L. £ has one more lattice site
along each side than £'.
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tor) that satisfies the normalization condition

Z P(s’,s)=1 (2.2)

=
in order that the transformation preserve the par-
tition function. We remark that the present for-
mulation allows for 3¢ and 3¢’ to contain spin-inde-
pendent terms. Now let us introduce the Hamilto-
nian 3C,(s’, s) of the combined primed and un-
primed systems as '

e;;cc(s’,s) =P(S', s)ex(s) . (2.3)

The transformation (2.1) together with the normal-
ization condition (2.2) can then be written in the
symmetric form

K'(s") = KHls'ss)
e = e (2.4a)
IE

PR =Z e.K‘c(S’.S) .
sl

(2.4b)

Equations (2.4) show that the coupling Hamilto-
nian ¥ (s’, s) induces the RG transformation. The
form of 3C,(s’, s) is at our disposal, and we shall
choose a local Hamiltonian, coupling only nearby
spins. Intuitively we expect that pairs of primed
and unprimed spins which are quite close to one
another, such as occur near the vertices in Fig. 1,
should be coupled more strongly by 3C, than pairs
which are not so close, as in the center. Thus we
are prepared to allow for spatially dependent cou-
pling constants in 3¢.. This is, in fact, the only
way to express that the spatial relationship be-
tween the two lattices £ and £’ varies from place
to place.

From Egs. (2.4) it is clear that if 5¢, were sym-
metric in s and s’, then 3¢’ would equal 3¢ and the
RG transformation would reduce to the identity.
However, if 3, fails infinitesimally from being
symmetric in s and s’, then it will generate an
infinitesimal difference between 3’ and 3¢, and
therefore a flow in Hamiltonian space. It turns
out that the infinitesimal deviation from symmetry
which is needed is provided precisely by the spa-
tial gradients of the coupling constants. When the
couplings vary only appreciably over distances of
the order L, then 3C’ ~3C becomes small of the
order a/L, and therefore infinitesimal in the limit
L -, The spatial dependence of 3¢, will lead us
to consider Hamiltonians ¥C and 3¢’ that are also
spatially dependent., It is in the space of such
Hamiltonians that we shall be able to construct
differential RG equations and study fixed points
and other flow properties.



III. CONSTRUCTION OF THE RENORMALIZATION
EQUATIONS )

We shall now make concrete the ideas discussed
in Sec. IT and actually construct a set of differen-
tial RG equations. It is instructive to do this in
three steps. We first couple the two systems

" shown in Fig. 2, which have the same lattice con-
stant a. They are governed by the spatially de-
pendent Hamiltonians 3¢ (s) and #(s’). The trans-
formation from 3C(s) to % (s’) results from two ap-
plications of the standard star-triangle transfor-
mation,®:!” which here, due to the space depen-
dence of the interactions, yields new and interest-
ing results. The second step is to uniformly dilate
the lattice of crosses by a factor L/(L —a), so that
we obtain the situation of Fig. 1. This operation
transforms 7€ (s’) to the renormalized Hamiltonian
J¢’(s’), so that at this point the desired equations
governing the Hamiltonian flow are obtained.
Lastly we derive the boundary conditions appro-
priate to the flow equations, thereby completing
the construction of our RG transformation.

A. Star-triangle flow equations

We begin by considering a given Hamiltonian
3 (s) on the lattice £ (circles) of Fig. 2. We shall
map this Hamiltonian onto a new one % (s’) defined
on £ (crosses). We consider the case in which
3 (s) contains only nearest-neighbor interactions
and, in the light of Sec. II, shall allow these to be
spatially dependent. Thus we take JC(s) to be of
the form :

50(s) = 20 K, (R)s (R - a8,)s(R - a&,)
' +K2(§)s(_ﬁ-a?e3)s(ﬁ—a’e‘1)
+K (R)s(R-d8)s(R-a8,)]. (3.1)

Here 2, * indicates that the vector R=(X,Y) runs

>
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FIG. 2. Triangular lattices £ (circles) and £ (crosses)
have sides of lengths L and L—a, respectively. A uni-
form dilation by a factor L/(L—a) carries £ over into
the lattice £ of Fig. 1. The bonds shown (solid lines)
are the couplings p; of the coupling Hamiltonian JG,.

through the centers of all up-triangles of £, and
we have introduced the vectors €; defined by

—él=(0,_?13_'\/—§),

§,=(%,43), (3.2)
&= (- 1,4V3)

[see Fig. 3(a)]. The relation between the index i
of the interactions K; (and of the couplings p; to
be introduced shortly) and their orientation in
space is shown in Fig. 3(b). Note that each K, has
been labeled by the coordinate R of the center of
the up-triangle to which it belongs.

We must now specify a Hamiltonian 3C,(s’, s)
which couples the spins s and s’ and can be made
to satisfy the condition (2.4b). Once this is done
the transformed Hamiltonian ¢ will follow from
Eq. (2.4a), where it takes the place of 3’. We take
¥ (s’,s) of the form

3(s7,5) =3 X[ p,(R)s(R - aB,) +p,(R)s (R~ a8,) +p,(Rs(R= a8 )s"(R) - D_*g(p,(R),p,(R),p,(R).  (3.3)

R

Note that, apart from a spin-independent term,

3¢, (s’,s) is just the Hamiltonian of a honeycomb
lattice with spatially dependent nearest-neighbor
couplings p;. Each p; has been labeled by the co-
ordinate of the center of the upward pointing star
to which it belongs. Equation (2.4b) imposes a re-
lation between the p’s and the K’s. Upon summing
out the primed spins we find the connection

=

R

KR =F(p,(R),p,R), p,(R), 1,4,k cyclic, (3.4a)
F(pys by D3)

cosh(p, +p,+P,) cosh(=p, +p,+P,)
cosh(p, ~p, +P3) cosh(p, +p,-p,) ’

(3.4b)

In

Wl

and
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(a) (b)

FIG. 3. (a) Vectors &;, &,, &;. (b) The spatial orienta-
tion of the interactions K; and the couplings p;.

g(Pl,Pz,Pg)‘

=1n2 +% In[cosh(p, +p,+P,) cOSh(=p, +D, +b)
x cosh(p, =p,+ps) cosh(p, +p, - p.)].
(3.5)

Equation (3.4) is the well-known star-triangle (ST)
transformation.’®!” Here it relates, for every up-
triangle of £, a triplet of couplings p to a triplet
of ‘interactions K. In this paper we shall limit
ourselves to non-negative values of the K; and the
bj-

-

R)s (R-ad 2)S’ R- aé,) +K, R)s"(R

ZC(s nN= Z
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FIG. 4. Bonds p; (solid
lines) involved in the cal-
culatlon of the interactions
K (dashed lines) in a tri-
angle of £ centered at R.
Also shown is a triangle
of £, centered at R—a§,
(dotted lines).

With the coupling Hamiltonian 3,(s’,s) now com-
pletely determined we substitute it into Eq. (2.4a)
(with 3¢’ replaced by %) and carry out the sum on
the spins s. The result is a triangular lattice Ha-
mlltoman JC(s ) on £ with nearest- neighbor inter-
actions K (R) Our convention for assigning co-
ordinates to the K; ; is analogous to the one adopted
for the K;, i.e., each bond K; will have the coordi-
nate R corresponding to the center of the up-tri-
angle of £ of which it is a part. Every K,;(R) is
generated by a ST transformation in which three
p bonds enter with three different coordinate ar-
guments. Upon tracing these back (see, e.g., Fig.
4) we find

-a8)s'(R-a8,) +K,(R)s'(R - a& )s'(R ag,)]

+22° g(p (R a8 ), p,(R 02,0, 408)) - T g(p,(R), 5,(R), £,(R), | (3.6)
R R

where

K;(R)=F(p;(R+248,;),p;(R+4d8, +d8,),

po(R+a8; +d8,)), 1i,j,k cyclic. (3.7)

In Eq. (3.6) the first summation (no superscript)
runs through the centers of the up-triangles of .ﬁ,
and the second summation (superscript 0) runs
through all lattice sites of £.

The Hamiltonians 3¢ of Eq. (3.1) and 5 of Eq.
(3.6) both describe triangular lattices with inho-
mogeneous nearest-neighbor couplings. A discus-
sion of the spin-independent term that arises in
Eq. (3.6) will be postponed until Sec. VII. We shall
now focus on the relationship between the interac-
tions K; and K;. The transformation from the K|
to the K, is given implicitly by Eqgs. (3.4) and . 7.
Let us now assume that the three functions p,(R)

vary on a scale set by a large distance L > a.
Then R can be considered a continuous variable
and in Eq. (3.7) we can Taylor expand the p; about
R and F about (p,;(R), p,(R) pk(R) Comparison
with Eq. (3.4a) then yields

KR =K,R +a2 (8, +%,)Q;, - Vp,+0(a?/L?),
(3.8)

where
Q“_i_w, i,j,k cyclic. (3.9)

ap, 9p,

The matrix @ and its inverse occur repeatedly in
subsequent calculations. Their elements are given
explicitly in Appendix A. The gradient of p, in Eq.
(3.8) is easily converted into the gradients of the



K; by means of
Z Q;IVK, .

Since the Vp,, and therefore also the VKj, are of
order 1/L, we see from (3.8) and (3.10) that Ki(R
differs from K,(R) only by terms of order a/L.
This sets the scale for the rate of change along the
trajectory obtained by iterating Eqs. (3.8) and
(3.10). We therefore define the .successive iterates
of three initial functions K; (R) by

K,(R,0)=K,(R),

' (3.10)

(3.11a)

KR, 0=K,®,t-a/L)+a ) (,+8)Q,Q:- VK,
1
+0(a2/L?), i=1,2,3.

We shall now consider the K; as functions of a re-
scaled coordinate T=R/L. Upon setting 8t=a/L,
Taylor expanding Eq. (3.11b) in @/L, and taking
the limit of vanishing a/L, we obtain

aKf (Y" t)

—— ZD” VK;, i=1,2,3,

(8.12)
with the set of two matrices D given by

-ﬁij(K) = Z (éi +§1)Q11Q;;’ ' (3.13)
1
In Eq. (3.13) and in what follows, K is shorthand
for the triplet (K ,K,,K,). The operator ¥ in Eq.
(3.12) now differentiates with respect toT. We
shall refer to the three equations (3.12) as the
star-triangle flow equations. They were derived
without reference to the particular shape of the
lattice of Fig. 2, and hence apply, just as well, to
any infinite triangular lattice system in which a
characteristic length L exists. For given initial
conditions at #=0 they determine the trajectory
&, (%,1),K,(F,1),K,(F,¢)) of an inhomogeneous tri- -
angular Ising spin-3 system in the space of func-
tion triplets (K,(¥),K,(¥),K,(F)). For various rea-
sons (e.g., in connection with inhomogeneities,
temperature gradients) it may be of interest to
study Eq. (3.12). However, this equation is not
an RG equation. To construct RG recursion rela-
tions we must carry out one further step, which
will subtly alter the form of Eq. (3.12).

B. Isotropic dilation

The above transformation from J¢(s) to 3(s’) re-
lates two Hamiltonians on large but finite triangu-
larly shaped lattices. The lattice £ has the same
lattice constant as £, so that the transformation
50 ~13C preserves the density of degrees of freedom.
In this way it differs crucially from an RG trans-
formation, which dilutes the degrees of freedom.

(3.11b)
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We notice that the linear dimension of the lattice
£ is smaller than that of £ by a factor (L —a)/L.
Therefore we expect to obtain a renormalization
transformation by scaling £ up to the size of L£.
This means performing an isotropic dilation of the
crossed lattice in Fig. 2 by a factor L /(L —a) with
respect to the origin (chosen in the center of the
lattice), so that we obtain the situation of Fig. 1.
This dilation carries the couplings K, at R to

[L/(L ~a )]R We therefore define the renorma-
lized couplings K} by

K!(L/(L -a)]R)=K,(R) (3.14)

We shall combine this equation with Eqs. (3.8) and
(3 10). Taylor expanding in a/L and using that
VK ¢ and VK y are equal to leading order in a /L we
f1nd for K/(R) the expression

KR =K,R+a) Y. (& +8)Q;,@;} VK,
it a e
-7 R- Ki+0<17> .

(3.15)

If we define iterates of the transformation (3.15)

in analogy to Egs. (3.11), and as before take the

limit a/L — 0 with a/L =0¢ and R/L =¥, we arrive
at the differential recursion relations

Ei{i(?v t)
ot

=> D, -Vk,-%.Vk,, (3.16)
i

where D is given by Eg. (3.13). Equations (3.16)
are our RG flow equations. They differ from the
ST flow equations (3.12) by the dilation term
-%.VK,. The parameter ¢, which measures the
distance along the RG trajectory, is easily shown
to be related to the areal density of degrees of
freedom p by

o(t) = p(0)e~2¢ .

Equations (3.16) have to be solved for given initial
conditions at ¢=0, within an equilateral triangle
with side of unit length centered at the origin.
From their construction it is clear that Eqs. (3.16)
make no sense beyond the border of this domain.-
Therefore, it only remains to specify the appro-
priate boundary conditions.

(3.17)

C. Boundary conditions

Let us denote the lower, right, and left boundar-
ies of the triangular domain by the indices 1, 2,
and 3, respectively. The presence of the boundar-
ies does not affect the inverse ST transformation
that carries 3(s) to 3¢,(s’,s). However, when we
transform from JC(s’, s) to 3(s’), each bond K; on
the ith edge arises from the summation on an un-
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primed spin that is connected by only two bonds, a
p;and a p, bond (i,j,% cyclic), to the rest of the
lattice. If the bonds K; on the ith edge are to be
given by the same equation (3.7) which applies in
the interior, we must impose the boundary condi-
tions

(3.18)

From Egs. (3.18) and (3.4) we obtain in terms of
the K variables the equivalent boundary conditions

(3.19)

p;=0 on the ith edge.

K;=K,=0 on the ith edge, 7,j,% cyclic.

These are all the boundary conditions that we can
derive mathematically. In Sec. IV we shall see
that for solutions of physical interest these bound-
ary conditions necessarily lead to singular beha-
vior near the edges and at the vertices.

IV. SOME PROPERTIES OF THE RG EQUATIONS
A. Transformation properties

The RG equations (3.16) have been formulated
for the three functions K;. On several occasions
it will be useful to write them in other variables.
Let in general X;, wherej=1,2,3, be a new set
of variables defined. in terms of the K; by some
nonlinear transformation. Then one easily veri-
fies that the functions X; satisfy the RG equations

a—tl'z B, -Vx, -F.Vx,, (4.1)
with _ﬁi, given by

- 9X; = 9K, i

Btj=z 2 3K: Im X (42)

A special case of such a transformation is the
(inverse) star-triangle transformation itself, by
which we can convert the K; into the p;. In view
of Egs. (4.1), (4.2), and (3.10), we find for the p
variables the equations

9p;

- (4.3)

= Z: (Q-lﬁQ)ij '—epj -7 '-v’pi .

J

By inserting the explicit expression (3.13) for D
we obtain the property

(@'DQ);;=D; - (4.4)

B. Invariant subspace @
1. Duality

The analysis of the RG equations is facilitated if
we utilize the well-known duality relation between
the triangular and the hexagonal lattice. We there-:
fore begin this subsection by a brief summary of
the relevant formulas. For a detailed discussion

we refer to Syozi.'” One defines the variables p,
and K; by

sinh2p; =1/sinh2K;,
sinh2p,=1/sinh2K,;, j=1,2,3.

(4.5a)
(4.5b)

The variables K; and p; are pairwise dual in the
usual sense of duality for Ising models, and so are
the variables K; and p;. One can show!” that the K
are again the ST transforms of the p;. We express
the cycle of transformations between K, p, K, and
P in shorthand notation as

K=RST(p)y P=RD(I?), K=RST(5), 5=RD(K)-
(4.6)

Inspection shows that the product transformation
Ry R, maps high values K onto low values K, and
conversely. Similarly R, R, is a weak-coupling—
strong-coupling transformation for the hexagonal
lattice.

"The star-triangle equations (3.4) take a partic-
ularly simple and useful form in terms of the new

variables u; and v; defined by
u; =sinh2K; sinh2K,, , (4.72)
v; = (sinh2p; sinh2p,)™!, i,j,k cyclic. (4.7b)

With the aid of some algebra Egs. (3.4) can be
rewritten equivalently as

v; =k2(uu; (4.8a)
or
u; =k%(v)v;, (4.8b)
where
B2(0) =x2 4224 x24 2% X%,
+2[ (%, +x,x ) (%, + X% )%, +xlx2)]1/ 2. (4.9)

We note that k() =k"%(v). Points in K K K. space
that are invariant under Ry R, will be of special
interest. From Eqs. (4.5) and (4.7)—(4.9) one de-
rives that such points satisfy the following rela-
tions, which are all equivalent,

K,=K,;, i=1,2,3, (4.10a)
p;=P;, i=1,2,3, (4.10b)
u;=v;, i=1,2,3, (4.10c)
R2=1, (4.10d)
U, +uy+uy=1, (4.10e)
v, +0,+0,=1. (4.101)

2. RG equations and duality

The RG equations for the I—i:, can be constructed
according to the general formulas given above.



19 EXACT RENORMALIZATION GROUP EQUATIONS FOR THE... 2755

For the derivatives 8K;/8K; one finds by chain
rule differentiation either via the p, or via the p,
the expressions

K, = tanh2p,
BK; " tanh2K;’ (4.11)
tanh2K, _ (4.12)

T tanh2p, ¢’

respectively, where @,;=58K,/8p;. By symmetry
one also has the analogs of Eqs. (4.11) and (4.12)
that arise when all barred variables are replaced
with unbarred ones, and vice versa. Upon using
all these equations in Eqs. (4.1) and (4.2) with X
=K, and employing the expression (3.13) for D,
one finds that the K; satisfy the RG equations
s =3 ByyB) - 9K, - VK, (4.13)
i
Here the matrices D have the same functional form
as before, but now depend on the arguments K in-
stead of K.'® Hence the RG flow operator com-
mutes with the transformation RgrR,. In particu-
lar, if at #=0 we have that K;(¥, 0) =K;(¥, 0) for all
T and for i=1,2, 3, then this property remains true
for all £>0. Thus by the equivalence of Egs.
(4.10a) and (4.10e), we have found a class € of
triplets of functions, viz.,

3

Z ui(f‘)':l}’

i=1

C={(x,(¥),K,(F),K,F) (4.14)

which is invariant under the flow. We remark that
Eq. (4.10e) is precisely the condition found by Hou-
tappel and others!? for the critical surface in

K ,-K,-K, space of an infinite homogeneous trian-
gular Ising model. Therefore, the systems in class
€ are characterized by the fact that for every T
they are locally critical (in Houtappel’s sense), but
with a critical triplet of interactions that varies
with ¥. We shall refer to relation (4.10e) as Hou-
tappel’s surface. Similarly, Eq. (4.10f), which is
an alternative characterization of €, is Houtap-
pel’s equation for the critical surface in p,-p,-p,
space of an infinite homogeneous hexagonal Ising
model.

The commutation of the RG flow and Rg; R, im-
plies that if (K¥(¥), K¥(¥),K¥(¥)) is a fixed-point
solution (i.e., satisfies 8K}(¥)/8¢=0), then
(K*(F), Kx(F),Kx(r)) is also a fixed point solution.
Therefore fixed points come in pairs. An excep-
tion are those in class €, which are invariant un-
der Ry R,. If one assumes that only one nontrivi-
al fixed point exists, then it should be located in
€. However, duality arguments cannot help
us to actually determine such a fixed point. In
Sec. V we shall show by explicit verification that
Cdoes indeed contain a fixed-point solution.

C. Boundary conditions and duality

We can now extend our discussion of the bound-
ary conditions. If we write Eq. (4.8b) in the form
sinh2K,; =k(v)/sinh2p;, we see that we have the
equivalence

K;=c0o~—p,=0 (4.15)
as long as
0< k2<o0, (4.16)

This restriction on k2 is natural: the cases k2=0
and k2= correspond to degenerate situations
where some of the interactions are infinite or
zero, so that the lattice is not truly two dimen-
sional. We shall hencefortli assume that 0 <k2<w
for all ¥. Equation (4.15) then implies that the
boundary conditions (3.18) are equivalent to the
boundary conditions

(4.17)

From Egs. (4.5) and (4.15) we see that the pair of
equations (3.19) and (4.17) is invariant under the
transformation Rgp R, so that the two solutions
K(T,t) and K(¥, t) satisfy the same boundary condi-
tions.

A special consequence of the combined boundary
conditions (3.19) and (4.17) is that, e.g., limK,(¥)
does not exist as T approaches one of the bottom
vertices of the domain. This limit is infinite along
the bottom edge, but is zero along the other edges.
Therefore, solutions to the flow equations which in
addition satisfy 0 <k2<w are necessarily highly
singular in the vertices. Equation (4.16) guaran-
tees, however, that at the vertices and near the
edges such solutions still represent two-dimen-
sional systems, albeit in the limit of extreme an-
isotropy. To conclude this subsection we mention
that on the edges we can express condition (4.16)
and the boundary conditions together in terms of
the u; as

K ;= on the ith edge.

u; =0,

0 <(u; +u,)? <o on the ith edge. (4.18)

D. Matrices D

In this subsection we collect some properties of
the matrices D that will be helpful in later calcu-
lations. We define the normal vector £=(£, £, £.)
to Houtappel’s surface by

9
gi =A B_K:- ; U,
=2A cosh2K ,;(sinh2K; +sinh2K,), i,j,k cyclic,
(4.19)

where A is a normalization factor that need not be
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specified. From the definition of the class @ we
have that

3 £VK; =0 forallK=(K,,K, K)eC. (4.20)
i
The invariance of € under the flow can be ex-

pressed as 2;£;8K,;/8t =0 for all K€ €. With Egs.
(3.16) and (4.20) this gives

Zzsi-ﬁii.-v’K,i:O’ KEG.
i g :
This is true if and only if £ is a. left eigenvector

of both components of ﬁ, i.e., if there exists a
vector TI such that

(4.21)

> &D;,=1E;, j=1,2,3; Kce. (4.22)
i

With the aid of the explicit expressions for £ and
D one can verify Eq. (4.22) and calculate [i. In
fact, one has a stronger result which may be
stated as follows. Define .

Dl;=-V3D,;-8,-3V30,,, 1=1,2,3.  (4.23)
The three matrices D? are not independent, but
satisfy the relation

> Di=-V35,;. (4.24)
1

Corresponding to Eq. (4.23) we have the inverse
relation

(4.25)

The Stronger result is that £ is a left eigenvector
of each of the three D, i.e., .

ZEiDtlj_—_lJ';Ej, j=1’273; l=1,273; Kee.
’ (4.26)

For the eigenvalues u, we find in Appendix B

py=3V3@, -1) (4.27)
so that
=) ub,. (4.28)
1

In subsequent calculations it is sometimes useful
to employ a vector n defined by

77j= EQ,‘);‘E;;- (4'29)
kR

In view of the special relation (4.4) between D and
its transpose we have from Eqs. (4.26) and (4.29)
that

> Dimy=upm;, i=1,2,3; 1=1,2,3; Kce.
! (4.30)

which in Cartesian coordinates takes a form anal-
ogous to Eq. (4.22). In conclusion we remark that
Egs. (4.22)-(4.30) depend on T only through the K;.

V. FIXED-POINT SOLUTION

A fixed-point solution of the RG flow equations
(3.16) is by definition a solution (K*(F),K*(¥), K} (¥))
of

> D, VK;-T-VK;=0. i=1,2,3, (5.1)

J

which satisfies the boundary conditions (3.19) and
(4.17). We note that any set of space-independent
constants (K9,K9,K9) satisfies Eqs. (5.1) but not
the boundary conditions.

A nontrivial fixed point is most easily described

in terms of the #; of Eq. (4.7a) and the vector &,

" of Eq. (3.2). Inspection of the boundary conditions

(4.18) and the condition #, +u, +#,=1 which defines
class © and consideration of points of special sym-
metry (center, vertices, midpoints of edges) sug-
gest a fixed point in € given by

up(®) =% - 2%.3,, i=1,2,3. (5.2)
The corresponding expression for K}(¥) is

L _oR. B VWL _9F.B 1/2
K¥(¥)=%arcsinh G 21; e])¢(3_’ 2t -3, s
(3-27.%)

-1,j,k cyelic.  (5.3)

One easily verifies that expressions (5.2) and (5.3)
satisfy their respective boundary conditions. With
the aid of straightforward but tedious algebra we
can show (see Appendix C) that Eq. (5.3) is indeed
a solution of Eq. (5.1), so that we hzve found a
nontrivial fixed point in €. In Fig. 5 we show a
qualitative plot of the contour lines of K}(¥).
Those of K}(F) and K}(F) are obtained by rotating
the domain over 27 and :;-n, due to the triangular
symmetry of Egs. (5.2) and (5.3). We see that the
fixed-point solution describes a lattice which is
isotropic triangular in the center of the domain,
but deforms continuously away from the center,

(¢}

' FIG. 5. Qualitative contour maps of the fixed-point
functions ¥ (F) and K¥ (F).
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and becomes extremely anisotropic near the edges.
In particular, along a straight line from the cen-
ter to a vertex, the lattice deforms from trian-
gular to square.

We note that if we combine Eqgs. (5.2) and (4.28)
and use the identity

=2 ) (F-3)8;, . (5.4)

i

we obtain
p*=7, (5.5)

where the asterisk denotes evaluation at the fixed
point.

VI. LINEARIZED FLOW AROUND THE FIXED POINT

In RG theory the physically observable critical
properties of a system are related to the behavior
of the linearized flow around the fixed point. There
is, in particular, a direct connection between the
critical exponents y of a system and the eigenval-
ues A of the linearized transformation. For the
case of a discrete RG transformation with rescal-
ing factor b the connection

A=b" (6.1)

is well known.’® To see how the y arise in the
present case we consider a small deviation 9,(F)
from the fixed-point solution K¥(¥). It is a
straightforward matter to linearize the RG flow
equations (3.16) about K*. After rearranging in-
dices we find that ¥ evolves according to the equa-
tion

a;a, Z T4, 9, ' 6.2)

with the operator T* given by
*

T7,= (D3, - 75,,) - V+Z (3D"> VKF.  (6.3)

The asterisk denotes again evaluation at the fixed
point. One notices that T* is the sum of a differ-
ential operator and an ordinary matrix. If 7* acts
during V¢, the result is that an initial deviation
¥;(¥,0) is mapped onto a deviation ¥;(¥, At) given-
by

Dy(F, at) = Z (8;; +ALTH)Y;(F,0) +O(Ar3), (6.4)

which corresponds to a transformation w1th re-
scaling factor b =1+ A¢. By using this value of b
in Eq. (6.1) we see that the eigenvalues X of the
linear operator in Eq. (6.4) have the form A=1
+Aty. It follows that the critical exponents y are
the eigenvalues of T*, a relation of a type well
known for differential RG equations.?

The analysis of the eigenvalues and eigenfunc-
tions of T* is simplified by our knowledge of the
invariant subspace ¢ discussed in Sec. IV. In
terms of the variables ¥ we have that the linear
subspace tangent toC in K* and defined by

D EFE)Y,(F)=0 for all F, (6.5)

is invariant under T*. Let us introduce the scalar
product

@, 9= [ a3 0D, (6.6)

where the integral is on the triangular domain.
The subspace of functions ¢ such that

@,(F) =f(E)EF(T), (6.7

where f is arbitrary, is then orthogonal to the
subspace characterized by Eq. (6.5), and hence is
invariant under the adjoint operator 7*. On the
basis of general RG arguments we expect the
fixed-point solution to be stable within the space

€, but unstable in directions away from it. We are
first of all interested in the behavior of the flow

in the unstable (temperaturelike) directions,

which for the adjoint flow problem correspond to
vectors ¢ of the type (6.7). Therefore we consider
the eigenvalue problem

> Trrfer=vity, i=1,2,3, (6.8)
i

which is a set of three necessarily equivalent
equations for the scalar function f(¥). The ex-
pression for T* is obtained via an integration by
parts (see Appendix D, where also the conditions
for the boundary terms to vanish are investigated).
Substitution of the result in Eq. (6.8) gives us the
eigenvalue equation

yfEf=— Z—ﬁ fg?ﬁfj—-fﬁn)]

+ ):fﬁg* Z (aD") ‘;,' (6.9)

If we now employ Eqs. (4.22) and (5.5), we find
that the first member on the right-hand side of
Eq. (6.9) vanishes. The remaining eigenvalue
equation is trivially solved. Labeling the eigen-
functions by a parameier p we can write

f:(E)=8(F-D).
The corresponding eigenvalues are given by

L HT (R ",

which should be independent of j. Upon inserting

(6.10)

(6.11)
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the explicit expression for D one can show (see
Appendix E) that

for all p. We conclude that in the temperature di-
rection there is an infinitely degenerate eigenvalue
y;=y,=1. The value 1 agrees with the exact re-
sults first obtained by Onsager!'® and Houtappel,!*
viz, a=2 —d/yT= 0 (where d=2 is the dimension
of the system). In fact, Eq. (6.12) is a statement
of universality, since for different values of p the
fixed-point solution (5.3) describes different criti-
cal systems, which by (6.12) all have the exponent
Yp=1.

VII. FREE ENERGY

Quite generally a differential RG equation leads
to an expression for the free energy as an integral
along an RG trajectory.?! In this section we shall
derive the formulas appropriate to our case.

The equivalence of the Hamiltonians of Egs.
(3.1) and (3.6) means that

Z exs) = Z R Z &, (7.1)
S s

st

The second equality holds trivially because 3 and
¥’ describe the same system, the difference con-
sisting only in the labeling of the interaction con-
stants. We define F {K(R)} as the reduced free
energy (i.e., the logarithm of the partition func-
tion) of a Hamiltonian with couplings K ,.(-ﬁ) and
with zero spin-independent term, defined on a tri-
angular lattice with side of length L. By taking
the logarithm of Eq. (7.1) and using the explicit
expressions for € and Cﬁi, we obtain

FARR)} -F, KR} =(@/L)G KR}, (1.2)

where F; refers to the lattice c_)f circles (£) and
F,_, to the lattice of crosses (£), and where

26 4K (R}
= 20 g (pu(R+a8,), p,(R+a8), p,(R+03)
R
- 22 g (), 5,(R), 5, (1.3)
R

Here EO runs through all sites of £ and > through
all sites of £. Equation (7.2) is an exact difference
equation for the unknown free-energy functional
F,. We shall derive a differential equation from

it by expansion in powers of aL, as in Sec. III.

In the limit a/L— 0 the interactions Ki(_ﬁ) converge
to continuous functions which, after scaling the
coordinates down to the domain of the unit triangle,
we denoted as K;(f). We shall assume here that

F, has an asymptotic expansion of the type
- 1 /L\? - L -
FL{K(R)}=§ = f{K(r)}+;f1{K(I‘)}+O(1)'

(7.4a)

Here f is the free energy per spin averaged over
the triangular domain. The analogous expansion
for F,_, is

F L- a{k (-ﬁ)}

-2 (L @ a)zf{K (@} + L4 f{R/ D} 0,

a a

(7.4b)
where we used that in rescaled coordinates the
K; and K} are the same functions. Let in a way
analogous to Egs. (7.4) the functional c{K(¥)} be
defined by

a

oAk @}=1 () “elxl0/a). (1.5)

We substitute Eqs. (7.4) and (7.5) into Eq. (7.2),
divide by 3(L /a), and take the limit a/L —0. Tak-
ing into account that K’(¥,¢) =K (¥, +a/L), we ob-
tain

_=2f_c’ (7.6)

which is the desired differential equation for the
average free energy per spin. The solution

AKE, 1)}
= [ ernlefk(E, 7)) - 2K ), <) ar
t
K, ©)} (7.7)

reduces for £=0 the free energy of the initially
given system.

From Eq. (7.3) and the definition (7.5) we can
find an explicit expression for the inhomogeneous
term c in Eq. (7.6). We rescale the spatial coor-
dinates in the first sum of Eq (7.3) by a factor
1/L and those in the second sum by 1/(L - a).
Both sums can then be converted into integrals
over the unit triangle. Expanding in a/L, as in
Sec. III, we find that the leading order terms can-
cel. We assume without rigorous justification that
a similar cancellation occurs for the errors that
we make in passing from sums to integrals. The
result, then, is that c{K(¥)} takes the form

clK®}=4v3 [ ax (Zg +F Vg1 Y Q8 .Gp,) ,
A 1

(7.8)

where we used that 8g/8p,=Q,,, with I, m,n cyclic.
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Substitution of Eq. (7.8) into Eg. (7.7) yields our
final result, namely, an expression for the free
energy as the trajectory integral of an explicitly
given function. The integral can in principle be
calculated once the trajectory K (T, ) has been
solved from the RG equations. As a special case
the fixed-point free energy follows trivially from
Eq. (7.7) as :

AR*(E)y =3 c{K*@)}. (7.9)

Finally, the additivity of the free energy guaran-
tees that for arbitrary initial state K(T) the ex-
pression for f obtained from (7.7) and (7.8) should
be equal to the average over the domain of Houtap-
pel’s free energy f,(K,,K,,K,) for a homogeneous
system, i.e., ’

AR@®} =43 f dF £y (K, (D), K,(0), K(®).  (7.10)

Thus one obtains in principle the Onsager and
Houtappel expressions for the free energy by eval-
uating Eq. (7.7) for a homogeneous initial state.

VIII. CONCLUSION

We have constructed exact RG equations, Egs.
(3.16), for the triangular spin-3 Ising model with
three nearest-neighbor interactions K;. The very
existence of such equations is a remarkable fact
for which there was no a priori evidence. Per-
haps the most unexpected feature that arises in
the derivation of the equations is that the inter-
actions have to be considered as functions of a
spatial coordinate T, confined to a triangular do-
main. The flow operator D in the RG equations
results from a local transformation of the lattice,
based on the standard star-triangle transforma-
tion. As a consequence, the matrices 1_5”, de-
fined by Eq. (3.13) together with Egs. (3.9) and
(3.4), are nonlinear but analytic functions of the
interactions. The RG equations resemble classi-
cal equations of motion, as was hypothesized by
Wilson! in an early discussion of the renormali-
zation group.

An analytic solution of the RG equations seems
out of reach, except possibly for certain special
initial states. However, we have determined a
nontrivial fixed-point solution, Eq. (5.3), which
describes a particular space-dependent state.
The fixed point lies in an invariant critical sub-
space €, defined by Eq. (4.14), which is most
easily located by a duality argument. We showed
the fixed point to be unstable in the temperature-
like directions (i.e., the directions away from @)
with eigenvalue y,=1, in agreement with the
classical results of Onsager and Houtappel. The

_infinite degeneracy of this eigenvalue is an ex-

pression of universality within the class of aniso-
tropic nearest-neighbor Hamiltonians on the tri-
angular lattice.

Our approach has the characteristics of all RG
methods: it focuses on the critical properties of
the system, which are the first to emerge from
the calculation. Only in the Sec. VII did we con-
sider the free energy over the whole tempera-
ture range, and expressed it as the trajectory in-
tegral of an explicitly given function. This in-
tegral expression is just a starting point. Fur-
ther investigation might show that in certain spec-
ial cases it can be evaluated analytically.

Even our treatment of the fixed-point properties

of the equations has not been complete. In partic-
ular, one would like to know the stability proper-

ties of the fixed point (5.3) with respect to per-
turbations in the critical subspace.22 Also, one
would like to study the flow around any other fixed
points that can be found; of special interest are the
two trivial ones atK* =0 and K* =, which one
expects to be the attractors of the flow outside the
critical subspace.

Many questions of a mathematical nature re-
main. First, the validity of the differential equa-
tions rests upon certain smoothness conditions on
the functions K; and p;. It would be good to have
a better idea of these conditions, especially in
view of the singular behavior enforced by the
boundary conditions. Second, once the equations
are established, it remains to rigorously deter-
mine their properties. The mathematical litera-
ture offers few results that are ready to apply.

It would surely be interesting to have some gen-
eral statements on the evolution of given initial
states. Especially, an initial state that is sub-
critical for some T and supercritical for other ¥
(in the sense of Sec.IV B2) will supposedly be the

- object of competition between the two trivial fixed

points. An unanswered question is whether such
competition will lead to the appearance of discon-
tinuities in the solution, a phenomenon known to
occur quite generally for hyperbolic equations.
Finally we would like to remark on a few exten-
sions of our work that we have considered, and on
some further connections. It is natural to attempt
to construct RG equations for a magnetic field
term added to the Hamiltonian. However, we have
not succeeded in finding a finite set of closed equ-
ations for the odd interactions. On the other
hand, several other models can be solved by our
methods. The seemingly trivial one-dimensional
Ising model is instructive, as not suprisingly the
RG transformation can be carried out in full de-
tail, even in the presence of a magnetic field, and
the free energy and correlation functions can be
calculated.? In one dimension the RG procedure
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leaves one with an extra degree of freedom per
lattice site, which one can exploit by demanding
that the Hamiltonians 3C and 3¢’ (but not 3¢,) be
translationally invariant. Another instructive
case is the two-dimensional Gaussian model,
which will be discussed in a separate publication.?

At first sight application of our method to the
square Ising lattice does not seem possible. We
should like, however, to draw attention to a re-
markable paper by Baxter and Enting,? who cal-
culate the partition function of the homogeneous
Ising model using only the star-triangle trans-
formation. In their argument these authors em-
ploy a transformation that carries a hexagonal
lattice to a square lattice. It appears that simi-
lar lattice restructuring transformations can be
used to convert a not necessarily homogeneous
square lattice, and probably any planar lattice,
into a triangular lattice. Via this indirect way
the methods of this paper also apply to other two-
dimensional lattices.

The points of view of Baxter and Enting’s paper
on the one hand, and of our RG approach on the
other, are strongly divergent. The important
common feature is that both demonstrate that the
star-triangle transformation contains all that is
needed to determine the free energy. One would
guess, therefore, that RG flow equations will exist
for any system to which a star-triangle transfor-
mation applies. Whether one can also find such
equations for other systems is an open question.
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APPENDIX A: THEMATRIX Q

It is easy to verify that @ is a symmetric matrix
given by

Q;; =%[tanh(p; + p, + py)—tanh(=p, + p, + py)
—tanh(p,-p, + p;)—tanh(p, + p,—p3)],
i=1,2,3, , (A1)

(7 =%[tanh(p; +p;+ by +tanh(-p; +p; +p,)
+ ta-nh(pi—pj +pk)‘tanh(1’i + Pj‘pk)];
i,j,k cyclic. (A2)

Although Eqgs. (A1) and (A2) express the matrix
Q in terms of p,, py, p3, We may equally well think
of it as a function of K, K,, K.

It is convenient to express the matrix elements
of @ in terms of the quantities sinh2p; and cosh2p;.
This is most easily done if one multiplies Eqgs.
(A1) and (A2) by a quantity C defined as

C =4 cosh(p; + py + pg)cosh(=p; + p, + py)
X cosh(p;~p, + p3)cosh(p, + py—p3). (A3)

After applying the appropriate formulas for sums
and products of hyperbolic functions, one then
finds

Q,=Q;; = — sinh2p, sinh2p, sinh2p;/C,
(Ada)
Q,kz sinh2p,(cosh2p; + cosh2p; cosh2p,)/C,
i,,k cyclic, (Adb)
where C can be rewritten
C=cosh?2p, + cosh221>.2 + cosh?2p,
+ 2cosh2p, cosh2p, cosh2p; - 1. (A5)

The matrix @' is obtained from @ by an elemen-
tary matrix inversion. One finds

Qil= (@} - Q%) /det@,

i=1,2,3, _ (A6a)
Q11=Q71 = (QQp— QuQ:y)/detQ,
i,j,k cyclic, (A6b)

where we used the notation defined in Eq. (A4a).

In the critical surface, defined by each one of
the relations (4.10), the above expressions are
simplified. Useful relationships that follow dir-
ectly from Eqs. (4.7b) and (4.10f) are

sinh2p; = (sinh2p, + sinh2p,) /(sinh2p,; sinh2p, - 1),
(ATa)

cosh2p; = cosh2p; cosh2p,/(sinh2p; sinh2p, - 1),
“(A'b)

Using these relations we obtain at criticality the
expressions

Cc=1/Q}, (A8)
Q;,=-Q, cosh2p,, 1i,j,k cyclic, (A9)
detQ =-@Q,, (A10)

i,j, k cyclic.
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with
Q¢ =Q;; =—1/(sinh2p, sinh2p, sinh2p,)
v/ (sinh2p, + sinh2p, + sinh2p,) . (A11)
For the matrix elements of @~! we find
Q7i =@, sinh®2p, , (A12a)
Q;;f -Q, cosh2p; sinh2p; sinh2p,,
i,j,k cyclic. | (A120)

APPENDIX B: THE MATRICES D!

We consider the matrices D defined by Eq.
(4.23) for 1=1,2,3. With the aid of Eq. (3.13) and
the scalar product relation

€ - €1=%(35u -1, (B1)

we find that
D:J =_'3'£‘[3—(QHQ;} UNE (B2)

By straightforward diagonalization one finds that
D' has the three eigenvalues

n=-4/307(Q,Q7)", (59)
Hy0=0. | 54

Atcriticality we obtain from Egs. (B3), (A6a),
(A10), (A9), (Ada), and (A1l) the result u,,
=y, =-3V3[1-(sinh2p,, sinh2p,)"!], with I, m,n cyc-
lic. From this one gets Eq. (4.27) by lemploying
the critical surface relations between K and p,

sinh2K; =1/sinh2p;, Kec e, (B5a)

cosh2K,=1/tanh2p;, Kee, (B5b)

which follow directly from Eqs. (4.7) and (4.10c).
One can now show explicitly that in the critical
surface Eq. (4.26) holds, i.e., that the eigen-
vectors of the D' belonging to , are independent of
1 and equal to the vector £ defined in Eq. (4.19).
This is most easily verified in terms of the var-
iables sinh2p; and cosh2p;. Useful relations are

" again Eqs. (A7) and (B5). We remark that the
eigenvectors belonging to u,. and u,, do depend on
1, so that the matrices D’ do not commute.

APPENDIX C: THE FIXED-POINT SOLUTION

In this Appendix we show that the quantity 7; de-
fined by

I,= Y D, (k%) - VK¥- T - VK¥ (c1)
)

vanishes, which means that the functions KT)

given by Eq. (5.3) satisfy the fixed-point equation
(5.1). We shall use the abbreviations

S; =sinh2K;, C;=cosh2K,, (c2a)
S;=sinh2p;, C;=cosh2p,. (C2b)

From Eq. (5.2) we find the relation V= —2§,,
whence we have via chain rule differentiation

Ky=-5, L gt (c3)
1 ]

In this equatlon as well as in the remaining ones
of this Appendix, all quantities are understood to
be evaluated at the fixed point. We substitute
(C3) in (C1) and eliminate ¥ -&, in favor of u} by
means of Eq. (5.2). We furthermore eliminate

D +&, with the aid of the definition (4.23) and sub-
stitution of the explicit expression (B2) for D?.
The result is that we find

4 1088 8S
2I; “ZZ CsQth}C a_ui 5;:

0S (c4)
- —i 4
2 s }: “ Bu,
1
In order to evaluate this expression we use

88 15,01-26,)/u;, (c5)
ou,

which follows from the definitions (C24) and
(4.72). For the last terms in Eq. (C4) we thus
find

8S 8S 8s; 1 11
_i. =i 4 i _——
}; ou, z,: “ o, 2(S S, sk)’

i,j, k cyclic . (ce)

In the first term of Eq. (C4) we use the explicit
expressions (A9), (A11), and (A12) for the ma-
trix elements of @ and Q~'. The critical surface
relation (4.10f) and the derived expressions (A7)
are again used several times. Relations (B5)
serve to convert the variables C,;, S; and C/, S} in-
to each other. Via straightforward algebra one
obtains the intermediate result

19S S! S! )
Pt R =L+ ! o 4+ ! Zn
IE QIJ C aul ( Cn C C C
1, m,n cyclic (cm)

and finally shows that I; vanishes.

APPENDIX D: THE ADJOINT OPERATOR 7*

The adjoint operator 7* is defined by (T*¢, ¥)
= (¢, T*y) for all ¢ and 3. Upon employing ex-
pression (6.3) for 7* and the definition (6.6) of the
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scalar product, and performing an integration by
parts, we obtain

0, T*) = fdr ZZ[ 0 ,(D¥ -

611)]11)1'

K> (i—’?éi) s

13

+ / d ZZ ‘Pi(ﬁ’ff - T6;;) * gy (D1)
oA i 7

The second integral in Eq. (D1), which we shall
denote by Iy, is a line integral along the boundary
9A of the domain, 7 being the outward pointing nor-
mal vector. From the first integral we obtain the
expression for T* used in Eq. (6.9), provided that
Iy vanishes. We shall investigate the conditions
for this to happen. To simplify I; we use the re-
lation 7= V38, on the I-th border 8,A, and employ
Egs. (4.23), (B2), and (5.2) for D+ &,, D', and

T .¢,, respectively. The result that we find is

Iy= Z f dZZZ(P [Q%Q7* +5,,0,

- (l—u’f)éij]zpj. (D2)
It is convenient to define the triangular coordinate
x,=§V3-V37- &, (D3)

which gives the distance of ¥ A to the I-th edge.
One has from Egs. (D3) and (5.2)

u¥ :%ﬁx, . (D4)

As T approaches the [-th edge (x; ~0), u¥ tends
to zero, -whereas u¥* and u* assume finite nonzero
values (I, m,n cyclic). From the equations of
Appendix A and Egs. (4.7) and (4.10c) we can ob-
tain, via the ¥, the limiting behavior of the
matrices @* and Q! as x;~0. Using these re-
sults in Eq. (D2), we finally find that the inte-
grand along the /th border vanishes provided ¢
~and § belong to the space of functions x such that

C’(2-5S55)) cy(2-S187)

%?;% Cy2-S8)  Cl2-S55)
Cl(2-S!S}) SiSL+SiS,+SiS,~2 Cl(2
and
| cisyssy 0 0
-1
882 - _% 0 —cisPsy spsE |,
1

0 spsp -cisisy
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1/2Xl-.0 Xm-.o’ Xn-.o as xl-.o' (Ds)

In terms of the deviations 6u; =u; — u}¥ we have the
equivalent conditions

%' %6u, -0, xi/%u,~0, x/%6u,~0 as x,~0,

(D6)

which follow from Eq. (D5) and relations (C2a)
and (C5) between K and u. For deviations  of the
special type (6.7) we can replace Eq. (D5) by a
boundary condition on the function f. Using Eq.
(4.19) we find

A{EX(E)} sinh2KF (BF(F) -0, as x,~0, (D7)

a relation which is indeed satlsfled by the solu-
tions (6.10).

APPENDIX E: THE CRITICAL EXPONENT y

We evaluate the right-hand side of Eq. (6.11) by
expressing all quantities involved in terms of the
functions S} and C! defined by Eq. (C2b). The ex-
pression for E*/E}‘ follows from Eqs. (4.19) and
(B5); the expression for VK* follows from Egs.
(C3) (C5), (4.7a), and (B5) the expression for
D, follows from the definition (3. 13) and the for-
mulas of Appendix A. We convert 8D;,/8K; into
derivatives of D” with respect to the p,, by chain
rule differentiation. ‘Employing Eq. (B1) and per-
formmg the summat10n that occurs in the definition
of D;,, we find

Ci(SE +S%)
ys= ZﬁZC,Zs's (1-25,)

* T 5 Qe (E1)

where (i,i’,i’’), etc., are cyclic triplets, and
where it is understood that the right-hand side has
to be evaluated at the fixed point K*(p). We re-
mark that the right-hand side contains no explicit
D dependence. For a further evaluation we need
the p derivatives of the matrices @ and @%, taken
on the critical surface. By straightforward cal-
culation we find, on the critical surface,

cy(2-5:S1)
S1S5+S1S! +51S, -2 (E2)
-S1S2)

(E3)
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where C is given by Egs. (A8) and (A11). The
derivatives with respect to p, and p, follow from
Eqgs. (E2) and (E8) by cyclic symmetry. The
evaluation of y; from Eq. (E1) with the aid of
Egs. (E2) and (E3) is a matter of tedious but

straightforward algebra. In the calculations one
frequently uses Eqs. (ATb) to eliminate products
and ratios of the C}, and the critical surface re-
lation (4.10f) in the form S} +8,+S4=S/5,S5. In the
end the result (6.12) is obtained.
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