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We have obtained five terms in the high-temperature series expansion for the magnetic sus-
ceptibility for the singlet-triplet model, which has been used to represent, in a simplified ver-
sion, the cubic induced-moment systems such as fcc Pr, Pr3Tl, and TbSb. Our high-temperature
series is valid for an arbitrary energy splitting between the singlet level and the triplet level. It
also allows for arbitrary range of interaction and lattice geometry. The critical temperature as a
function of the crystal field to the exchange-interaction ratio is estimated for the three cubic lat-
tices of the nearest-neighbor interaction model. We show that the molecular-field predictions
are unacceptable for induced-moment sysiems with the crystal-field to the exchange-interaction
ratio near the critical value for magnetic ordering (at T =0) such as fcc Pr and Pr;TI.

I. INTRODUCTION

Crystal-field effects in magnetic systems have long
been recognized. Indeed, the existence of the elec-
trostatic crystalline potential can alter the magnetic
behavior of the system in a fundamental manner.
The most striking examples are the induced-moment
systems where the crystal-field ground state is a
singlet! or a nonmagnetic doublet.? In these com-
pounds the transition temperature depends crucially
on the ratio of the. crystal-field strength to the
exchange-interaction coupling. It has been shown
both theoretically and experimentally that magnetic
ordering would not exist, even at zero temperature,
for the crystal-field to exchange-interaction ratio
exceeding a critical value.! For higher values of
exchange-interaction, magnetic moments are induced
through a bootstrap process by mixing the excited
crystal-field states into the ground state, similar to
the occurrance of the Van Vleck paramagnetism.
However, for the induced-moment magnetism the
self-consistent exchange field takes the place of an
externally applied magnetic field.

There has been a tremendous interest in the
research of induced-moment systems in recent years.
Most notably, inelastic-neutron-scattering measure-
ments have been performed extensively in the study
of these systems and have provided a great deal of
information never attainable before; the neutron
scattering measurement not only finds the crystal-
field potential and the details of the exchange interac-
tions, but also detects directly the fluctuations of the
system. Today, in conjunction with measurements by
other techniques, the neutron data can generally pro-
vide a very accurate experimental description of a
magnetic system. The high accuracy of the experi-
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mental measurements in turn demands a more re-
fined theoretical treatment. This is the situation we
are experiencing in the study of rare-earth systems in
general, and in particular the induced-moment sys-
tems.

Perhaps the simplest induced-moment system is
the singlet-singlet model. There, each ion has a
singlet crystal-field ground state and a singlet excited
state separated by an energy gap. The exchange in-
teraction prevailing between each pair of ions gives
rise to a magnetic ordering at low temperatures for
values of the interaction exceeding a critical value.
The model provides a good approximation to TbAsOy,
and TbVO, for example; in these compounds a
cooperative Jahn-Teller structural phase transition at
a low temperature lowers the symmetry of the cry-
stals from tetragonal to orthorhombic and leaves a
pair of closely spaced low-lying singlet energy levels,
for each Tb ion, almost completely isolated from the
other energy levels.>* Because of the relative simpli-
city of the model, extensive theoretical study has
been invited.>~7 Most recently the high-temperature
series expansion has been carried out by several
research groups.” The dependence of critical tem-
perature on the crystal-field to exchange-interaction
ratio has been accurately determined, and shows a
gross inaccuracy of the molecular-field approxima-
tion.”

While the singlet-singlet model is most susceptible
to theoretical studies, very few physical systems of
such kind have been found and studied experimental-
ly. On the other hand most of the experimental work
on the induced-moment systems has been on dhcp
Pr, fcc Pr, Pr;Tl, Pr;_,La,Tl, and TbSb.8"'2 These
compounds, except the first one, all have a ground
singlet and a first excited triplet as the two lowest-
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lying crystal-field multiplets. A singlet-triplet model
is thus more appropriate for describing these systems.
Theoretical study of this model is rather limited. The
only work beyond the molecular-field approximation
(MFA) is a study of essentially the collective excita-
tions in the random phase approximation.>!* No
other physical quantities, including the critical tem-
perature and zero-temperature magnetic moment,
have been calculated beyond the MFA.

In this pair of papers (see following paper in this
issue) we first devote ourselves to obtain an accurate
estimate of the critical temperature for the singlet-
triplet model, employing a high-temperature series
expansion technique developed by Wang and Lee'*
for complicated level systems. This is the first at-
tempt to compute accurately the critical temperature
for the real magnetic systems with cubic crystal-field
potentials such as fcc Pr, PryTl, and TbSb. To allow
a discussion of the most interesting behavior ob-
served in PryT1 with small La dilution!! and in the
pure Pr;Tl under hydrostatic pressure!> most recently
reported, a calculation of the ground-state magnetic
moment in addition to the critical temperature is re-
quired. We shall discuss the results of the ground-
state moment calculation using the constant coupling
approximation in the second paper. A discussion of
the behavior of the ground-state moment and that of
the critical temperature near the onset of an
induced-moment magnetism will also be presented
and the relationship of these two physical quantities
shown.

The calculation on the singlet-triplet model is ex-
tremely valuable in the understanding of the behavior
of the induced-moment systems mentioned above.
For example, a dilemma with the molecular-field
theory is the inability to fit both the zero-temperature
moment and the critical temperature of Pr;T1 simul-
taneously with one exchange parameter. Further-
more, the molecular-field theory fails entirely in
describing the zero-temperature moment versus
critical-temperature behavior of Pr;T1 diluted with the
nonmagnetic La,!! or placed under hydrostatic pres-
sure!® (which also changes the crystal-field to the
exchange-interaction ratio). Our singlet-triplet model
calculation shows that the discrepancies between the
molecular-field theory predictions and the experimen-
tal observations come about simply because of the
failure of the molecular-field theory to take account
of (i) the correlations of fluctuations in calculating
the critical temperature, and (ii) the zero-point quan-
tum fluctuations in calculating the zero-temperature
moment. They can not be construed as evidence of
any inadequacy of the original Hamiltonian used to
describe these systems.

It should also be mentioned that the technique
developed in this work for the singlet-triplet model
can be readily applied to other systems such as the
J=2, % magnetic systems in cubic fields, or general-

ized to treat the nine-energy-level Pr>* problem.
While the basic theory of the high-temperature series
expansion has been given by Wang and Lee,'* a ma-
jor effort in this work is to develop computer algo-
rithms for computing the large number of terms.

We have obtained the first five coefficients in the
high-temperature series for the free energy and for
the susceptibility. Each coefficient is a function of
BA, where A is the crystal-field energy gap between
the singlet and the triplet and 8=1/kgT. Namely,
the susceptibility series is of the form .

ksTx=73,a,(8A)[BIO)]" , (1)

where J(0) is the exchange-interaction parameter.

We emphasize that the expansion is for an arbitrary
crystal-field strength. It also allows for an arbitrary
range of exchange interactions and lattice geometry.

We have used the standard ratio test technique to
estimate the critical-temperatures 7,. Explicit results
are given for the three cubic lattices with nearest-
neighbor-only exchange interactions. We find that”
for all three lattices, the uncertainties in our estimat-
ed T, are, in general, less than 4% and for the fcc,
the appropriate lattice for the induced-moment com-
pounds mentioned above, the uncertainty is less than
1%! The MFA results are also shown for compari-
son. We point out the total inadequacy of using the
MFA in the discussion of experimental results for an
induced-moment system with A/Jratio close to the
critical value for magnetic ordering, and that Pr3Tl is
just such a system.

In Sec. II, procedures for obtaining the high-
temperature series expansion will be given. The use
of a computer to evaluate the large number of terms
will be discussed. We have broken Sec. II into four
parts for easy reading. Section III is the conclusion.
There we shall discuss the application of the singlet-
triplet model results to the induced-moment com-
pound Pr;T1.

II. HIGH-TEMPERATURE SERIES EXPANSION

A. Formulation

We describe the induced-moment singlet-triplet
model in the context of a rare-earth system. The
Hamiltonian is

¥ = 2 Vei— %71/-7;'-7}—81#3/1 ;Jiz , (2
i

where V,; is the single-ion crystal-field potential
which gives a singlet ground state and a set of triply
degenerate excited states, separated by an energy gap
A. We assume that all other excited states are so far
remote in energy from this singlet-triplet manifold
that they can be ignored in our calculations. It is also
essential that there exists a nonvanishing matrix ele-
ment of J between the ground state and one of the
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states in the triplet in order to allow for the induced
moment to occur. The second term in the Hamil-
tonian describes the exchange interactions between
the ions. While the high-temperature series expan-
sion (HTSE) formulation described below allows for
anisotropic Heisenberg exchange interactions, we
shall only give results for the case of isotropic ex-
change interactions. We consider the situation of a
simple ferromagnetic ordering, such as that occurring
in Pr;Tl. We choose the z axis along the direction of
ordering, and the last term in the Hamiltonian shows
the Zeeman energy for an external-field 4 applied in
that direction.

For definiteness, we consider the Pr** ions in a cu-
bic crystal field. The ground-state |0). and the excit-
ed triplet states |1)., |2)., |3). for each ion are
given!® as linear combinations of eigenstates of JZ,
ie.,

00 = (&) "dat +1-ah+ (&) "0} . ®
|10y =2712(|4) - |—4]) @)
2.y =8712(| =3} +7'2(1)) , 5)
13cy =8712(|3) +7'2|-1}) , (6)

where |n} denotes the eigenstate of J? with J?=n.

It is seen that we have (0.|T|0.) =0, so the
crystal-field ground state is nonmagnetic. However,
the off-diagonal matrix element (0.]J%|1,) = (%0—)”2
can mix the crystal-field eigenstates through an ex-
change field and thus allow moments to occur. In
the molecular-field approximation the exchange
Hamiltonian is reduced to a sum of single-ion poten-
tials —29(0) (J% 3,,J7, and (J%) is then self-consis-
tently obtained. [Here, g(0) is the sum over i of the
exchange integral J;.] for A/J less than the critical
value, the system is found to undergo a second-order
phase transition as temperature is raised and reaches
the critical-temperature T., at which (J*) drops to
zero continuously.! The molecular-field value of 7,
is, however, too high.

In the high-temperature series expansion calcula-
tion which treats the single-ion potential exactly,'* we
first split the Hamiltonian into two parts. The
single-ion Hamiltonian 3, consists of the crystal-field
potential and the self-consistent molecular-field Ham-
iltonian; the perturbation part 3¢, describes the corre-
lations of the fluctuations

]

Ko=3, Vu—[290) (J?) +gushlJ
+4(0) (J3)? @)
and

Jey=— 39y Ut + Ui = (PN U= (T . (®)
i

JCy can be solved exactly. The molecular-field
eigenstates are‘then used as a basis to construct the
HTSE for 3¢;. We obtain the molecular-field eigen-
states

|0y =cos60,) +sin 6]1.) , ©)

[1) =—sin6[0,) +cosf|1.) , (10

2)=12) an
and

13y =13 . 12
where

tan26 =2ah,/A a3
and

a= 0|71y = (1.]70.) = (5”2

for Pr** in a cubic field. The molecular-field eigen-
energies are

211/2
A 2ohy, '
e0=7{1—1+ ‘Z ” ] (14)

21172

2ah,
el=-§—{1+ 1+ "‘TH ] , (15)
&=A-05h, , (16)
e&=A+0.5h,, amn
where

h,,,=g;Lgh +207(0)<Jz> . (18)

The molecular-field free energy per ion Fj is thus
given by

3
—BFy=In 3, exp (—Be,) — BI0) (J5)? . (19)
n=0 .
The corrections to Fj can be obtained by using the
standard finite-temperature perturbation theory for
the many-body systems.!”

—BAF='§)1 —(%)"j;ﬁdn ce j:)ﬁd-r,,(T,JC;(n) (7)) - - - ae(T))e ‘ (20)
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where 3¢, has been written in the interaction
representation with 3¢ as the unperturbed Hamiltoni-
an. The angular brackets denote the canonical ther-
mal average over ¥Co. The subscript ¢ denotes the
cumulant part of the 7-ordered product, or, in the di-
agrammatic analysis, the contribution of only the
connected diagrams. Equations (19) and (20) consist
of a HTSE of the free energy in powers of BJ, from
which other thermodynamic quantities can be ob-
tained. For example, the susceptibility is the nega-
tive of the second derivative of F with respect to the
external field.

B. Diagrammatic technique

To compute AF we need a method to evaluate the
thermal averages of the r-ordered products of angu-
lar momentum operators. A Wick-like theorem
which enables one to evaluate the product as a sum
of products of pairs—the unperturbed Green’s
functions—is highly desirable because it permits a di-
agrammatic representation of the perturbation series
and facilitates the computation. The method of
Vaks, Larkin, and Pikin!® is however, not applicable,
because the inclusion of the crystal-field potential in
the unperturbed Hamiltonian 3¢y destroys the simple
7 dependence of the angular momentum operators in
the interaction representation. A more general
scheme has been furnished by Yang and Wang!® re-
cently. They employed the standard basis operator?’
Ly, =|m) (n|, which transfers an ion from the nth
state to the mth state, in their formulation. (We shall
also call these operators L operators in later refer-
ence.) Because of the simple 7 dependence of the
operator L,,,(7) in the interaction representation a
Wick-like theorem can be derived. A diagrammatic
representation of the terms in the perturbation ex-
pansion has been developed.!® A price one has to
pay, however, is the effort in handling a greater
number of operators. A computer is, therefore, ex-
tremely valuable in this regard.

A diagram can be constructed with the "semi-
invariants" (T,J;*J# - - - ). and the exchange-
interaction lines connecting J7 Jj, or J* Jf. Di-
agrams so obtained will be called the main diagrams.
For the singlet-triplet model studied here there are
two second-order, four third-order, and eleven
fourth-order main diagrams. These are shown in Fig.
1 where the semi-invariant (T.J2Jf - - - J?), is
represented by an oval.

As discussed earlier, the semi-invariants (hereafter,
abbreviated as SI) are evaluated in the standard basis
operator representation. As a result, each SI in the
angular momentum operators is equal to a sum of
SI’s in the standard basis operators. In our model we
have

FIG. 1. Free energy "main diagrams" for the singlet-triplet
model (Pr3* in a cubic field). Each oval represents a semi-
invariant. J¢ is denoted by « and the wavy lines represent
the exchange interactions.

J*=Ag(Lyg+ Lo +Ago(Loo— L1y)

+An(Ly—Lyy) Q1
J*=ApLy+ApLly+ApLg+AL;; ., (22)
J =AnpLop+AnpLp+ApLyy+A;Ly . (23)

where the matrix elements are
Agpp=acos20, Ag=asin26, A,=0.5 ,
A =2"2(acosd —0.5sing) ,
A3 =-2"2(asin6 +0.5cosd) ,
A03=2'/2(acosa+0.5sin9) ,
A3=2Y2(0.5 cos6 — asin) .

To illustrate the evaluation of an SI, we calculate
(T.J*(7)J~(0)).. We obtain



2716 ' K. RAUCHWARGER, S. JAFAREY, AND YUNG-LI WANG 19

(TTJ+(T)J_(O)>E = ~—A32D02682 (T) “A 122D12Gf)2 (T) +A(§3D03G30[) (T) +A123D1363?1 (T) ) (24)

where we have evaluated each SI in the L operators in terms of the Green’s functions, i.e.,

D,e™ >0

Dye™, <0

(T, Lypp (7) Ly (0)) e = D, G, (7) =

where
€mn=€n—€,, Dy,=D, —D,
and

D, = e*BE"’/E e P
n

We can represent each Green’s function G2,(7) by a
line labeled by (nm) propagating from 0 to 7. D,,; is
a weight factor associated with the SI (T,L,,,(7)L,,,
(0)).. Therefore, the SI(T,J*(r)J7(0)), consists of
four SI’s in L operators, each of which is a Green’s
function with a weight factor. Appropriate matrix
elements, which occur in expressing the angular
momentum operators in terms of the L operators,
should also be multiplied to each SI of the L opera-
tors to reconstruct the original SI in the angular
momentum operators.

As discussed in Ref. (19), the diagrammatic
representation need not be unique and in fact is not
unique for an SI in the angular momentum opera-
tors, nor is it unique for an SI in the L operators.
The final results are, of course, equal. The differ-
ence in the appearance of the results is caused by
adopting a different operator to pair with the other
operators in the Wick reduction process. More de-
tails are given in Ref. (19). In this paper, we have
adopted the priority order for the operators in engag-
ing such pairing-reduction process in the order of
Loy, L1y, L3g, L3;. These operators all belong to the
angular momentum operator J~. In the higher-order
cases, Lg, may pair with L3y and the corresponding
commutator produces L3;, which belongs to (J7)2
We assign to such operators a higher priority over the
J~ operators. If there is more than one L operator of
(J7)? present, we assign a higher priority to the L,
with the smallest value of m, and if two operators
have the same value of m, then the one with smaller
value of » is assigned the higher priority. In the
presence of J?, we take Lg; to be "active" but assign a
lower priority to this operator in competition with the
operators of (J7)2 and J~. <

It is clear that a two point SI gives a single Green’s
function or a pair of isolated points, the latter being
the case with the diagonal operators L,,; e.g.,
(T:Lyy(7) L1 (0)) ., which is equal to D,8,,s — Dy Dy,
is represented by two points labeled m andn and circled
in an oval. The more general case of n operators

(25)

r

can have terms consisting of up to n —1 Green’s
functions; the diagonal operators can either be isolat-
ed points, as just shown, or scattering vertices. In
the latter case, a Green’s function will not change its
identity after scattering but may change the frequency
it carries. This occurs in the three point SI

(T:Lyo(1) Loa(79) Lyy(13)),

which consists of two terms after the Wick reduction,
as shown in Fig. 2(a) and 2(b); in Fig. 2(a) L,, has
not participated in the Wick reduction process but in
Fig. 2(b) it is a scattering vertex. In general, an SI
with more than two operators is represented by a
sum of more than one graph. Each graph shall be
called a sub-SI. For example, the two sub SI’s of

(T:Lyo(71) Loa(79) Lyp(73)) .

are shown in Fig. 2(a) and 2(b). The weight factors
associated with the two sub-SI’s are D, + D,Dy, and
Dy, respectively. They can be simply obtained by
applying the Wick reduction procedure to the 7-
ordered product until no operator except the diagonal
ones remains, then, taking the cumulant part of the
product as described by Yang and Wang.!?

The sub-SI's are the fundamental building blocks
for the more fundamental diagrams, the subdia-
grams—as we shall call them—to be distinguished
from the main-diagrams defined earlier. A main di-
agram in general is composed of a set of subdi-
agrams. For example, the second-order transverse
diagram Fig. 1 (2a) contains ten subdiagrams as
shown in Fig. 3(a) where the Green’s function lines
can be either G, G%, G, or G¥,. For the second-
order longitudinal diagram Fig. 1(2b), a total of four
different subdiagrams are obtained. They are shown
in Fig. 3(b), 3(c), and 3(d). Here the Green’s func-
tion line can only be G§; but can point in either
direction. The number of subdiagrams multiplies
quickly as we go on to higher orders. For example, if
we consider the main diagram shown in Fig. 1 (4e),
there are 34 different sub-SI’s. A subdiagram can be
constructed by using any two of such pieces (which
can be identical). Therefore, we obtain a total of 595
subdiagrams. There are, however, only 12 different
irreducible general structures for the diagrams.

These are shown in Fig. 4. For convenience of draw-
ing, we have shrunk each interaction line to a point
in the diagram. A definition of general structure is in
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(02) (2) (02) (2) (02)
————x O
: (

(a)

b)

'FIG. 2. Sub-semi-invariants of (T,Lyy(71) Lgy(7;) L33(73)).. (a) shows an isolated diagonal vertex and (b) shows a scattering

diagonal vertex.

order. Two diagrams are said to have the same gen-
eral structure if one can be reduced to the other after
omitting the energy arguments and the propagating
direction of all the Green’s functions in the two di-
agrams. An irreducible general structure is a general
structure which can not be separated into two general
structures by slicing through a point. The introduc-
tion of the irreducible general structure facilitates the
calculation of the diagrams as will be shown in the
Sec. I C. .

C. Evaluation of diagrams

Each subdiagram is evaluated in the Fourier space.
In the Fourier space each Green’s function carries a
frequency w; =2/wkgT (I being an integer), and con-
tributes a factor

G,S,, (w,) = "kB T(iw, - Em,,)_l »

which is the Fourier transform of GJ,(r). Each in-
teraction line carries a wave-vector @ and contributes

(a) (b)
(c) (d)

FIG. 3. Subdiagrams of the main diagrams 1(2a), 1(2b).
(a) gives ten different diagrams when the labels of the
Green’s functions are shown. In (¢) and (d) the Green’s
function lines are G§; but can propagate in either direction.

a factor BJ(q). The sum of frequencies at each ver-
tex of interaction is conserved, so is the sum of wave
vectors at each sub-SI site of a diagram. The evalua-
tion of a diagram involves summations over the fre-
quemcy and wave-vector variables. The former can
be accomplished by using Poisson’s summation for-
mula, while the latter depends on the geometry of
the lattice as well as the range of interactions.

As mentioned earlier in this section, the number of
subdiagrams has already become enormous even up
to the fourth order. A computer is indeed necessary
to assist in doing the bookkeeping and even in the
actual evaluations of the diagrams. We have written
a subroutine which produces analytic expressions of a
function f (e, €, €3,..., €,) for cases of two or more
of the parameters €, being equal. For example

f(€1, 62) = [n (€1) - n(ez)]/(él - Ez) ,

where n (e) is a Bose factor with energy e. The sub-
routine yields n'(e;) for an input of €; = ¢;; it replaces
€, by €, + 98, expands each quantity in powers of &
and obtains the limit at 8 —0. With the help of this
subroutine, we only need to provide analytic results
for a small number of frequency sums, one for each
irreducible general structure. They are calculated
with all energies of Green’s functions being different.
Up to the 4th order, the irreducible general structures

0@
AN
IASRY
AAY

FIG. 4. Irreducible general structures. These are the ones
for which frequency sums are calculated manually. They are
used as inputs for the computer <alculations of frequency

sums of all diagrams up to the fourth order.
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shown in Fig. 4 are the only ones which appear,
although the total number of different diagrams
when the arguments of the Green’s functions are put
back exceeds 3000. The computer generates analytic
results for each subdiagram and stores them in a file.
The result of the frequency sum of each subdiagram
is then multiplied by the weight factors of the sub-
SI’s which have been used to construct the diagram.
A counting factor is also multiplied to each subdi-
agram. The counting factor for an nth-order diagram
is P/n!, P being the number of topologically distinct
diagrams obtainable by permuting the indices of the
diagram. Finally, the result is multiplied to the
wave-vector sum, a lattice sum, which depends only
on the main diagram to which the subdiagram be-
longs. ) :

The contribution of a main diagram is the sum of
the subdiagram properly weighted by the matrix ele-
ments, which occurred when the standard basis
representation was used for each angular momentum
operator as shown in Egs. (21) — (23). The final
result of a diagram is a function of a set of basic
quantities, D, €,, derivatives of D,, and the matrix
elements 4,,,. The function is extremely complex
and lengthy. To compute the susceptibility, the
second derivative of this function with respect to the
external field evaluated in the zero-field limit is re-
quired. To make the calculation feasible, we expand
from the outset, each basic quantity, involved.in the
later calculations, in a power series of A,. It has
been found necessary to keep terms in each power
series up to the eighth power, because in the process
of calculation, quantities in 4,,® may occur. Itis a
simple matter for a computer to perform the addition
or multiplication of two power series. The total
number of operations, though manageable by a com-
puter, is enormous. We also note that in this pro-
cedure the computation is carried out for each fixed
value of BA, starting each time from the basic quanti-
ties. As will be shown later, in the determination of
T, it is the value of A/J we hold fixed, and values of
a diagram for a continuous spectrum of values of SA
are needed for such purpose. The precedure above is
too costly for computing for a large number of
points.

It is possible, however, to obtain the free energy in
power series of h, with coefficients as functions of
BA analytically. We represent each basic quantity in
the form

S b (BA) " (1 +30) (1 — 1),

with ¢t =exp (—BA). rand s are a set of fixed
numbers for each basic quantity, and m, n vary from
zero to some finite numbers. b, is then a two-
dimensionalﬁarray. But noticing that the whole ex-
pression here is a coefficient in the power series of
Ry bmn is in fact a three-dimensional array 5,

mn »

where p is the power of A, in the series. An analytic
expression for the coefficients in the power series of
h,, for the free energy can be written

1 +30)7" 3 Cpn(BA) ™" .

Here, again r is a fixed number. The denominator
(1 —#)* which appears in the basic quantities has been
canceled by factors in the ¢ series in the numerator.
We present the results of such calculation in Table
II. We only show the second derivative of the free
energy contribution with respect to h,, at A, =0. The
magnetic susceptibility is related to this derivative in
a simple way. We have

X,
X=T250)x. (26)
with
__¥F
Xe = anl 27

In Table I we have grouped the diagrams of a com-
mon lattice sum (wave-vector sum) together,?! and
we have only carried out such calculation to the third
order. The fourth-order calculation with the three-
dimensional arrays would take a large memory space
in the computer. Since we had planned to stop at the
fourth order, only a finite number of points at this
order with fixed values of BA are needed (instead of
a continuous spectrum) for the estimation of 7,. We
have computed the fourth-order terms numerically
for a selection of values of BA. The results are
shown in Table II where again only terms for X, are
presented and diagrams of a common lattice sum are
grouped.

D. Series analysis and determination of T,

We have obtained five terms in the HTSE of the
susceptibility. The first two terms can be found from
the MFA, the other three terms are obtained as dis-
cussed above. The result is valid for arbitrary values
of A/Jratio, that is for an arbitrary strength of the
crystal-field potential. The series is also for a general
lattice and a general exchange interaction, since the
lattice sums-are computed separately.

Using the data in Tables I and II we construct the
power series of X.,

kgTX. =3, C,(BA) [BI(D]" , (28)
where
400 -0 !
Co= 3(BA) (1 +31) T3a+30 @9
Cy=byRy , (30)

Cy=b3R31+b3R; , 3D
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Ci=byRy +byuRy+byRay+buR (32)

Here by, b31, b3, are given in Table I and by, b4,
b4s in Table II. The lattice sums are

Ra =’1A7 23%8’ ' (33)
R“=LNEOZ% ’ (4)
PRSI ICU .
Ramy 25 (36)
Re= ",\172‘ 57 (K')g((;i)z:)(m ta) (7

In the case of nearest-neighbor-only interaction,
these sums reduce to, for the three cubic lattices (sc,
bee, fee), :

Ry

’

1L
8§’ 12

I
)=

S U
Ru=3% % a

R 5
727 512 7 192
1 1 1
Ru=35 53 T8 -

R41

2719

It is a simple matter to relate the coefficients of the
power series of X. and X. We find

ag=Co , 39)
a;=2C¢ , (40)
a,=4C3 +C, , (41)
a;=8C¢ +4CoC,+C3 (42)
as=16C§ +12C¢C,+4CoC3+Cy . (43)

The critical temperature is determined by the con-
dition X — oo, that is when the series diverges. Ap-
plying the ratio test to the series, we locate the criti-
cal temperature. We have -

a, kB Tc

~ g(0)

For a series with only a finite number of terms
known, we can only estimate the value of T. by ex-
trapolation. We define

kB Tc(") - ay, (Bc A)
07(0) a,, —-1(B¢‘A)

With the first five terms known in our series, we can
find 7, for n =1 through 4 for a fixed value of
A/g(0) ratio. We note that T,V is simply the critical
temperature given by the MFA. If we plot 7.’ vs
1/n we obtain four points. An estimate of 7, which
is the critical temperature given by Eq. (44), can usu-
ally be obtained by an appropriate extrapolation. The

lim

n—oo Ay

(44)

(45)

Coefficients used to construct C, and C3, Eq. (30) and Eq. (31); be=(1+307" 2,,,,,, C,,,,,(BA)‘m .

TABLE L.
m r CmO le Cm2 Cm3 Cm4
0 3 0.0 44.444444444 —133.14583333 —0.6875000000
by 1 3 0.0 —5222.9629630 13075.555556 233.33333333
2 3 0.0 —546.66666667 —28188.148148 0.0
3 3 —9570.3703704 35539.259259 —13632.592593 —12336.296296
0 4 0.0 197.53086420 . —1580.2469136 —592.38425926 —0.6250000000
1 4 0.0 —43917.695473 91315.349794 53555.802469 103.33333333
by 2 4 0.0 —262011.52263 —471624.60905 —821602.96296 —3831.8518519
’ 3 4 0.0 13339.917695 —128434.73251 130146.17284 —15051.358025
4 4 —121744.85597 1422801.6461 —1892161.3169 2897.1193416 588207.40741
0 4 0.0 0.0 —88.847222222 88.576388889 0.6875000000
1 4 0.0 —88.888888889 24558.148148 —1827.4074074 —781.11111111
by, 2 4 0.0 14907.777778 —1550367.5926 —679354.56790 3206.4814814
3 4 0.0 1363651.1111 4283022.3457 —2480339.2593 —269688.27160
4 4 180390.12346 —3470857.6543 2813504.3210 1167357.9012 —690394.69136
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TABLE II. Coefficients used to construct C4 [Eq. (32)] for a selection of values of BA.

BA byy by, bs3 baq
1.5 —2.61175 x 10* 4.24365 x 10* —3.49116 x 104 9.35949 x 10*
2.0 —2.46217 x 10* 4.01603 x 104 ~2.96218 x 104 8.87712 x 104
3.0 —1.29474 x 10* 2.05162 x 10* —2.08060 x 10* 4.62329 x 10*
3.5 —8.02176 x 103 1.25018 x 10* ~1.00535 x 10* 2.86400 x 10
4.0 —4.74612 x 103 7.33068x 103 —5.86927 x 103 1.71066 x 10*
45 —2.76323 x 10° 4.28010 x 103 ~3.42775 x 10° 1.01705 x 10*
5.0 —1.61533 x 103 2.54254 x 10 —2.04466 x 10° 6.13874 x 103
6.0 —5.85509 x 102 9.83965 x 102 —8.02531 x 102 2.42819 x 10
8.0 —1.09563 x 102 2.17524 x 102 —1.81614 x 102 5.43259 x 102
9.0 —5.63932 x 10! 1.18867 x 102 ~9.97884 x 10! 2.96768 x 102

10.0 —3.17903 x 10! 6.96539 x 10! —5.86405 x 10! 1.73744 x 102

deviations of the points from being on a straight line
provide a measure of the uncertainty in the value of
T. so obtained. Before we show such a plot, we
should note that the coefficients of the power series
are functions of BA, thus 7, is most easily obtained
from Egs. (44) and (45) with a fixed value of BA.
We, however, are interested in 7. as a function of
A/g. This goal can be achieved by solving Eq. (45)
for T.{"/g using the Newton-Raphson iteration
method for a fixed value of A/J. The procedure,
then, requires the values of the coefficients a,(8A)
known for all BA, instead of a set of discrete values
of the quantity as is the case with the fourth-order
coefficients. To make use of the fourth-order coeffi-
cients, which are known only for a selective set of
values of BA, we first use Eq. (45) to obtain T.¥/g
for each value of BA. We then multiply T./9 to BA
to find the corresponding value of A/g. With this
value of A/ fixed T /g for n =1-3 can be found
by the Newton-Raphson method.

We have obtained T (n =1 to 4) for an fcc lat-
tice with nearest-neighbor-only exchange interaction,
and found that the points of T, except the first
one (MFA), all lie very well on a straight line in the
1/n plot. Several representative cases are shown in
Fig. 5. We note that there is a small deviation of the
points from a straight line as the critical value of A/
ratio is approached. Generally speaking a straight .
line can be drawn through the points after ignoring
TV, Happily, this is the case relevant to Pr;T1 and
fcc Pr, where the Pr’* ions are situated in an fcc lat-
tice.

The critical temperatures estimated by extrapolating
the straight line, joining 7.¥ and T,%), to the 1/n =0
axis are shown as a continuous curve in the plot of
kgT. vs A in Fig. 6. Both kg7, and A are measured
in the unit of J(0) a®. The extrapolation of the line
joining T2 and T locates the critical temperatures
shown in the closed circles. Because the fourth-order

coefficients are known for a finite number of A
values, a curve can not be constructed. We also note
that generally in the T vs 1/n plot, T.(n) oscillate
about the straight line through the points of high ord-
ers (i.e., for large n); the deviation of T from the
straight line becomes smaller as #n increases. There-
fore, an extrapolation of the straight line joining 7.?
and T is believed to give a better estimation than
by extrapolating the line joining 7. and 7. For
an fcc lattice the difference is very minute as expect-
ed from the fact that T?, T.¥ and T, are almost
on a straight line. That this is indeed the case is
shown in Fig. 6, where the 72 — 7.’ points (closed
circles) deviate from the T2 — T.® curve by less

| 25 | T
100\1.5?
kgldm
Yza? 303
3.19
0.75+ 331 -
fcc 3.49
0.50} -
| 1 1
1 1 1
’ zZ 33 °

/N

FIG. 5. T™ vs 1/n plot for an fcc lattice. Each curve is la-
beled by the value of A/9za?.
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than 1%. While it is difficult to measure the uncer-
tainty in the extrapolated value from a short series,
based on the general behavior observed in the long
series expansion for the simple Heisenberg and Ising
systems we estimate the uncertainty involved in our
estimated T, to be about 1%. The MFA prediction is
also plotted in Fig. 6 for comparison. A gross
overestimation in the MFA is not unexpected.

We also present results for the simple cubic and
body-center cubic lattices with nearest-neighbor-only
exchange interaction. The T" vs 1/n plot for each
of the lattices shows the familiar oscillation behavior.
Some representative cases are shown in Figs. 7 and 8.
The estimated values of T, as a function of A are
shown in Fig. 9 for sc and in Fig. 10 for bcc. The
HTSE curve in each figure is obtained by an extrapo-
lation of the line joining T.” and T, and the closed
circles by the line joining 7.2 and 7). The values.
from the two estimates can differ by 4% because of
this oscillatory behavior of T\. The estimates from
the 7.2 — T® line should be more accurate and the
uncertainty in the values should be about 4%.

III. CONCLUSION

As discussed in Sec. I, the motivation of this
work is to develop an accurate method for com-
puting the critical temperatures of the induced mo-
ment systems such as Pr3Tl, fcc Pr, and TbSb. The
circumstance is that experimental measurements
have achieved such a high accuracy that the MFA —
the only theory which has been applied to such

lep MFA - —— 7= =

1.0

<}

~ 0.8

el
<

HTSE

Fa 061 Singlet-Triplet Model (Pr)
= Heisenberg Interaction
0.4 )
fcc Lattice —_—

02k fa ;4
i

! L | 1 L
O 05 10 15 20 25 30 35 4.0
A/Yza?

l
|
|
!

FIG. 6. Variation of the critical temperature with the
crystal-field to the exchange-interaction ratio for a nearest-
neighbor interaction model with an fcc lattice. The solid line
is an estimate from the extrapolation of the line joining TC(Z)
and TC(”. The solid circles are estimates from the

T — T@ extrapolations, which are the most accurate esti-
mates that we can obtain in this calculation. The dashed
line shows the MFA values.

T T T
1.25
1.00} 1.43 ]
kBTén) 075 | 276 -
e 3.03
Y za 3.11
0.50 s C 322 -
0.25+ -
1 1
O.OO1 T 5
1/n 2 3 4

FIG. 7. T™ vs 1/n plot for an sc lattice. Each curve is la-
beled by the value of AfJzal. '

systems—has become totally inadequate. As a first
attempt to solve the whole problem, we focus our at-
tention on the singlet-triplet model which has been
used as a simplified version to describe these sys-
tems. We have obtained five terms in the HTSE for

_ the free energy and for the susceptibility. The results

are for an arbitrary lattice and range of interaction,
and are valid for an arbitrary strength of the crystal-
field potential. The critical temperatures are estimat-
ed for the nearest-neighbor-interaction model for the
three cubic lattices. The fcc lattice calculation, which
is appropriate for the induced-moment compounds
mentioned above, shows that the estimated values

1.25 -

1.00

kBTc(n) 0.75

‘Bzaz
0.50

0.25} -

0.00 ! L1
\ L1
2 3 4

1/Nn

FIG. 8. l'c(") vs 1/n plot for a bec lattice. Each curve is la-
beled by the value of A/Jza?.
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o

3 08F _ , . N
> Singlet- Triplet Model (Pr) 5 \
}_()0.6— Heisenberg Interaction

[1s] .

< 4| SC Lattice i

(@)
N
T
B
g

|

|

=T, l

| [ 1 1 I 1 l
O 05 10 1.5 20 25 30 35 4.0

A/Yza?

FIG. 9. Same as Fig. 6 but for an sc lattice. Very close to
the critical value for ordering the 7,2 — T® extrapolation
shows anomalous behavior. These few points have been
dropped from the figure.

for T, should be within 1% from the exact values.
This is to be compared with the MFA result which is
only qualitatively correct.

It is of interest to deduce the exchange-interaction
parameter from the measured values of the crystal-
field energy splitting A (between the singlet and the
triplet) and the critical temperature 7.. This can be
simply done in Fig. 6, where 7./Jis shown to vary
with A/g. We first locate a point (1,7,./A) on the fig-
ure, the intercept of the straight line, drawn from the
origin to this point, with-the curve then allows us to
determine the value of 9za? (where o?=20/3 and
z=12). We recall that the curve was calculated for
Pr3* and is applicable to the cubic Pr compounds
only. For Pr3Tl, A=77 °K and T.=12 °K, we find
that § =0.28 °K. The MFA value for g is 0.24 °K
and is about 15% too low. On the other hand, taking
the correct value of g=0.28 °K, MFA predicts
T. =25 °K which is twice the actual 7! This is be-
cause the value of A/J for PriTl is quite close to the
critical value (A/J being 0.95 times the critical value).
We should recall that the above analysis is based on
the singlet-triplet model, and the higher-lying excited
states may have non-negligible effect as seen in the
MFA analysis.? It is also important to note that Pr;Tl
unlike fcc Pr has actually a more complicated struc-
ture. In fact, each Pr ion has four Tl nearest neigh-
bors and eight Pr nearest neighbors arranged as on an
fcc lattice. The neutron work on the powdered sam-
ples does not yield full information for the range of
the exchange interaction which presumably extends
to second and third nearest neighbors or farther.

Due to the lack of detailed information about J(q),
we have chosen the fcc nearest-neighbor interaction
model in our discussion. An important point we wish
to make here is that for systems, like Pr;Tl, with the

1.2k . M/FA/,/"**\\ 4

s o HTsE A

» 08 N
O i “Tri \

:m 0.6 Singlet-Triplet Model (Pr) |

Heisenberg Interaction
0.4 bcc Lattice

0.2 IA 4
! I 1 ! | F'l I

05 10 15 20 25 30 35 40
A/Yza?

T

FIG. 10. Same.as Fig. 6 but for a bcc lattice.

A/Jratio close to the critical value, T, calculated in
the MFA (with g determined in other measurements)
can be off by a tremendous amount when compared to
the measured value. ]

To determine the ratio A/g of an induced-moment
system, one can also resort to the measurements of
the low-temperature moment (extrapolating to zero
temperature). The ground-state moment can be sim-
ply calculated in the MFA. However, the effects of
zero-point fluctuations are entirely ignored in the ap-
proximation and the validity of the result is in serious
doubt, especially for values of A/Jclose to the critical
value for ordering as in the case of Pr;Tl. It is there-
fore important to perform a more accurate calculation
for the ground-state moment in order to discuss the
behavior of Pr;Tl, or other systems with the A/g ratio
close to the critical value. This will be the subject of
the second paper which follows. We also postpone
our discussion of the behavior observed in Pr;T1 di-
luted with La and that in Pr3T1 under a hydrostatic
pressure until a more accurate ground-state moment
is obtained in the second paper.

We are currently extending the present HTSE cal-
culation to compute the critical temperature of fer-
romagnets of J =2 and % in a cubic crystal field of

arbitrary strength. To generalize the present formu-
lation for the antiferromagnetic systems is also of im-
mediate interest.
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