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A Green's-function formalism is constructed for the purpose of computing the elementary

excitation energies in a type-II antiferromagnet with Heisenberg exchange and quadrupolar cou-

plings in a cubic crystal field. Three types of excitation modes are found: a longitudinal mode

(L mode) associated with 00 and 00 operators (b rn =0), a transverse mode (T1 mode) asso-

ciated with 0 gt and Opt operators (tom =+I), and a second transverse mode (T2 mode) asso-

ciated with 0)2 operators (ae =+2). In the ordered phase the L-mode and Tl-mode excita-

tions are mixed magnetic dipolar and quadrupolar excitations. In the disordered phase, as a

consequence of cubic symmetry, the magnetic dipolar modes decouple from the quadrupolar

modes, giving rise to the possibility of observing a pure quadrupolar excitation. Cubic sym-

metry also demands that in the disordered phase certain of the excitation energies in the L, T1,
and T2 modes have identical dispersion curves. In general, the dispersion in both the ordered

and disordered phase is complicated owing to the inclusion of next-nearest-neighbor coupling.

The theory is applied to DySb, a type-II antiferromagnet with strong evidences of quadrupolar

coupling.

I. INTRODUCTION

Knowledge of collective excitations in a many-body
system is crucial in the understanding of the behavior
of the system. In a simple magnetic system,
described by the Heisenberg Hamiltonian, spin
waves' are the elementary excitations as observed in

many of the transition-metal compounds. The
neutron-inelastic-scattering technique' has been used
to measure the dispersions, the temperature depen-
dence, and the damping of the spin waves. Measure-
ments of the various thermodynamic quantities also
point to (while less directly) the existence of the spin
waves. In rare earths the picture is generally greatly
complicated by the effects of the crystal field.
Indeed, even for a simple ferromagnetic ordering, the
elementary spin-wave picture of excitation by creating
a spin deviation from the ordered state may no
longer be a valid description. Furthermore, because
of the existence of splittings in the single-ion energy
level (due to the crystal-field interaction) even in the
absence of a magnetic ordering, well-defined collec-
tive excitation modes can be found. 4 The extensive
research, both experimental and theoretical, on the
induced-moment singlet-ground-state systems has
unraveled much of the mystery of such excitations,
and the term magnetic excitons has often been used.
In parallel to this development, collective excitations

in higher multipolar coupled systems have aroused a

great deal of attention and much work has been de-
voted to their research, especially for systems with

quadrupolar pair couplings. The motivation was the
realizing of the prevalence of quadrupolar couplings
in many a rare-earth system. Many striking pheno-
mena have been attributed to the effects of quadru-
polar pair coupling. For example, it drives a continu-
ous second-order phase transition to a discontinuous
first-order phase transition; it produces a cooperative
Jahn-Teller phase transition. '

Theoretical considerations on the quadrupolar pair

coupled systems have, however, been limited to the
simple spin-one model until very recently. Sablik
and Wang briefly discussed the effects of crystal
field in a ferromagnet model. Similar to the case of a

Heisenberg (bilinear pair) coupling in the presence of
crystal-field splittings in a single-ion energy level, ex-
citations produced by the quadrupolar pair couplings
can exist in the absence of a magnetic ordering as
well as in the magnetically ordered phase. In a
crystal-field system with the Heisenberg couplings,
magnetic excitations have been observed both above
and below the magnetic-ordering temperature with

little damping even at temperatures appreciably
higher than the ordering temperature. In certain sys-
tems a soft mode is associated with the order-
disorder transition'; in others a divergence in the in-
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tensity of the central mode is responsible. " No neu-
tron work has been performed on systems with qua-
drupolar pair couplings. One of the purposes for
writing this paper is, indeed, to promote such experi-
mental works.

We shall consider DySb as the specific compound
in our discussion, because DySb is one of the rare-
earth compounds displaying the effects of quadrupo-
lar pair couplings and because there is a growing
number of experimental papers on this compound. '"
The formalism developed here is, however, more
general and can be used for other systems with com-
plicated crystal-field energy-level schemes and general
multiple pair couplings. In view of the fact that DySb
is a type-II fcc antiferromagnet, ' we develop a for-
malism for a general antiferromagnet separable into
two sublattices. Lines" has calculated the antifer-
romagnetic spin-wave energies for the two-sublattice
Heisenberg antiferromagnets. Our calculation, which
includes the crystal-field potential and the quadrupo-
lar pair couplings, obviously becomes much more in-
volved. We nonetheless show a systematic approach
of obtaining the RPA Green's-function results.

While presenting the specific results for DySb, we
also emphasize on one hand the effects of crystal
field on the quadrupolar pair coupled systems, and on
the other hand the effects of quadrupolar pair cou-
plings on systems with crystal-field splittings and only
bilinear couplings. We show in general that for a
magnetic system of cubic symmetry, the excitation
modes can be classified into three categories —one
longitudinal type and two transverse types. While in
the ordered phase the excitations are created by the
linear combination of dipolar and quadrupolar opera-
tors, in the paramagnetic phase they are pure dipolar
or quadrupolar in character. The calculation for the

fcc type-II antiferromagnet performed here not only
yields the excitation spectrum of a real physical sys-
tem like DySb, it also lays the ground work for deter-
mining how the competition between nearest-
neighbor and next-nearest-neighbor bilinear and bi-
quadratic couplings is responsible for stabilizing vari-
ous types of ordering. This latter problem, however,
will not be elaborated in this paper.

The organization of this paper is as follows. We
present a model Hamiltonian for a type-II antifer-
romagnet, taking into account the crystal-field poten-
tial and bilinear and biquadratic couplings. We then
present the Green's-function formalism used to ob-
tain the excitation energies. We illustrate our pro-
cedure by first showing how the simpler case of the
ferromagnet is treated. We then extend the formal-
ism to a type-II antiferromagnet. The effect of cubic
symmetry on excitations in the paramagnet is dis-
cussed. Finally, the formalism is applied specifically
to DySb, for which we present numerically computed
results. Our discussion and conclusion summarize
our principal findings.

II. THE HAMILTONIAN

In order to discuss an fcc rare-earth system with
antiferromagnetic ordering such as DySb, we have to
consider next-nearest-neighbor (nnn) interactions as
well as nearest-neighbor (nn) interactions. '4 For an
fcc type-II ordering and, indeed, for type I as well,
we can consider up spins to be on one sublattice (say,
A) and down spins to be on another sublattice (say,
8). An appropriate Hamiltonian, which includes
both bilinear and biquadratic couplings, would then
be

AA 1

H = X V (i A) + X V (i 8) — $ $ (—) o J(p) Oot(i A) 0'o(i ', A)
l (ii') Q=—1

AB 1

+ x g (—)o J&,&[o&(i,A)o'&(J', 8) +O&(j,B)O'&(1,A)]
(ij) Q=—1

BB 1

+ X X (-)o i&,&O,'(j,B)O', (i',8)
(jj'& Q=-1

AB 1

X (—) 0 1&.&[oot(i,A) o'o(j;8) + oo'(j, B)o', (i,A)]
(((j)&

Q--1

AA 2
— g g (-)o K„&O,'(I,A)O'~(i'', A)

(ii') Q-—2-

AB 2 BB 2

+ g g (—)o K&&[o&2(i A) 02&(j 8) +0&2(j 8) 02&(i A)] + x x (—)o Kt»o&~(JB)02&(j',8)
(ij) Q=—2 QJ') Q=—2

AB 2

X (-)o L&.&[o,'(i,A) o', (j;8) + o,'(i;8)o', (I;A)] .
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A sum over AB and ((ij)), for example; denotes a sum over next-nearest-neighbor pairs of ions, one on the A

sublattice and one on the 8 sublattice; whereas a sum over 88 and (jj') denotes a sum over nearest-neighbor
pairs of ions, both on the 8 sublattice. In a type-II antiferromagnetic ordering, there are no next-nearest-
neighbor pairs that are parallel, &~ and hence the absence of sums over AA and ((ii')) and sums over BBand

((Ij')). The single-ion term V, (i,A) represents the cubic crystal-field potential at a site i on the A sublattice and,
following Lea, Leask, and Wolf, ' is given by

V, (i,A ) = 84[0&& (i,A) +S04 (i,A)] + 86[0&& (i,A) —2104 (i,A)] (2)

The operators 0" are spherical tensor operators of order n, properly normalized. These operators may be written
in terms of angular-momentum operators and expressions for them may be found in various texts. ' For con-
venience, we list the following few:

op =Jz

0& —( & )&/2J

Ooz =3J,z —J(J+I)
0 $&

=+6'&2
2 (J,J+ +J+J,)

Okp =(—,)'"J+J+ .

(3)

In Eq. (1) the coupling energies are assumed to be isotropic, i.e., the same for all components Q. Couplings are
distinguished only by whether the spins of the ions are parallel (p) or antiparallel (a), and whether the ions are
nearest neighbors or next-ne" rest neighbors. The energies J&» and 1&~& are associated with exchange (bilinear)
coupling between parallel spins and the energies K&,&

and L&,&
are associated with quadrupolar (biquadratic) cou-

pling between antiparallel spins.
Our procedure now is to split the Hamiltonian into two parts, the mean-field Hamiltonian and the perturbation

describing the correlation of fluctuations from the mean field. Assuming that the system orders along the z axis,
we obtain

Ho = $ [ V (i A ) —2z&» J&p& (0&&' (A )) 0&&' (i A ) —2z &, & J&,& (0&& (8)) 0&&' (i A )

—
2z&~&K&p& (Ooz (A)) 0&& (i,A) —2z&, &K&,&

(0&2& (8))00 (i,A)

—2y&, &I&,&
(00& (8)) 0&&' (i,A) —2y&, &L&,& (0&2& (8)) 0&2& (i,A)]

B

+ X [ V, (i,8) —2z&»J&» (00 (8)) 0&& (i,B) —2z&, & J&,&
(0&&' (A ) ) 0&& (i,B)

I

—
2z&p&K&~& (0&& (8))00 (i,B) —2z&, &K&,& (0&& (A)) Oo (i,B)

—2y&, &1&,& (0&& (A)) 0&& (i,B) —2y&, &L&,&
(0&2& (A)) 0&2& (i,B)]

and

H;„,=H —Hp (S)

C

tained for each rare-earth ion in the system. These
will then be used as basis states for the Green's-
function calculation below.

In Eq. (4), z&», z&, &, y&», and y&, &
are the nn and

nnn coordination numbers associated with parallel
and antiparallel magnetic moments, respectively. The
mean-field Hamiltonian, consisting entirely of
single-ion terms, can then be diagonalized in the
self-consistent fields (00 (A)), (Oo (8)), (00 (A)),
and (0~~ (8)). In this way, the molecular-field ener-

gy levels and molecular-field eigenstates can be ob-

III. NONINTERACTING GREEN'S FUNCTIONS

We define a noninteracting Green's function

g (0&r 0&r ) ( (7 [0&r(/ r) (0&r) ]

x [0,.'(j, o) —(Oo~,')]), ],. (6)
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where T„ is the usual 7-ordering operator" and
Ho~ g Ho

where Of(r) = e O&e is written in the interac-
tion representation. The angular brackets with sub-
script 0 denote the canonical thermal average with
respect to Ho, and the subscripts on the curly brack-
ets denote the q, aoI Fourier transformation of the
quantity.

To evaluate this noninteracting Green's function,
we use standard basis operators. ' ' These are de-
fined as

L „=/m) (n/

The operator L „ transfers an ion from state }m) to
state }n), and it should be self-evident that

Lmm'Lnn' = ~m'n Lmn'

(L,L„„]=5 „L „—5 „L„
The ensemble average Dn of the operator I„„meas-
ures the probability that state n is occupied.

&En -~Em -PEnD„—= e "/Z, where Z = X e, and where e

is the Boltzmann factor associated with level n. We
express the operator Oox(i) in terms of standard basis
operators at site i as follows:

Oox(i) = $ (m}Og"}n)L'„
m, n

Written in terms of standard basis operators, our
noninteracting Green's function takes the form

g (Oo, Oox ) =. X (m ~ Oo —(Oo) ~
n ) (r ~ Oo —(Og ) ~ s) ( (T,L ' „(r)L/ (0))p}-„„

n, m
f,S

where the standard basis operator Green's function

z
—Tre PL'„(r) L~, (0), 7 )0

(T,L'„(r)Li(0))p=' I—Tre PL~, (0)L'„( )r, r (0
t

(10)

Here Z is the partition function associated with the molecular-field Hamiltonian 00. Following Yang and Wang,
we evaluate Eq. (10) as follows:

—Tre PL'„(r)L~(0) = —e " Xe ~(p~L'„L„',}p)5p

and similar1y

—Tre PL~, (0) L' „(r) = D„515,5„„e

where we have written e „=e —e„. The Fourier
transformation in 7 is defined as fo11ows":

G(r) =Xe " G(pp„)

pp„= 2 n m/P, P = I /ks T,
so

G(cu„) = Jf G(r)e "dr;
2p p—

and after denoting Dn = Dn —D, we obtain

provided ~ „~0. In the case where m A n but
p = p„, Eq. (13) yields zero on the right-hand side
except when col =0, in which case D„ /Pe „D„in
the limit of e n 0, as can be seen by using
L'Hopitai's rule. We therefore find Eq. (13) equal to
D„5„„5,5(cu,), where 5(ppi) is 1 if cu, =0 and zero
otherwise. In the case where m = n, we have L'„(r)
= L' (0), and hence we obtain

(T,L' (r) L„,(0))p
= (L„' LJ,) p = D 5,5„50

The Fourier transform then produces

((T L' (r) L„(0))p}„=D 5 5„5(oil) . (14)

Using these results, we thus see that

g(O&~, O&x, ) = $ (m ~Of (O&~) [n) (n }—0& —(Oo ) [m)
/3(&mn + I ppi)

+ $ (m }O&—(Oo) }~)(n [O&
—(Oo ) Im)D 5(~s)

m, n

m 'n
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Because there is no interion interaction in the unper-
turbed Hamiltonian 00 with respect to which

g (Oo», 0&~ ) is defined, we note that g (Oo», 0&~ ) is q
independent. Also, we note that in cubic symmetry
the products (m ~Ogn) (n (OPm) can be nonzero
only if 0 =—g', unless K = K'=2, where Q = Q' =2
is also possible. Thus, only g(0&, 0"&), g(0,', 0,')
and g(0'z, O'2) will occur in our calculation.

Buyers et al. have evaluated the functions
g (0&,O'&) and have obtained somewhat similar
results using an equation-of-motion type of deriva-
tion. However, they did not obtain the second term.
This term can be omitted in the calculation of excita-
tion energies, but should be included in order to find
the Green's functions correctly. It will be important,
for example, to include it in calculating the contribu-
tion to the central mode in neutron-scattering meas-
urements.

Now that we have obtained an expression for
g(Oo», 0&» ), standard basis operators disappear from
the formalism. An alternate approach would be to
compute Green's functions of standard basis opera-
tors evaluated with respect to the full Hamiltonian

I

H. '~'9" For systems with biquadratic coupling and
many crystal-field levels, an unwieldy number of
Green's functions would have to be evaluated and
combined in order to obtain correlation functions of
the 0&~ operators. The procedure we are about to
present next thus represents a great simplification
and should be preferred over those methods which
explicitly use the standard basis operators.

IV. RPA GREEN'S FUNCTIONS FOR A MODEL
FERROMAGNET IN CUBIC SYMMETRY

In a previous paper we have briefly discussed the
formulation of Green's functions in the random-

phase approximation (RPA) for a model ferromagnet
in cubic symmetry with bilinear and biquadratic cou-

pling. We here present more complete details of that
formulation. This should serve as an introduction to
the method we shall later develop for treatment of a

type-II antiferromagnet.
We wish to evaluate

G(0&,0&') —= (T,[0o»(i, ) —(Oo»)][Oo»'(j, o) —(Oo»,')])

where this time the angular brackets denote a canonical ensemble average with respect to the full Hamiltonian
and the operators in the Green's function are in the Heisenberg representation. Following Abrikosov et aI. , we

expand the Green's function in the form

G(Oo, Oo') = [(T,[Ori(i, r) —(Oo)][Oo'(j, O) —(Og.')]S(p))0/(S(p))o}„ (17)

where the S matrix S(p) is defined as

(18)

In Eq. (17), the' operators on the right-hand side are in the interaction representation.
Equation (17) consists of an infinite series of terms, each of which can be represented by a diagram. The ap-

proximation generally used consists in selecting a set of diagrams which represent the largest contribution to the
sum of terms. In a system of localized magnetic ions the reciprocal of the effective number of ions interacting
with a given ion has been used as an expansion parameter. 2 This is known as the I/z expansion. The leading
order terms are chainlike diagrams. Selecting only these diagrams gives the approximation known as the chain
approximation, equivalent to RPA.

In our case, the sum of chainlike diagrams may be represented algebraically in terms of "bare" interactions as
follows:

K1

G(0",0" ) = (0», 0»')+ y y (0",0 ')g„( )G(0 ', 0»')
SC, =1 g, --SC,

where the bare interaction g» o (q) is given as
1 1

g»)Q((q) Jg (q)g»(t +Kot(q)8»(z ~

and where

(20)

Jo(q) = 2PJ(q), Ko(q) = 2PK (q)

J,(q) =—2PJ(q), K, (q) =—2PK(q), (21)

K2(q) =2pK(q)
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The functions J(q) and K(q) are the Fourier
transforms

r

J(q) =zJ —Xe'"' -=zjyo(q)
Z

5

K(q) =zK —Xe'"' —= zKyp(q)
Z 8

(22)

Q = o o = o o +

Q„= x o = x o +

C3

Goo —= G(00, 00 ),
G„o = G(oo2, 0ol),
Gp„=—G(0o, Oo ),
G —= G(Oo, Oo ),

goo —= g (Oo, Oo )

g„o —=g (Oo2, 0o')

go„=—g (0,', 0,')

g —=g (Oo2 Oo2)

(24)

Diagrams representing Eqs. (23) may be seen in
Fig. 1.

The first two equations in the set (23) may be
solved separately from the second two, yielding the
solutions

Goo = [goo (goog~ go g o) Ko(q)]ID—o

G„o=g o/Do

Go. =go /Do

G = [g —(gppg go g p) Jp(q)]/Do

(25)

where, returning to our original notation, we have

Dp = Dp( q, o)1) = [1 —g (Op', Op' )Jp( q ) ]

x [1 —g (0,', 0,') Ko(q)]
—g (Oo, Oo )g (Oo, Oo )

xJ (q)Kp(q) (26)

where only vectors 5 to near-neighbor sites enter the
transform if we adopt the nearest-neighbor interac-
tion model.

Equation (19) gives rise to several coupled sets of
equations. There is one set for longitudinal interac-
tions (Q =0), one set for transverse interactions that
result in a raising and lowering of spin projection by
one (hml =+1), and another set for transverse in-

teractions resulting in raisings and lowerings by two
(hmJ ——+2). We shall take each set in turn.

In the longitudinal case, we have

Goo =goo+gooJo(q) Goo+goxKo(q) G o (23a)

Gxo=gxo+gxoJo(q) Goo+g~Ko(q) Gxo (23b)

Go. =go +gooJo(q) Go. +go.Ko(q) G, (23c)

G =g +g pJo(q) Gp„.+g Kp(q) G, (23d)

where we have shortened the notation by writing

G
— o x — o x

G = x x = x x +

FIG. 1. Chain diagrams for the longitudinal Green's
functions in the nn ferromagnet model using bare interac-
tions. The wiggly lines refer to Jo(q); the dashed lines to

Ko(q). The vertices enclosed with a single ellipse represent

g(00, 00 ) functions. x is an 00 vertex; 0 is an 00 vertex,

The g functions are, of course, functions of ~I.
The transverse Am =+1 case is similar. Instead of

Eqs. (24), we shall use the replacement

Gpp = 6 (0,', 0 ',. ), goo =g (Ot', 0 ', )

G„p = G(02, 0', ),
G,„=G (0,', 0', ),
G = G(0,', Oz, ),

g,o=g(0, ,0', )

gp„——g (0,', 0', )

g =g(01,0, )

(27)

Dt =Dt(q, mi) = [1 —g(0,', 0'&)J,(q)]
x [1 —g(0,', 0', )K,(q)]
—g(0' 0' )g(0 0' )

xJ, (q)K, (q) (2g)

The transverse 4m =+2 case is slightly different in
that there is only one interaction to consider, namely
K,(q). However, for cubic symmetry the functions
g(02, 0, ) and g(0, , 0', ) are nonzero and there-
fore enter the chain equations. Our chain equations
become

The solutions to the resulting chain equations are
then the same as Eqs. (25), but with the replacement
Jp(q) by Jt(q) Kp(q) by 'Kt(q) and Dp by D]
where
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G(02, 0 2) =g(02, 0 2) +g(02, 0 2)K2(q)G(02, 0 2) +g(02, 02)K2(q)G(0 2, 0 2)

G(0 2, 0 2) =g(0 20 2)+g(0 2, 0 2)K2(q)G(02, 0 2)+g(0 2, 02)K2(q)G(0 2, 0 2)

G (0,, 0, ) = g (0 2, 02 ) +g (0,,0, )K2( q ) G (0, , 02 ) +g (0 2, 02 ) K2( q ) G (0,, 02 )

G(02, 022) =g(022, 022) +g(022, 022)K2(q) G(022, 022) +g(02, 022) K2(q) G(022, 022)

and these yield the solutions

G(0,', 0', ) = (g(02', 0'2) —K2(q) [g (0,',0', )g(0', , 0,') —g(0,', 0,')g(0', , 0', )])/D2,

G(0 2, 02) = [g(0 2, 02) —K2(q) [g(0 2, 02)g(02, 0 2) —g(0 2, 0 2)g(02, 02)])/D2

G(0—2~0-2) g(0 —2 0—2)/D2 ( G(02r02) g(02~02)/D2

where

D2=D2(q, o)() = [1 —K2(q)g(02", '0 2)][1—K2(q)g(0 2, 02 )l —g(02, 02)g(0 2, 0 2) [K2(q)]

(29)

00)

(31)

(32)

defining longitudinal (L-mode) excitations, transverse 5((( =+1 (Tl-mode) excitations, the transverse 6 m =+2
(T2-mode) excitations, respectively. It should be noted that the formulation presented in our previous papero is
slightly different, using chain equations represented in terms of effective interactions. That is, our chain equa-
tion had the form

We thus have obtained the RPA Green's functions for a model nn ferromagnet in cubic symmetry with bi-
linear and biquadratic coupling. The poles of the Green's functions, analytically continued by replacing
i ~I cu+i0+, give the energies of excitations. Namely, the excitation energies are obtained by solving the three
equations

Dp(q, o)) =0, D((q, p)) =0, D2(q, p)) =0

2 2

() (2
=g g g + X X X g(Og. O, ')&«, «2()(q ()g(0,', 0()'),

K1 1K2 1q-—QQ

where the effective interaction

4z, «,g(q. () =&op(q. ()5«,)5«,)+~o.(q, ~()5«, ) «,2+g, (q, ()g«, 2S«,)+&,, (q, ()5,,25«,2 .

(33)

(q o)() = Ko+ Kog& + Kog o gp ~,."
1 —Jpgpp

&o.(iq ~ ~() = Jp
gpx

1 —
gpp Jp

Kp
gxpop

1 —g Kp

Jp
exp(qi O)l) xxgxo.

1 —gppJp

the solutions of which are

The functions &pp, &p„,&„p&. are displayed diagrarnati-
cally in Fig. 2. Algebraically, for the longitudinal
case, the diagrammatic equations correspond to

Kp
-'(oo(q. p)() = Jo+ Jogoo&)o + Jogo. g ogoo ~

1 —Kpg-

-
( ) ( )

[I —Ko(q)g~(o)()]

Dp(q, o),)

y (- „) K ( )
[I —Jo(q)goo(~()]

Do(q, ~()

( ) ( )
Kp(q)gp ( )o()

Dp(q, o()

g ( ) J ( )
Ko(q)g.o(~()

D()(q, ~()
(36)

Substituting back into Eq. (33) yields the same solu-
tions as before. The advantage of this second ap-
proach is that the Green's functions can be obtained
without having to first solve simultaneous equations.
The disadvantage is that the diagrams are not neces-
sarily obvious. The formulation becomes particularly
cumbersome when attempts are made to extend it to
the antiferromagnet, and so we have chosen to follow
the first approach.
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(q, ur( j= = + where

X

I +
I

I
X

U (a) J(a) ( q ) U (a) K (a) ( q )

U (p) U (p) U (a) U (a)

V'() =I'P" q), V(') =L(") (q)
V(~a) 1(a) (q) V(a) L (a) (q)

(38)

II

{)„,( q, ~, ) ='„'

X
I

I +
I

here = +

V(p) y (p) y(a) y(a) 0

where

(q, ~, ) =

AA

Jg'P'(q) = qgpz(p) J(p) Xe"'
(p) &s&

FE

~gPz(p) J(,)v{:)(q),

6.„,{q,n, ) =

FIG. 2. Diagram equations for the effective interactions

in the nn ferromagnet model.

V. RPA GREEN'S FUNCTIONS FOR A TYPE-II
ANTIFERROM AGNET

%e now generalize the chain approximation to an
antiferromagnet with nn and nnn interactions. For
type-II ordering, it is essential to consider the nnn in-

teractions.
The general chain equation thus takes the form

G(a, b) =g(a, b) + gg(a, c) U,j' G()(d, b)
c,d

+ gg(a, c) U{ )Gd(d, b)
c,d

+ Xg(a, c) V,{J')G(d,b)
c,d

+gg(a')V, ' G(d, b), (37)

KgP (q) = ))gpz(p)K(p)fnn (q)
AB

Jg'(q) =7)gpz(, )J(,) Xe"'

'r)QPz(a) J(a)ynn (q)

Kg'(q) = ggPz(, )K(.)y"(q)
AA

Ig"(q) = r)gpy(, )l(,) X e"'

)gPAp) 1(p)'yn~nn( q ) ~

Lh"(q) ~gPy{.)L(,)y"'(q) .
AB

. Ig{')(q) = v)gpy(, )1(,) X e'P'
,
y{' ((ap)

ggPy{a)1{a)V'nnn(q ) ~

Lg'(q) = ~gPy(. )L(.)y' (q)

(39)

where the letters a, b, c,d refer to O&~ operators, and

where letters that are underlined refer to operators
on the "other" sublattice. The U refer to nn interac-

tion energies and the V refer to nnn interaction ener-

gies.
In the longitudinal case, we again use our 0 and x

notation and let the c,d indices run over O, x, where 0
corresponds to an Op vertex and x corresponds to an
002 vertex. The following relationships hold among
the interaction energies.

In these equations gp =2, q~ =—2, and g2 =2, where
the factor of 2 arises because we choose to write the
Hamiltonian in a symmetrical way [with respect to
the two suhlattices] as seen in Eq. (1).

If we now examine the set of four equations that
result from Eq. (37) for the functions Gpp, Gp„, Gpp,

and G p, we find that using Kramer's rule, all of
these functions have the same denominator, which in
particular is a 4 x 4 determinant, namely,

Dp (Tq. ~() = g g (p)

goo&o"

gx0~ 0
(a)

B (P)

g B(P)

go.Bo"
g~Bp(a)

g

gxp~ 0
(a)

gpp~O

g g (p)

go.Bo"
g Bp(a)

g B(P) (40)
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gpx gxp=gA(Op 0() )

gpp=gB(0(), 0()), g~=gB(00, 00)

gpx =gxp gB(00(00 )

(41)

Since 0 and x refer to 00 and 00 vertices respective-
ly, the g functions in this equation are given as fol-
lows:

gpp =g„(0(),00 ), g =
gA (0(),00 )

&P'(q) = Jo")(q) + lo(»(q)

~P)(q) =J()(q)+lo()(q)
&(I"'(q) = &(()"(q) + LP''( q)

g(x)(q) It(a)(q) +f )a)(q)

(42)

(40), we have further consolidated our notation as
follows:

By setting Dp (q, 0)() =0, we solve for the poles of
the longitudinal Green's functions and hence for the
longitudinal excitation energies. Dp (q, 0)() may be
re-expressed in algebraic form, in which case our
equation giving the I;mode excitation energies is

(43)

where subscript A means that in Eq. (15) one em-
ploys B „, D„, and matrix elements (m ~00x~n) and

(n (0&~ ~m) which are evaluated by using molecular-
field states appropriate to the A sublattice, and sub-
script 8 is used similarly for sublattice 8. In Eq.

I

Do(q, ~() =[I —(f~+foo~o") j[I —(g +f )&0")j —(fo.f.0+to.f.o)~o"&o"

(go f 0+g ogQ )~0 ~0 +foofoof(~o ) —(&o' ) 1

+f~t~[(~o ) —(~o' ) & [(toot~ —foxfxo) goo+ (foot~ —foxfxo) fool

x [(~o"&' —(~o')'[&o" —[toot go.g.o—)t +(goof —fo.f.o&t [

x [(80"))' —(80(')'jul 0"' + [(goof —go.g.o) (fpot~ —fo.f 0& j

X [(&(I")2—(&0')2j[(&p")'—(&(Ix))'1 =0 .

This equation appears formidable but actually can be
solved numerically for its roots in a straightforward

way via the use of a computer.
In the case of the Tl mode, Eq. (43) again gives

the excitation energies, provided we replace Ao by

A~, 80 ) by 8& Ao' by g&(~) and 80~~) by B~')

and provided we write

foo' =tA(o]' o']& . f'"=fA(o]'.o']&,
go!) =f.'o' =gA«]' o-']&

goo gB(0] i 0—] ) i gxx gB(0] i 0—] )

We note that Eq. (43) for the antiferromagnetic
excitation energies is of an order in col that is twice

that of Eq. (26) for the ferromagnetic excitation en-

ergies. The same is true f'or the corresponding equa-

tions for the T1 and T2 modes. This tells us that
compared to the ferromagnet, the antiferromagnet
has t~ice as many excitation branches in each mode.
This effect is expected and is associated with the ex-
istence of two sublattices in the case of the antifer-
romagnet.

g(1) gO) g (0] 02 ) (44)
VI. DISORDERED PHASE

For the T2 mode, 0& vertices do not appear. On
the other hand, functions like g (0,', 02 ) and

g(0 2, 0 2) occur. We find that Eq. (43) again gives
the excitation energies, provided that we replace Ao~~)

and 80~ by 82~ and Ao' and 80' by 82', and pro-
vided that we ~rite

The equations for the excitation energies simplify
in the paramagnetic phase. The sirnplications are a
consequence of time-reversal symmetry and cubic
symmetry which exist in the paramagnetic phase.

In the longitudinal case, time-reversal symmetry
demands that

fo.(~() =g.o(~() =o

g =gA(0 2, 02)

fo."=fA(o2', 02)

fxo gA (0—2 0—2) fox

go'(I~ =gB(02,0'2)

gxx gB(0 2, 02 )

fOx =gB(02,02)

g„p =gB(0 20 2) gox

(45)

This can be easily demonstrated by remembering that

gQ ( () = (T Op ( ) OQ (0)) (47)

Under the operation of time reversal the right-hand-
side of Eq. (47) becomes (T,OQ] (r) 00 (0))„,—=
—gp„(o)(), which under time-reversal symmetry must
be equal to what it was before the time-reversal
operation. The only way this can happen is for
gp„(o)() =0. We have similarly shown that g„p(o)() =0
as well.
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Using Eq. (46), we find that our equation Do (q, (o() =0 is now factorizable, and becomes

Do (q, ~) = {1—(goo+ goo) Ao" + googoo[(A o")' —(A o')']] {1—(g~ +g~) Bo"+g~g [(Bo")' —(Bo')']] (48)

which can be further factored as

D(~) (q, (o) = [1 —g()o(A()(P) +A()(') )][1 —g()()(AoP) —Ao(') )][1 —g (BoP +Bo' )][1 g—(8()P —8()(' )] =0

after utilizing gpp=gpp and g =g because of the
equivalence of the two sublattices. Setting each fac-
tor to zero in Eq. (49) yields four sets of solutions.

Equation (49) is very informative because it
demonstrates that in the paramagnetic phase, the L
mode consists of four types of solutions, two of
which are identifiable as magnetic dipolar excitations
since they are associated solely with Heisenberg ex-
change coupling (the A couplings) and two of which
are identifiable as quadrupole excitations si'nce they
are associated solely with quadrupole couplings (the
8 couplings). We employ the labels LD(1), LD(2),
LQ(1), and LQ(2) as follows:

1-g('&(A,'» -A,( &) =0 [T1D(2)],
1 —g(')(8(P) +8(')) =0 [TlQ(1)]

(53)

(q ) —[1 g( ) (A (P) +A ( ))]

x [1 —g(» (A,(» —A,( &]

x [1 g())(8(p) +8(p) )]

x [1 g"'(8—,' ' —8,")]=0, (52)

and we obtain the T1D (1),T1D (2), T1 Q (1),T1Q (2)
modes as follows:

1 —
g()()) (A) +A, ' ) =0 [T1D(1)]

1 —goo(Ao( ) +Ao(')) =0 [LD(l) mode]

1 —goo(Ao"' —Ao") =0 [LD(2) mode)

1 —g (Bo +Bo' ) =0 [LQ(1) mode]

1 —g (Bo —Bo' ) =0 [LQ(2) mode]

In the transverse T1 case, we again have

go(() ((o ) —g ()) ((o ) 0

(50)

(51)

1 —g(')(8(P) —8(')) =0 [TlQ(2)]

In Appendix A it is demonstrated that as a conse-
quence of cubic symmetry, the T1D(1) and T1D (2)
equations have exactly the same solutions as the
LD(1) and LD(2) equations given in Eqs. (50).

The transverse T2 case is a little more complicated
because gp„, and g„p are not identically zero in the

paramagnetic case. We do have

where these quantities are defined through Eqs. (44)
and (15). Cubic symmetry is responsible for Eq.
(51), and the reader should refer to Appendix A for
details. Using Eq. (51), we find that

g (2) (o) ) g (2) (o) ) g (2) (o) ) g (2) (o) )

g (2) (o) ) g (2)(o) ) —g (2) (o) ) —g (2) (o) )
(54)

and a result we obtain for the paramagnet the equa-
tion

D A ( q ~ ) (1 2 g (2&8 (P) )2 2( g (2)) 2 [(8(P& ) 2 + (8 (a) )2] + 2 (g (2) ) 2 [(8 (P& ) 2 (84) )2]

4 {[(g(2) )2 (g (2))2] (2)
][(8(P) )2 (8 (a) )2]8 (P) + [(g (2) ) 2 (g (2))2]2[(8 (P) )2 (8 (a) ) 2]2 () (55)

In Appendix A it is demonstrated that owing to the
cubic symmetry this equation may be written as fol-
lows:

D,"(q, o),) = [1 —g (8o' ' +8o")].[1-g (8.(&-8,'&)]

x [1 g(1)(8(p) +8(a))]

x [1 —g (') (8 (P ) —8,(' )] =0 (56)

where the gpp and g ' refer to the appropriate g func-
tions in the longitudinal and T1 case. Thus, we see

that in the disordered phase we get a set of T2
modes corresponding to LQ(1) and LQ(2) and
another set of T2 modes corresponding to Tl Q (1)
and Tl Q(2).

We now demonstrate, however, that a reciprocal
lattice translation can take the LD(2), LQ(2), and
TlQ(2) modes into the LD(1), LQ(1), and 'TlQ(1)
modes, respectively. As an example we consider a
type-II ordering, although the result should be true
for type-I ordering as well.

Referring to the diagram in Fig. 3, one may
demonstrate that for type-II ordering
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AA

p(»)((I) = — $e'')'= —cos—(q„—q») +cos—(q„+q,) +cos—(q»+q, )
~(p) (~)

AB

, y(„')((I) =—ge ' =—cos—(q„+q») +cos—(q„—q, ) +cos—(q»
—q, )

~(a) g)

y(„')(q) = $ e'T''= —(cosaq„+cosaq»+cosaq, ) (57)

where a is the lattice constant. One then finds that

(58)

They are LD(1), Lg(1), and Tlg(1) solutions
transferred from the part of the first Brillouin zone of
the full lattice which is severed off in the two-
sublattice scheme. Hereafter we shall ignore the
LD(2), Lg(2), and Tl g (2) solutions and label the
remaining solutions as LD, Lg, and TlQ.

for K = (m/a) (1, I, 1). Thus, from E(ls. (39) and
(42), A(5') —AP) goes over to AP) +A/) under the
reciprocal-lattice translation K, and similarly

8& ' —8&' goes over to 8& '+8&'.
In our previous paper, in which we analyzed

model ferromagnet with nearest-neighbor coupling,
we found only modes given by

[g (P) (nn) +g (a) (nn)]g 0 (LD)

I —[80» (nn) +80' (nn)]g =0 (Lg), (59)

I —[8)» (nn) +8(' (nn)]g ' =0 (Tlg)

The addition of nnn coupling would be expected to
alter the dispersion but should not produce additional
modes. Indeed, the other solutions LD(2), Lg(2),
and Tlg(2) arise simply because of the two-
sublattice scheme used in our present calculation.

i/
)a

I

Oo-

0

Q 0 -e, 0
0 0 0
e, od, o
0 e, o-d,

0 fl

0 0 0 0-hl 0
hy 0 h3 0 0 0
0 000 h~o

-h, O-h, o 0 0
0 0 0 0 0-hs
0 hl 0 hP 0 0

6 = 8.8'K

-cz 0-ez 0
0-c~ 0 ez

-ezo dz 0
' -0 0-ez 0 dz

O h, O h, O O

0 0 0 0 0
Ot, Oh, o 0
00 0 0 0 hp

h, Oh, OO 0
00 00h60

=Y

2
—I

0 0 0 0 -Ql 0
0 0 030 0 0
0 0 0 0 Q~0

-Q30 0 0 0 0
0 0 0 0 0 0
0 Q, 0-Q~O 0

02

0 0 0 Q30 0
0 0 0 0 0 -QI

0-Q30 0 0 0
0 0 0 0 0 Q~

Ql'0Q~QQ0
0 0 0 0 0 0

02=
0 R, O R3
R~ 0 R~Q

0 R,

R~0
0 R3

R~0
2

, 02=

Q R~

R, Q

0 Rq

R3 0

FIG. 3, Diagram showing type-II ordering in an fcc lat-

tice. The (111) planes are ferromagnetically ordered

within the plane and antiferromagnetically ordered between

planes. (After ter Haar and Lines' ).

FIG. 4. Matrices for various operators evaluated with

respect to cubic crystal-field states for DySb, A six-level

scheme is used.
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VII. APPLICATION TO DySb

DySb is one of the systems which have definitive
evidences of quadrupolar coupling. " " It is type-II
antiferromagnetic at low temperatures and the
discontinuous phase transition at 9.5 'K is accom-
panied by a slight tetragonal distortion of the lattice.
The discontinuous phase transition behavior is attri-
buted to the presence of quadrupolar coupling
between ions.

In DySb, the cubic crystal field splits the 16-fold
degenerate free-ion ground-state energy level into 5

levels: 16, 18", I 7, I 8", and I 8". The ground state,
16, is a Kramer's doublet. The most recent scheme
suggested for the other levels by Kouvel et al. '2 is

r,"' at &.& 'K, I q at 60.4'K, I 8 at 96.0'K, and I"8"
at 120.2'K. The crystal-field coefficients' we shall
use are A4(r4) =60 K and A6(r') =1.8 K, consistent
with those suggested by Kouvel et al. '

Since the ordering temperature is 9.5'K, if the
temperature is not too much higher than the ordering
temperature, it is reasonable to approximate the sys-
tem by a two-level scheme consisting of I 6 and I 8",
The form of the appropriate crystal field matrix ele-
ments is shown in Fig. 4.

In order to solve for the single-ion basis states
used for the unperturbed Green's functions in type-II
antiferromagnetic DySb we use the mean-fi|;ld Ham-
iltonian from Eq. (4). This Hamiltonian may be
rewritten

Ho Hg + Hs $ [V~(l A ) [h') Mg + (X) + h 3)Me] 0() ((A ) —[h2'Qg + (h2 + X4) Qe] 0() (i A ) }

B
+ $ [V (i B) —[l)'Ms+(X) + h3)Mg]0() (i B) —[h2'Qs+(h2+ h4) Qg]Oo (i B)} (60)

where

M„= (0()' (A )), Ms = (Oo (B))

Q~ =(Oo (A))

and

Qs = (Oo(B))

pE (A)
'

Mg= Xe
n

1

A.)+ A3

(

E (B)Me=, ge
ZB

' „A.)+A.3
(

&E (A)
Q„= pe

A n

1

A.2+ A.4

&E(B)
Qe=

ZB n

1

A2+ X4

gE (A)

9MB

gE(B) '

9MA

gE (A)

()Qa

gE (B)

() QA,
(61)

and where the definition of the coupling energies A. ;

should be clear from comparing Eq. (4) with Eq.

(60). Using the crystal-field matrices given in Fig. 4,
matrices for ~H and ~H are then formed from Eq.
(60). These matrices are then diagonalized and

eigenenergies [E„"}and [Es} are obtained for sites on

the A sublattice and B sublattice, respectively, The

eigenvectors associated with the diagonalized ~H and

~H give the molecular-field state functions for sublat-

tices A and 8. The molecular-field energies and state
'functions depend on the values of Mq, Me, Q~, and

Qs, which are determined self-consistently as a func-

tion of temperature from the relations

(2 h2+ h 4) QA Oo (i,B)l

(62)

if we choose A. ~' = X~ and X2' = A.2, assuming thus that
nn parallel spins are coupled with the same strength
as nn antiparallel spins. We choose A.3

=—0.40'K and
2A,2+ A.4 =0.001'K in order to produce a discontinu-
ous phase transition at T~ =9.52'K, the experimental
transition temperature quoted by Bucher et al. In
addition, this choice yields a saturation sublattice
magnetization M„,=9.75)M,e and a ratio }Mq ~/M„, =
86.7% at T =9.0'K, also in excellent agreement with
the experimental values. '

Our fit to T~ does not let us determine A.~. This
we determine from the paramagnetic Curie tempera-
ture 8, using the relation'4

t) = (6J( ) +6J(,) +61(,))

2J(~+1), h3 (63)

Here ZA and ZB represent the single-ion partition
functions for sublattices A and B, respectively.

The choice of A. ; determines the ordering tempera-
ture T~. Since in the antiferromagnetic phase,
M„=—Me and Qq = Qe, we find that Ho reduces to

A

H() ——X [V, (i, A) —h3MeOo (i,A) —(2X2+ h4)

B
x Qe Oo2 (i, A )] + $ [ V, (i, B) —h3Mg Oo (i, B)
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J(J +1) )t4
(64)

The derivation is given in Appendix B. Since
1

X + —X4 is more than two orders of magnitude2

smaller than P I + —,X3, the correction ~8 can be

neglected.
Still undetermined are A.2, X~', and X4. We have

so far only that )i2+ A.2'+ )t4 =0.001 'K. In the ab-

sence of any other information, we choose

where J for Dy + is
2

. Busch et al. have found 8
15

equal to —4'K. This yields XI = A. I' =+0.106 'K. This
is reasonable since we expect the exchange coupling
to exhibit an RKKY range behavior, ' and it is there-
fore not surprising that the nn coupling has a sign
opposite to that of the nnn coupling.

We note that in Eq. (63) we have neglected the ef-
fect of quadrupolar coupling on the paramagnetic Cu-

rie temperature. This can be justified. Following an

earlier work by Wang we show that the shift in 8 by

the quadrupolar couplings is given by

)t2 = h.2' = 114 = —, (0.001) 'K. Comparison with ex-

perimental neutron data on the DySb excitation ener-
gies would give better grounds for a choice. Hopeful-
ly this paper might serve to stimulate such measure-
ments.

Excitation energies in the ordered phase may be
determined by solving Eq. (43) numerically. A com-
puter program has been constructed to do this using
the Newton-Raphson method to search for the
roots. The program is general enough that it may be
used for any rare-earth system whose molecular-field
states are describable by the two-sublattice model.
All that has to be supplied is the molecular-field
states. The program has been used also to recon-
struct the excitation modes for the nn ferromagnet
model and gives agreement with the program which
uses Eqs. (26), (28), and (31) as a basis for compu-

. tation.
In the disordered phase, we can obtain analytic

solutions for the excitation energies from Eqs. (50)
and (52). Using the matrix elements et, e2, Q1, and

Q3 shown in Fig. 4 to evaluate the g functions, we
obtain

(LD) Q 2 4[a (P) (q ) + 41
(a) (q )](e )2D P}1/2 (T1D)

q

4[ho"'(q—) +b,"(q)](e,)'D„b}' '=e
~q . 0 0 2 13 q

e(Tlg) (g2+2[bt(p) (q) +yt(a) (q)][(Q1)2+(Q3)2]D13p}1/2 &
2

(65)

where

& (p) g (p)/p a (a) g (a)/p0 0 ' 0 0
i)( ) g( )/P and b( ) g( )/P

and where

D13 = (cpa —1)/(2 cpa+ 4) (66)

We shall display the results for the DySb excitation
energies in Sec. VIII.

VIII. DISCUSSION

Figures 5 —10 show the excitation energies for
DySb for q equal to q (1,0, 0), q (1, 1, 1),
q (0, 1, 1), and q (1, 1, 1). These q are all in special
directions. From Fig. 3 we see that the (111)
planes are ferromagnetic planes. An excitation with

q =q(0, 1, 1) propagates within such planes, whereas
an excitation with q = q (1,1, 1) propagates perpen-
dicular to such planes. Excitations with
q=q(1, 0, 0) and q=q(1, 1, 1) propagate in high
symmetry directions in the full Brillouin zone. Of all

these special directions only the (1, 1, 1) direction
has a Brillouin-zone boundary that is different for the
sublattice (see Appendix C).

We observe the following general characteristics in

Figs. 5—10. Above the ordering temperature, the
LD, LQ, and T1Q modes have one branch only.
The dispersion of the LD and LQ modes is appreci-
able and comparable to that found with the nn fer-
romagnet model used in our earlier paper. We note

~ that a different crystal-field level structure was used
in Ref. (9), with 5 equal to 14.5'K instead of 8.8'K
used here, so the modes there are centered about en-
ergies that are shifted from those shown in this pa-

per. The dispersion seen here is also much more
complicated owing to the inclusion of nnn coupling.
In general, the various modes do not show a mono-
tonic increase with q as in the nn ferromagnet model.

To understand the dispersion behavior of the vari-
ous modes, we compute Ao(p) (q), Ao" (q),
80p (q), and 80' (q), which enter into Eq. (43).
These are plotted in Fig. 11. We remind the reader
that the A functions are associated with Heisenberg
exchange coupling and the 8 functions with biqua-
dratic coupling, as seen in Eq. (42).
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FIG. 5. BySb excitation energies in the longitudinal L
mode as a function of q (1,0, 0) and q(1, 1, 1).

FIG. 6. DySb excitation energies in the longitudinal L
mode as a function of q (0, 1, 1) and q (1, 1, 1).

We now examine the dispersion in detail. The LB
mode first decreases and then increases with q. The
initial decrease is due to antiferromagnetic nnn ex-
change coupling dominating the behavior at small q.
At larger q the competition between ferromagnetic nn
coupling and antiferromagnetic nnn coupling is much
more complicated and depends on the detailed nature
of the various y(cl), which are tabulated for the vari-
ous q directions in Table I.

The LQ mode at first increases with q because all
the quadrupolar couplings are ferroquadrupolar. We
also note that the LQ mode has value e, q = d at

often quite rational values of q. This occurs, for ex-
ample, at q =

3
(4r/a) in the (1, 1, 1) direction and

2
again at q = —, (4r/a) in the (1, 1, 1) direction. This
happenstance is accidental and is due to the choice
that k2 ——II2' = Il.4. For example, at —', (7r/a) (1, 1, 1),

r

and so III +&p =0 and e4Lq = 5 if II&-——X2' ——X4.
It should also be noted that although the biquadratic
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coupling energies are much smaller than the ex-
change energies, the square of the matrix element of
OQ is about 400 times larger than that of 00, and
hence the Lg mode has a dispersion comparable to
that of the LD Th. e Tl g mode is flat because in this
case the Og, quadrupolar transition matrix elements
responsible for it are much smaller than those for
02

. Our plots also confirm that the T1D and the two
paramagnetic T2 modes have the same energy spec-
trum as the LD, LQ, and Tl g modes, respectively

We should like to emphasize that the Lg and Tlg
modes are decoupled from the magnetic dipolar exci-
tations. The LQ and Tl g modes are pure quadrupo-
lar modes and arise as a direct result of quadrupolar
coupling. All cubic systems that exhibit quadrupolar
coupling should have such modes. The temperature
behavior of LD modes has been observed in neutron
inelastic scattering experiments for compounds with
bilinear only coupling in a crystal field. It would be
of great interest to observe the pure quadrupolar LQ
modes in similar experiments. The fact that hm =0
(no spin flip) has the greatest intensity in neutron-
scattering measurements" also makes the observa-
tion of the LQ mode more plausible.

In the ordered phase, the molecular field lifts com-
pletely the degeneracy of energy levels. We label the
energy levels in numerals in ascending order (1 being
the ground level). We note that because of the large
energy splittings even near the phase transition, only
the ground level is appreciably populated. Therefore
only excitations from the ground level and level 2
show any noticeable dispersion.

The chief difference between the antiferromagnet
and ferromagnet model in the ordered phase is a
doubling of the number of branches in each mode.
In the L mode, the antiferromagnet has four
branches, whereas the ferromagnet had two. In the
T2 mode the antiferromagnet has eight branches,
whereas the ferromagnet had four. (Not all the eight
branches are distinctly shown in our plot because
some of the branches are not sufficiently separated. )
The T1 mode is a different story. The antiferromag-
net appears to have the same number of branches as
the ferromagnet. However, each of the branches in
the antiferromagnet is doubly degenerate. This can
be understood if we recall that the antiferromagnet
system consists of two sublattices ~hose wave func-
tions are related by a time-reversal operation in the
absence of an external field. The energy associated
with spin-raising excitation operators (Am =+1)
therefore equals that associated with the spin-
lowering excitation operators (hm =—1). That is,
there are two distinct modes of the same energy.

In all cases, the ordered phase excitations. are
mixed magnetic dipolar and quadrupolar excitations
and the varied shapes of the ordered phase dispersion
curves show clear evidence of this mixing.

IX. CONCLUSION AND SUMMARY

Inasmuch as biquadratic coupling is an important
element in some rare-earth systems, we have devised
a Green's-function method which allows one to com-
pute excitation energies in a crystal-field system with
bilinear and biquadratic couplings. We have applied
the method to a type-II antiferromagnet because we
wished to treat a particular system, DySb, which
shows strong evidences of biquadratic coupling.

%'e have found in general that there are three
types of modes: a longitudinal (hm =0) mode (L
mode) associated with 00 and 002 operators, a
transverse (5m =+1) mode ( T1 mode) associated
with 0+, and Og, operators, and a transverse
(hm =2) mode (T2 mode) associated with Ogz
operators. In the ordered phase the L-mode y.nd
T1-mode excitations are mixed magnetic dipolar and
quadrupolar excitations. In the disordered phase the
magnetic dipolar modes decouple from the quadrupo-
lar modes, giving rise to the possibility of observing a
pure quadrupolar excitation in the L- and Tl-modes.

The dispersion in the type-II antiferromagnet is
more complicated than in the nn ferromagnet be-
cause of the competing coupling between nearest-
neighbor parallel spins, nearest-neighbor antiparallel
spins, and next-nearest-neighbor antiparallel spins.
There is also a doubling of the number of branches
in each mode in the antiferromagnet owing to the
halving of the Brillouin zone brought about by the
formation of sublattices.

ACKNOWLEDGMENTS

One of us (M.S.) thanks Florida State University
for the hospitality extended to him during his several
visits. We also thank J. S. Kouvel, P. M. Levy, L. F.
Uffer, M. Kalos, K. Rauchwarger, and S. Jafarey for
helpful discussions. This work was supported by
Research Corporation (M.S.) and the NSF (Y.L.W.).

APPENDIX A: EFFECTS OF CUBIC SYMMETRY
ON THE EXCITATION ENERGIES IN THE .

DISORDERED STATE

We give three proofs here.

g0„=g„0 =0 as a
consequence of cubic symmetry

This is important to show because it is the condi-
tion which decouples the dipole modes from the qua-
drupolar modes in the T1 case.

We shall use the notation g„t0tl = (Ot2
~

0'~ ) and

g0p = (O(' IO't ).
Consider ((J"J'+J'J")

~
J'), where the J",J,J' are
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components of angular-momentum operators. Under
a 90' rotation about the y axis, J' J"and J"
and

((J"J'+J'J ) I J ) —((J'J"+J"J')
I
J )

But in cubic symmetry, a quantity such as the above
should be invariant under a 90' rotation. The only
way a 90' rotation can produce the negative of the
quantity is for the quantity to be identically zero.
Now, we have

o = ((J"J*+J J")IJ»)

[(J—J+J-J )I J+) -((J'J—+J J+)
I J )-1

4i

+ ((J'J'+ J*J')
I J') ((J J'+—J'J ) I

J ) ]

The last two terms are zero because two raising
operations or'two lowering operations cannot connect
cubic crystal-field states. Call the first two terms A

and 8.
Now consider ((J"J*+J'J")

I
J") and take it through

a 180' rotation about the y axis, so that J" —J"and
J' —J'. It follows that

((JxJzy JzJx)
I Jg ~ ((JxJz+ JzJx)

I
Jx)

and hence we have

0 = ((J"J'+J'J")J")

,
[((J'J'+J—'J')

I J ) + ((J J'+ J'J )IJ-')] . -1

4i

We have shown in effect that A —8 =0 and

A +8 =0 so that 3 and 8 are separately zero, and
hence that

((J'J +J*J')IJ-&= &(J-J +J J )IJ+)-=0,
which is equivalent to saying that

g(kl go) 0 Q ED

2. LD mode has the same solutions as the T1D,
as a consequence of cubic symmetry.

We need to show that

1 —g (A» +»1 ' ) =1 —gg (»l,t»2 +A t' ) . (Al)

This is equivalent to showing that

(J'IJ') (Ao +Ho' ) =
2

(J+IJ ) (»lo» +»lo' ), (A2)

where we have used A 1' ' =—A 'p' 3"=—3"
0&' =—(2)' 2J+ and 0'~ =(2)'2J . But

&J'IJ-& = &J"IJ"&+&J IJ»+ ((J IJ"& —&J"IJ )) .

Under a 90' rotation about the z axis, the term in the
parentheses becomes the negative of itself and hence,
under cubic symmetry, must vanish. The remaining
terms are equal to 2 (J'IJ') since x, y, and z are
equivalent under cubic symmetry. Q.E.D.

3. T2 modes have solutions which correspond to

LQ and T1Q modes, as a consequence of
cubic symmetry

We wish to show that

(g2 Ig2)2)2(82 82 )2 (A3)

t-hand side (set equal A rotation of 180' about the x axis takes J" J",
the LQ modes, the J~ —J, and J' —J' while leaving the above quanti-

ives the solutions ties invariant. This requires that

where the first factor on the lef
to zero) gives the solutions for
second factor (set equal to zero) g
for the T 1 Q modes, and where the right-hand side
represents D42 (q, co). Note that we have used
80(p) =-81(p) =82(p) =8( ) and 80( ) =-81( )

(p)

From Eqs. (3) defining the spherical tensor opera-
tors, we have that

(Oo I Oo ) = —(J" —J»
I
J" —J» )

(0 I
0 ) =——(J"J»+J»J"

I
J"J»+J»J")

(o,'Io', ) = ,'(J"' J"IJ" J'&- — —

+ —(J"J +J J"IJ"J +J J")

(J"J»IJ" ) =—(J"J»lJ" ) =0

(J"J»IJ"
&

= (J"J»lJ»'& =o, -
&J»J"

I
J"'& = &J»J.

I
J"'& =0, -

(J»J"IJ» ) =—(J»J"IJ» ) =0

so that in cubic symmetry

&o'
I o.' &

= -' &(J")'—(J')'l(J")' —(P)')

(0'
I
0') ) =—(J"J'+J'J"IJ"J'+J'J")

(g2 Ig2 ) = ' ((Jx)2 (J»)2I(J~)2 (J»)2)

+ —(J"J»+J»J"IJ"J»+J»J")

+i ((J"J»+J»J"IJ" —J»—)

—(J" J'
I
J"J'+J'J')) . (A4) (AS)

[1—2&go Igo&8( l+(go lgo&'(8('») 8&'2)][1+2(0(lg'2)8&,2+~0,'lg'2&'(8&',
2

—8&',&)]

=(1 —2(02'lg'2)Bt») —2(02 I02) (8&» +8|,2)) +2(02 lg 2) (8&» —8~,&)

—4(02 lg 2) ((02 lg 2) —(02 I02 ) )Bt»2(8|»2 —Bl,&) +((02 lo 2)
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These are all real and
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X= lim
5M

e-0 H

19

We can also show that

&o,' I
o'

&
= —' &(J")'-(Jy)'1(J")' —(Jy) 2)

(JxJy + JyJxl JxJy+ JyJx)

(A6) and we obtain

(g, I s)-'X= —p g (nl XJ,'In)'e
n I

t

, P X (n I X J,'I n ) e
II I

and hence that

(O2 10—2) (O2 102 &
= (Oo I oo & (ot I ~-2)

(A7)
n, m

num

21(ml XJ'ln) I'

E —E„

—pEn

Using Eqs. (A6) and (A7), one can then demonstrate
that Eq. (A3) is an equality. The algebra is left to
the reader. Q.E.D.

(84)
—PE

where Z = X„e
At high temperatures (viz. , ke T much greater than

the total energy splitting of the ground multiplet), we
expand X as a power series of p,

APPENDIX B: DERIVATION OF THE BILINEAR
AND BIQUADRATIC CONTRIBUTIONS TO THE

PARAMAGNETIC CURIE TEMPERATURE

(gJps) 'X = Co+-C)p+ C,p'+ C,p'+

where

(85)

and

ln&=ln&-h g'
m

mAn
E„—E Im& (81)

(82)

where h =gj p,&H and gj is the Lande g factor.
The induced magnetization is

5M =gypsy(X J )

We here give an expanded version of the develop-
ment used in the letter by Wang.

Let the Hamiltonian of the system be X and the
measuring field be H. Since we are interested in the
linear response of the system to the perturbing field
H, we need to calculate its effects on the wave func-
tions only to first order. Let

I
n ) be a complete set of

eigenfunctions of BC,

3'.
I
n

&
= E„I

n )

Choose H along the z axis. To first order of H, the
perturbed states and energies are

Co ———
n, m

num
E —E„

=0

C~ =(2J+1) X (nl XJf In) = NJ(J+1)—

'I

C2=—(2J+1) g (nl XJ In) — NJ(J+1) E—„

(86)

The higher-order coefficients can be found similarly,
but we need to know'only C~ and C2 for the expres-
sion of 8. We expand X ' in P and obtain

(gJJXs) X
2 3

(C]C3 + C2 )p +1 C2 1 2

C)p Ct2 C(3

(87)

Thus a plot of X ' vs Twill show a straight line at
high temperature and the intercept 0, of the extrapo-
lation of this line to the T axis is C2/(C~ks). So we
have

where

8 (XJ') = X&n I g J
I n) e

' "
i n I n

—X(eI XJIe)e "/Ze (83)

kat), = C2/Ci

After writing C2 and Cj in trace form, we have
f

katI, =—Tr, g J,' —M(J+1)/3 3.', Tr XJ;
I I

(88)

(89)
where we have taken the volume of the sample as
unity.

The susceptibility is defined as

For a measuring field in the x and y directions we re-
place z by x or y in the above expression. The
powder average is
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kate= —,' Tr XJ J 3CI Tr QJ;
i,ji'

To evaluate 8, we first note that

(81o) Tr I g Jz Tr $ (Jz)2+ X JzJz

The second term is zero. For the first term we have

J J
Tr(Jf)2= g (n~n2 ~ ~ ~ ~(Jf)2~n~n2 ) =(2J+1) g nt =

3
J(J+1)(2J+1)

n (n2 n =—J
1

and hence the denominator of our expression for 8 is

(3 W) J(J+1)(2J+1)n. The numerator depends on

the Hamiltonian .
lf X =—$1 JI Jt'Jzn, which is the bilinear ex-

change term, then the numerator is

Tr $ (J"J"+ J~J~+ J'J')
i,j
I+J

z

x —x JI (JI"J"+J(J +J;J )
I,m

=-2x3Tr XJ (J")'(J")'
I, m

where we drop all terms with zero trace and where
the factor of 2 comes from the two ways of obtaining
nonzero contribution, namely (i) i = I, j = m and (ii)
i =m,j=I. Writing

wJ(0) = g J,.
l, m

IWm

and using the tables of Ambler et a/. ,
' we find that

the numerator is —
—,XJ(0)(2J+1)nJ2(J+1)' and

hence that

We note that Eq. (810) is so constructed that each
term in gives a contribution to 8 and all the contri-
butions add together, so

ks 8 = ks (0 + Hq) = —J(0)J(J + 1)

—
—,K(0)J(J+1) . (813)

Normally K(0) is much smaller than J(0), and hence
the second term is not a large correction.

Also, as shown by Wang, the cubic crystal-field
term in the Hamiltonian does not alter 8 and hence
Eq. (813) has all the corrections in it that we need to
consider for this paper.

APPENDIX C: SUBLATTICE BASIS VECTORS,
RECIPROCAL-LATTICE VECTORS, AND
BRILLOUIN-ZONE BOUNDARIES IN THE

TYPE-II ANTIFERROMAGNET

Sublattice points are given by (1, 1, I) ferromagnet-
ic sheets. Such points are generated by the primitive
vectors

at = (—,
' a) i + (—,

' a) k

ks8 =
3

J(0)J(J +1) (811) a2 = (—,
' a )j+ (—,

' a) k

For an fcc crystal with nn and nnn coupling, this be-
comes

ks8~ = —J(J +1)[—(A. i + Xi'+ X3) j

if we use the notation in the text of this paper.
We can obtain the effect of biquadratic exchange

by setting 3C=—X, KI (Jl J )2. The numerator in

Eq. (A17) then becomes
z

—3 x 2 x 2 Tr Q K~~ JfJfJI'J~ J~z J~
lm

= (W/3) K (0) (2J + 1) J2(J + 1)'

~here again we have explicitly dropped all the terms
with zero trace, and where again we use the tables of
Ambler et al. This gives as the biquadratic correc-
tion to the paramagnetic Curie temperature

a3 =—a( +ak

where a is the lattice constant of the fcc lattice, and
where the X- Y-Z axes used are those of Fig. 3. The
sublattice is triclinic. The volume occupied by the
sublattice is

a$ X2'~3

The primitive vectors in the reciprocal lattice are

II A

bt =2~ —a2 x a, = (I J+k), —
a Q

b2=27r —a3 xat = (2j)2 — — 2'
a3 a

27( ] ~ ] A

b3=2m —at xa2 = ( i ——j+———k)a3 Q 2 2 2

kg&a =—
3 K(0)J(J+1) (812) (C2)
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We find first Brillouin-zone boundaries in various
directions as follows. In the (1, 1, 1) direction 'we

find the zone boundary by showing first that
(7r/a)(l, I, 31 is a reciprocal lattice vector. This is
true if we have

(7r/~)(I +j —k') =m~bt +mzbz+m3b3

where the m; are integers. The equation is satisfied
by m ~

=0, m2 =0, m3 =—1. The first Brillouin-zone
boundary is halfway along this vector at
(7r/2a) (1, 1, I). In a similar way we show that the
Brillouin-zone boundary in the (I, 1, 1) direction is at
(vr/a)(1, 1, 1), in the (0, 1, 1) direction is at
(2vr/a) (0, I, 1), and in the (1,0, 0) direction is at
(2 '/a) (1,0, 0).
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