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C. A. Gearhart, Jr.' and W. Zimmermann, Jr.
Tate Laboratory of Physics, University of Minnesota

Minneapolis, Minnesota 55455
' (Received 13 November 1978)

Values of the concentration susceptibility (Bx/85) T p of liquid He/ He mixtures have been

determined near the lambda curve and tricritical point from measurements of the differential

osmotic pressure as a function of temperature T at four values of the 3He mole fraction,
x =0.594, x =0.644, x =0.680, and x =0.706. Here 6 = p,3

—p4 is the difference between molar
I

chemical potentials and P is the pressure. Our results for the two values of x less than the tri-

critical value x, =0.675 show pronounced peaks at the lambda transition. For 3 x 10 4 ( ~t(

& 10, where ( equals [T—T„(x)]/T„(x), these peaks may be characterized both above

and below the transition by the form (A+/n+)(~ t
~

——1) +B+, with exponents a+ lying in

the range from -0.0 to -0.2. Except perhaps for x & x, in the normal-fluid region away from

the lambda transition, our data appear to be consistent with a simple. tricritical scaling relation-.

ship of the form

1

Bx

,
~~, T,~

T Tt X Xl=f(x)= '
T, x,

where f and = are functions determined by experiment and T, =0.867 K is the tricritical value

of T. With the aid of this scaling relationship, the behavior of (Bx/84) T p along curves of con-

stant 5 near the lambda curve has been constructed from our data at constant x.

I. INTRODUCTION

Tricritical points have recently attracted much ex-
perimental and theoretical interest. ' The tricritical
point in 'He/ He mixtures is a particularly suitable
one for study, in view of the ease of obtaining pure
and homogeneous samples. Experiments on the
thermodynamic behavior of the mixtures near the tri-
critical point include capacitance and optical
measurements of the density along the two branches
of the phase-separation curve, optical measurements
of the interfacial tension between the phases coexist-
ing along those branches, ' measurements of the
molar specific heat cp„at constant pressure I' and
He mole fraction x,"second-sound measurements

of the superfluid density, 9 capacitance measurements
of the gravitational variation of x with height at vari-
ous pressures, '0 and measurements of the concentra-
tion susceptibility (t)x/t)5) r p by means of vapor pres-
sure, "' light-scattering, ' and capacitive gravita-
tional concentration gradient""' measurements.
Here 4 is the difference p,3

—p,4 between molar chem-
ical potentials and T is the absolute temperature. In
addition, several experiments have been performed

which deal with dynamic effects near the tricritical
point. " '

The quantity (t)x/t)d) r p is analogous in T, 5 space
(at constant P) to the quantity (t)u/t)P) r, where u is
the molar volume, for a pure fluid in T,P space. It is
of particular importance because of the information
that it contains about the relation between the vari-
ables T, x, and 4. We report here determinations of
(t)x/'t)h) r p from measurements of the differential
osmotic pressure at saturated vapor pressure. The
range of these measurements is shown by the vertical
lines in the phase diagram of Fig. 1. We have been
especially interested in the lambda transition, ~here,
contrary to the vapor-pressure and light-scattering
results, our data show a pronounced peak. The re-
cent gravitational concentration gradient results con-
firm the existence of this peak. "' A more detailed
account of our work than is presented in this paper
may be found in the Ph.D. thesis of one of us
(C.A.G.) .2'

The thermodynamics underlying our determination
of (t)x/t)5) r p from differential osmotic pressure
measurements may be based on the fundamental dif-
ferential
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dg = —s dr + v dP + 5 dx

where g =x@3+(1—x)@4=p4+xh is the Gibbs free
energy per mole, s is the entropy per mole, and v is
the molar volume. We seek the derivative
(BP/Bx) T ~, which may be evaluated as follows:

BP (Bi 4/Bx) T,p

Bx T, p4 (Bp4/BP) T„

uniform p,4 to be established between the chambers
at uniform T, a difference Ax =xi —x„ in 3He mole
fraction between the chambers will be accompanied
by a pressure difference AP = PI —P„which will be
approximated by the relationship

hP = (BP/Bx) T ~ hx

Hence, by measuring AP in relation to Ax we may
determine (Bx/Bh) T p through the relationship

(Bg/Bx), p —a —x(BE/Bx), p

(Bg /BP) T„x(BA—/BP) T„

x (Bh/Bx) T p

v x(B'U/Bx) T p U4
~

Bx

Bx
1

x 9P ' x AP,
'U4 ()x T, p4 v4 Ax

II. EXPERiMENTAL APPARATUS

(4)

where ~4 is the partial molar volume.
The experiment involves an isothermal cell with

two chambers connected by a superleak as shown
schematically in Fig. 2. When the superleak is func-
tioning so as to permit osmotic equilibrium involving

The experimental cell, shown to scale in Fig. 3,
was located at the lower end of a cryostat of conven-
tional design with pumped 4He and 3He stages. The
interior of the cell body, which was made primarily of
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FIG. 1. Phase diagram of 3He/4He mixtures at saturated vapor pressure near the tricritical point. The vertical dashed lines
show the regions in which osmotic pressure data were recorded. The horizontal dashed lines show the regions involved in the
scaling plot for (—js/9T)p„of Fig. 11.
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two pieces of high-purity copper, was divided into
two chambers by a taut 25-p, m-thick stainless-steel
membrane supported by a stainless-steel ring to
which it was welded. An electrically insulated back

FIG. 2. Schematic drawing of the experimental cell and fill

capillaries. The symbols are explained in the text as needed.

plate, separated from the membrane by a 6-p, m-thick
Mylar film, was pressed against it to form a capacitive
differential-pressure transducer. The open spaces
within the chambers, the main parts of which each
had heights of -2 mm, were filled with OFHC
copper felt compressed to -50'/0 open volume to
improve thermal homogeneity within each chamber.
The open volume of each chamber was -1.0 cm'.

The two chambers of the cell were connected by a
superleak located outside the cell at about the same
height as the chambers. It consisted of a 15—20 mm
length of 1.0-mm-diameter porous Vycor rod,
sealed into a high-purity copper bushing with epoxy
glue. At room temperature, with helium gas at a
pressure of 1.0 & 10' Pa on one side and vacuum on
the other, the flow rate through the superleak was
-3 x10 "mole/sec.

Essential to the performance of the experiment was
the fact that the superleak enabled osmotic equilibri-
um of the 4He component to be established between
the chambers not only in the superfluid region of the
phase diagram for the bulk liquid but also in a por-
tion of the normal-fluid region near the ) curve for
x &0.55, the tricritical point, and the He-rich branch
of the phase-separation curve. We believe that this
remarkable conduction of 4He by the superleak is due
to the phenomenon of wall-film superfluidity. ""At
the same time, the superleak prevented any appreci-
able flow of He from taking place, except possibly
under some puzzling circumstances mentioned in
Sec. III.

Each chamber had a separate fill capillary which led
to its own valve at the flange at 4.2 K located at the

FILL CAPILLARIES OSMOTIC PRESSURE
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FIG. 3, Scale drawing of the experimental cell.
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top of the vacuum can in which the pumped He and
3He stages and the cell were located. During an ex-
periment the chambers were filled so that the sur-
faces of the liquid stood above the cell in these capil-
laries as depicted in Fig. 2. Osmotic pressure dif-
ferences between the chambers were accompanied by
level differences between capillaries. In order to
maintain the liquid in these capillaries at the tempera-
ture of the cell, stainless-steel "standpipe" capillaries
were soldered to a high-purity copper post 4.8 mrn in
diameter which extended a distance of 220 mm up
from the cell, on which it was mounted, through
open wells in the 'He and He pots. These capillaries
had internal diameters of 0.15 mm, chosen to be as
small as possible and yet able to accommodate the
thermal expansion of the liquid in the chambers.

The connections between the tops of the stand-
pipes and the valves appeared to be the source of
serious instabilities and oscillations in the osmotic
pressure difference. Although no single arrangement
was entirely satisfactory, the following arrangement
was used successfully during much of the work.
Short lengths of 0.10-mm-internal-diameter cupro-
nickel tubing partially filled with 0.08-mm-diameter
stainless-steel wire connected the standpipes to the
valves. Roughly midway along their lengths these
capillaries were thermally linked to the 4He pot. This
arrangement appeared to be free from the variations
mentioned above as long as the temperature of the
4He pot remained above the cell temperature.

The differential pressure transducer formed the
capacitive part of the tank circuit of a low-tem-
perature rf oscillator using a G.E. BD-4 back
diode. The oscillator frequency was -13 MHz,
and its long-term stability was a few parts in 10'.
The signal from the oscillator was amplified at room
temperature and fed directly to a frequency counter, 3

with associated digital-to-analog converter ' and a
chart recorder for monitoring the stability and the
approach to equilibrium of the osmotic pressure.

The differential-pressure transducer was initially
calibrated at low temperature with the superleak re-
moved. After the variation of the empty-cell fre-
quency with temperature was measured, the lower
chamber was partially filled with 4He, and the calibra-
tion was carried out using the known relationship
between the vapor pressure of He and temperature. '
The relationship between frequency and pressure was
found to be quite linear up to at least 4 kPa, well
above the largest osmotic pressure differences meas-
ured. The sensitivity of the pressure measuring sys-
tem was -200 Hz/Pa. This sensitivity was checked
from time to time with the superleak in place by par-
tially filling the lower chamber with a 'He/'He mix-
ture well above the superfluid onset temperature
while the upper chamber remained empty. Here we
used the vapor pressure data of Sydoriak and
Roberts' in connection with the T 62 'He scale of

temperature. '
The pumped 4He pot was normally operated at its

minimum temperature of -1.1 K and the 'He pot at
its minimum of -0.5 K. The cell was thermally con-
nected to the 'He pot with a weak link so that it
could be regulated at operating temperatures near
1K with a power of -5 p,% applied to an electrical
heater on the cell. The cell was equipped with two
germanium resistance thermometers. One, a Cryocal
Model CR-500, was used in a conventional three-
wire ac bridge circuit with feedback to the cell heater
to regulate the cell temperature to within a range of a
few p,K over periods up to 1 h. The other, an An-
donian Cryogenics CG-1, ' was used in a highly
stable and sensitive ac bridge circuit employing a ratio
transformer and a low-temperature reference resis-
tor" to measure the relative cell temperature to
within several p,K.'9 The resistance thermometers
were calibrated between 0.6 and 1.6 K against the
T 62 'He scale of temperature" to —+1 mK using
a 3He vapor pressure bulb partially filled with copper
felt located directly on the experimental cell.

III. EXPERIMENTAL PROCEDURES AND RESULTS

and that the equation of the He-rich branch of the
phase-separation curve near the tricriticai point is

x +(T) =x, —(0.6633 K ')(T —T)

+ (0.4120 K ) (T —Tf) (6)

These equations were derived from the work of Al-
vesalo, Berglund, Islander, Pickett, and Zimmer-
mann' with adjustments close to the tricritical point
as suggested by the analysis of gravitational effects by
Watts and Webb. " The values of the A. or phase-
separation temperatures for our samples together
with the resulting mole fractions are listed in Table I.

For each of the four runs at low temperature with
a given average mole fraction, several series of data
were recorded for several values of the difference
4x =x~ —x„between the mole fraction xi in the lower
chamber and x„ in the upper. These values of hx

'He/ Hc; mixtures were prepared at four different
values of the He mole fraction x near the tricritical
value x, by mixing pure He and He gases at room
temperature. In order to allow for possible fractiona-
tion of the samples during the initial condensation
into the cell or in subsequent adjustments of the
chamber fillings, the mole fractions of the condensed
samples were determined by reference to the ob-
served A. or phase-separation temperatures. For this
work it was assumed that the tricritical values of T
and x are T, =0.867 K and x, =0.675, ' that the
equation of th*e A. curve near the tricritical point is

x,(T) =x, —(0.4082 K ')(T —T,)
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TABLE I. Parameters of the four mixtures studied.

1.067
0.944 (0.856—0,859)'

0.860{0.863)
0,821 (0.824) b

0.594
0.644

0 680{0678
0.706(0.704)b

'Range of uncertainty.
"The two values listed represent a range of uncertainty.

Ho~ever, the first number is the most likely value of the

quantity tabulated.

were comparable to or less than 10 in magnitude
and of both signs, and were achieved and changed by
withdrawing small amounts of sample from one
chamber and adding compensating amounts to the
other. We could not determine in any direct way the
small values of Ax that were used, and consequently
we were obliged to normalize our results for
(ax/ak) r p to external data in a manner to be de-
scribed in Sec. IV. Once the normalization was estab-
lished it was possible to estimate the values of hx
for which the data had been recorded.

We were careful during the filling of the cell and
the adjustments of 4x to ensure that the liquid sur-
faces would remain in the standpipe throughout the
measurements as thermal expansion and contraction
of the sample occurred. The two chambers were
filled one at a time above the superleak onset tem-
perature, and the differential-pressure transducer was
used to estimate the positions of the liquid surfaces
in the standpipes at each step.

Frequency readings from the differential-pressure
transducer were recorded at discrete temperature in-

tervals, with intervals of 50 p,K being used near T&.

The use of smaller intervals revealed no further de-
tail. The time required to reach equilibrium after a
temperature change ranged from 10 or 15 min to 1 or
2 h, depending on the magnitude of bx, the size of
the temperature change, and on the location of the
sample in the phase diagram. The equilibration time
became particularly long near the onset temperature
of the superleak.

Data recorded over periods of several days both
warming and cooling were quite consistent and repro-
ducible, with the exception of long-term drift which
occurred in the runs with x =0.644, 0.6SO, and
x =0.706 during a single prolonged operation of the
apparatus at low temperature. At x =0.644 this drift
was seen only in the normal-fluid region. Although
we do not understand the source of this drift, our ob-
servations when drift was present were consistent
with a model assuming that ~d,x

~
decreased at a time

rate proportional to ~hP~. Our frequency data were
corrected for drift in accord with this model. The
drift occurring in a 12-h period corresponded to a
change in 4x of as much as 10%.

When several series of data for different values of
6x at a given average value of x & x, were compared,
it was noted that the temperatures of the extrema in
frequency at the A, point sometimes differed. We be-
lieve that this effect was due at least in part to slight
changes in the average value of x which occurred
when 4x was changed. In order to correct for this ef-
fect, the temperature scales of some of the series
were adjusted to make the extrema coincide. This
procedure was not entirely justified, since nonzero hx
and gravitational rounding effects could also have
contributed to such temperature shifts. However, the
maximum shift applied to any of the series from
which the concentration susceptibilities presented
here were derived was 70 p,K, a rather small amount
in comparison to our resolution.

An example of our frequency-versus-temperature
data for one value of x, corrected for drift and tem-
perature, is shown in Fig. 4. Herc the bulk of thc
data recorded for x =0.644 for five different values
of hx is presented. One value of hx is very near
zero. Then there are two series with small 4x values
of both signs and two series with large hx values of
both signs. The cusped features correspond to the A.

transition. In this figure the relative frequency at a
given temperature is the observed frequency minus
the empty-cell frequency at the same temperature
minus an arbitrary constant chosen to yield a con-
venient range of values. It must be kept in mind that
because the sample in the upper chamber constituted
the dielectric of the capacitor, the empty-cell frequen-
cy does not provide a suitable zero-pressure reference
level and that there undoubtedly remains some addi-
tional extraneous temperature dependence common
to all of the series in Fig. 4. We shall discuss our
correction for this effect in Sec. IV.

The limits of our resolution are illustrated in Fig. 5

where, for each of the two values of x & x, studied,

the details of a series with a small value of Ax are

shown near the A. transition. The X anomaly for

x =0.594 is considerably sharper than that for

x =0.644, even though the b,x values are almost the

same. However, as we shall discuss in Sec. V, gravi-

tational broadening effects should have been larger

for x =0.644 than for x =0.594.

IV. DETERMINATION OF (ax/a6) z;p

In calculating the concentration susceptibility
(ax/a~) r p from the observed osmotic Pressure
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FIG. 4. Relative-frequency-vs-temperature data at x =0.644. Series are shown for five different values of the difference dx in

mole fraction of 3He between lower and upper chambers.

differences, several aspects of the experiment must
be considered.

First, as changes in osmotic pressure took place,
liquid-level changes in the capillaries occurred which
required some flow of 4He through the superleak.
Such flow acted to change Ax, and hence hx was

dependent on T through a dependence on hP.
Second, changes in the molar volume of the sam-

ple with temperature caused changes in the liquid
levels in the capillaries. Because of small differences
in the chamber volumes, such changes, if unaccom-
panied by flow of 4He between the chambers, would
have tended to alter the level difference from the one
corresponding to the correct dP. Hence some addi-

tional flow of 4He through the superleak was re-
quired, and d x was thus additionally dependent on T
through a dependence on molar volume.

Third, because of dielectric-constant effects, the
zero-pressure frequency fo(T) was not well known
for any given series. Further, because of small shifts
in the value of x in the upper chamber from series to
series within a given run and because of possible
mechanical disturbances associated with adjusting Ax
at the beginning of a new series, fo(T) may have dif-
fered by constant amounts from series to series.

Fourth, gravity caused to exist in each chamber a
vertical concentration gradient, which changed with T
as (Bx/94) r p changed. Because the significant hx
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hP = B(T)Exp =

x Bx
v4 9h Tp

t

&+
pgv4 V 8+ Tp

, b,xp . (7)

Here hP equals PI P„and A—xp equals (xi —x,)p, the
difference in x which would exist in the absence of a

level difference in the capillaries (i.e., the difference
in x that would exist were we by means of pistons in

the capillaries to force the levels to be equal). In ad-

was that which existed between the bottom of the
upper chamber and the top of the lower, i.e., right at
the diaphragm, this effect gave another source of
variation of bx with T.

Fifth, there were the averaging effects associated
with working with noninfinitesimal Ax.

The remainder of this section describes the differ-
ence method of analysis by which (Bx/Bh) r p was ob-
tained from the osmotic pressure measurements.
This method corrected for the first three effects. The
residual influence of the last two effects is discussed
in Sec. V.

The analysis of the first two effects was based on
the model shown by the schematic drawing of Fig. 2.
By using this model together with Eq. (4) it may be
shown that the first effect yields the relationship '

dition, A is the average cross-sectional area of the
capillaries, p is the average mass density of the sam-
ple, g is the acceleration of gravity, V is the average
volume of a chamber, and the remaining thermo-
dynamic quantities are averages over the sample.
Equation (7) reduces to Eq. (4) in the limits that
A 0 or V ~, in which cases the first effect disap-
pears.

Next, it can be shown that when the second effect
is considered assuming zero-level difference between
capillaries as thermal expansion takes place, we
have"

A(V„—A „V(
dT 2 A V„v4 BT p„

1

dQ(p ] A( V„—A„V(
dT 2 A V„v4 9T (gb)

where A„and A( are the cross-sectional areas of the
upper and lower capillaries, respectively, V„and V(

are the volumes of the upper and lower chambers,
respectively, and the remaining quantities are aver-
ages as above. Hence we see that the xp values intro-
duced in discussing the first effect acquire a T depen-
dence from the second effect.

Now consider two series of data with different
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values of 4x for the same average value of x. %e
may write

f)(T) —fp(T) —Sf( = KhP;(T)

= KB(T)hxo, (T)

fj(T) —fp(T) —Sfj = KAPJ(T)

(9a)

=KB(T)Exp'(T), (9b)

where the two series are denoted i and j. Here we
have written the zero-pressure frequency for each
series as fo(T) +Sf to reflect a possible constant
series-dependent shift Sf from a reference-tem-
perature dependence fo(T) common to all of the
series in a given run. However, since in the end
there was little consistent evidence for variations in

Sf from series to series and the Sf quantities were al-

lowed to have very little influence on the results, "
we will not consider them further here. The quantity
EC is the sensitivity of the differential-pressure trans-
ducer.

Subtracting Eq. (9a) from Eq. (9b) we have

fj(T) f (T) =KB—(T) [Exp'(T) —hxo; (T)]
= KB(T) ([x~oj(T) xIp;(T)]

—[x„oi(T) —x„o,(T)]]
(10)

Because the temperature dependences of x„o& and x„o;
as given by Eq. (8a) are very nearly the same, as are

those of xIOJ and x10& as given by Eq. (8b), the quanti-
ties in brackets in Eq. (10) will be very nearly tempera-
ture independent, and B(T) will simply be propor-
tional to f&(T) fj(—T). Hence by analyzing dif-
ferences between series we eliminate the need to
know AI V„—A„VI and fo(T), and the second effect
and the most difficult part of the third effect are au-
tomatically corrected for. The resulting proportionali-
ty between B(T) and f&(T) f;(T)—for a given pair
of series involves one unknown constant, which can
be determined by reference to external data for
(Sx/Sh)rp at a single temperature. Then B(T) and
from it (Sx/Sh) r p can be calculated from values of
fj(T) f;(T) at—other temperatures.

Values of (Sx/84) r p for each of the four values of
x studied were determined by the method described
above and are listed in Table II and displayed in Fig.
6. In each case the values are those derived from a
single pair of series deemed to represent (Sx/Sk) r p

most accurately. For x =0.594 the two series chosen
had b,x -= —0.6 &&10 ' and 1.0 x10~; for x =0.644
they had 4x =——1.0x10 and 0.9x10 4. For
x =0.680 the series chosen had Ax =—0.3 x 10 and
0.8 X10; for x =0.706 they had Ax =+4.0 &&10

Values for v4 and v were derived from the work of
Kerr. 40

Our data for x =0.594 were normalized at
T =0.950 K and for the other values of x at
T =0.900 K to values interpolated from the tabulated
results of Goellner, Behringer, and Meyer (GBM) "for
(Sx/S~) r p derived from vapor-pressure measure-
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FIG. 6. Concentration susceptibility vs temperature at the four values of x studied. The large circles mark the points at which
these results are normalized to those of GBM. (See Ref. 11 ).
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TABLE II ~ Concentration susceptibility as a function of temperature for four values of mole

fraction.

(Bx/Bb) q p

(J/mole) '

(ex/aa), p

(J/mole) -'
(ax/e~) „
(J/mole) '

(Bx/9h) q p

(J/mole) '

x =0.594 x =0.644 x =0.644 (cont'd. ) x =0.680

1.080 100
1.077 000
1.074 200
1.071 300
1.070000
1.069 100
1.068 500
1.068 000
1.067 600
1.067 500
1,067 400
1.067 300
1.067 200
1.067 100
1.067 000
1.066 950
1.066 900
1.066 850
1.066 800
1.066 750
1.066 700
1.066 650
1.066 600
1.066 550
1.066 500
1.066450
1.066 400
1.066 350
1.066 300
1.066 200
1.066 100
1.066 000
1.065 900
1.065 800
1.065 700
1.065 500
1.065 200
1.064 800
1.064 200
1.063 500
1.062 800
1.061 400
1.060 000
1.058 000
1.056 000
1.050000
1.030000
0.990000
0.950000
0.920000

0.275
0.301
0.327
0.363
0,391
0.422
0,446
0,477
0.499
0.505
0,519
0.529
0.541
0.561
0,578
0.585
0.592
0.603
0.615
0.646
0.685
0.778
0.913
0.964
0.941
0.927
0.920
0.906
0.893
0.866
0.854
0,848
0.835
0.823
0.812
0.800
0.784
0.773
0.762
0.747
0.747
0.727
0.712
0.698
0.685
0.667
0.694
0.784
0.920
1.098

0.984 800
0.970 600
0.963 600
0.956 800
0.954000
0.952 800
0.951 400
0,950 200
0.949 600
0.948 900
0.948 300
0.947 700
0.947 500
0,947 200
0,946 900
0.946 600
0.946 500
0.946 400
0.946 200
0.946 100
0.946000

* 0 945900
0.945 700
0.945 600
0.945 500
0,945 400
0.945 300
0.945 200
0,945 100
0.945 000
0.944 900
0,944 800
0.944 750
0.944 700
0.944 650
0.944 600
0.944 550
0.944 500
0.944 450
0.944 400

0.139
0.203
0.252
0.328
0.384
0.405
0.443
0.478
0.500
0.544
0.584
0.627
0.647
0.669
0.703
0.739
0.745
0,752
0.778
0.791
0.805
0.819
0.856
0.880
0.896
0.930
0.956
0.983
1.022
1.073
1.117
1.188
1.227
1.267
1.310
1 ~ 354
1.451
1.599
1.750
1.874

0.944 350
0.944 300
0.944 250
0.944 200
0.944 150
0.944 100
0.944050
0.944000
0.943 950
0.943 900
0.943 800
0.943 680
0.943 540
0.943 400
0.943 300
0.943 200
0.943 060
0.942 950
0.942 700
0.942 500
0,942 200
0.942 000
0.941 700
0.941 500
0.940 800
0.940 200
0.939 600
0.939000
0.937 800
0.936 600
0.935 500
0.934 300
0.932 800
0.932 000
0.929 600
0.925 200
0.918000
0.910000
0.900 000
0.890 000
0.882 000
0.872 000

2.073
2.238
2.349
2,428
2.469
2.428
2.428
2.388
2.389
2.350
2.350
2.275
2.240
2.205
2.171
2.171
2.105
2.105
2.105
2.074
2.043
2.013
1.984
1.984
1.928
1.928
1.901
1.875
1.875
1.875
1.901
1.901
1.875
1.928
1;901
2.013
2.171
2.389
2.800
3.430
4.376
6.173

0.934 000
0.924000
0.913000
0.902 000
0.900000
0.893 000
0.884000
0.877 OOQ

0.873 000
0.870000
0.867 000
0.865 000
0.864 000

0.180
0'.202
0.234
0.275
0.288
0.331
0.415
0,530
0.652
0.836
1.121
1.434
1.788

x =0.706

0.092
0.105
0.114
0.124
0.133
0.148
0.164
0, 188
0.210
0.248
0,300
0.339

0.932 000
0.910000
0.900 000
0.890000
0,882 000
0.873 000
0.865 000
0.856000
0.850 000
0.842 000
0.835 000
0.832 000
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ments. The normalizations are somewhat arbitrary in
view of some differences in temperature dependences
between our data and theirs even well away from the
A. transition. A comparison of our results for
(Bx/86) r p at x =0.644 with an interpolation of
those of Ryschkewitsch, Doiron, Chan, and Meyer"
derived from gravitational concentration-gradient
measurements shows that at T =0.934 K their value
is 25% smaller.

It should be kept in mind that because of the non-
linear relation between (Bx/94) r p and B(T) an al-

teration in the normalization of our data involves
more than simple multiplication by a constant. In the
denominator of B(T) in Eq. (7) the coefficient of
(8x/85) p(r ranged from 0.25 to 0.43 (J/mole) '. As
a result the denominator itself, whose departure from
unity measures the amount of correction due to the
first effect, ranged from 1.06 for large values of
(ex/aa)rp to 5.7 for small values. As can be seen
from Eq. (7), a denominator »1 represents a situa-
tion in which 4p is relatively insensitive to
(Bx/95) rp. The denominator remained &2 for all

of the data subject to critical analysis near T&.

V. EFFECTS OF GRAVITY AND OF
NONINFINITESIMAL 4,x

In the earth's gravitational field we may write the
gravitational-chemical potentials of the He and He
constituents per mole at height y

p3g p3(T,P,x) —+—m3gy

p,4g
= p,4(T, P,x) + m4gy

(11a)

(11b)

+ (m3 —m4)g =0 . (13)

Solving for [dx/dy] r, employing the Maxwell relation
(84/8P) rg = (81(/Bx) r p that follows from Eq. (1),
and recognizing that [dP/dyl r = —pg, we have

( (

(m4 —m3) + p
O'U

Ox ~p
g (14)

for the gravitational gradient in x within each

where p, 3 and p4 are the ordinary chemical potentials
and m3 and m4 are the masses per mole of 'He and
He, respectively. In equilibrium, p,3g and p,4~ must

be uniform. We may also write

5g p3g p4g ——/b (T P x) + (m3 —m4)gy . (12)

Since 4~ must also be uniform in equilibrium, we
have

X ()X
P, —P„=—

N (x( —x„)— (y, —y, ) . (16)
'U4

Since we measure the pressure difference between
the top of the lower chamber and the bottom of the
upper, for which the y values are the same, we have
the relationship

(

~P =PIf —Pu~ =——x Qx (17)
v4 85 ~p

where now the additional subscripts t and b denote
top and bottom, respectively.

The temperature dependence of Ax =xi, —x„~ near
the A. transition is depicted schematically in Fig. 7 for
the case in which we have 4x =xi —x„&0 . Here
the bars denote averages. We see that Ax will vary
with T in a complicated manner. If hx (0, Ax varies
with T in a different manner and may even differ in
sign from 4x if Ax is small. However, note that if
the ) curve had zero slope, the difference method of
analysis would automatically correct for such varia-
tions in Ax, insofar as variations of (Bx/85) r p paral-
lel to the A. curve could be ignored. Note that the ef-
fects of noninfinitesimal Ax are being taken into ac-
count here as well as those of gravity.

Thus the effects of gravity as well as those of
working with noninfinitesimal values of 4x come into
our results mainly because of the nonzero slope of
the A. curve. Their foremost influence will be to in-

troduce an effective irresolution in temperature
which is most significant near the A. curve and whose
magnitude there may be estimated roughly to be less
than or approximately equal

(x(, x„b)—

»= ldT./dxl(l/xl+x; x;b), -
where x;, —x;b is the difference in x between the top
and bottom of a single chamber.

For Ax =1.0 x 10 by itself, we would have
T=2.4 x 10 4 K. For a uniform (Bx/Bh) rp =1.0

(J/mole) ', approximately the maximum value meas-
ured at x =0.594, x;, —x;~ in a chamber 2 mm high
would be =0.4 x 10, and hT from this source alone
would be =1.0 x 10 K. For a uniform (Bx/85) r p
=2.5 (J/mole) ', approximately the maximum value

chamber. By chance, the magnitudes of the two
terms in the brackets on the right are nearly equal in
the region of interest to us.

In osmotic equilibrium, p,4~ is uniform throughout
the system. If we use the subscript u to denote an
arbitrary location in the upper chamber and I to
denote such a location in the lower, then we have

p4(T, P„,x„) + m4gy„= p4(T, P(,x() + m4gy(

Using Eq. (2) and the relationship ((4 =(dp4/dP) r„,
we may expand Eq. (15) to first order in the differ-
ences between upper and lower chambers to obtain
the equation
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measured at x =0.644, x;, —x;b would be =1.0 X 10:
and ATwould be =2.4X10 4 K. Hence the round-
ing due to gravity near the A. curve in our cell appears
to have been comparable to that due to the noninfini-
tesimal values of bx that we used for determining
(Bx/B~) r p. The greater sharpness of the X anomaly
for x =0.594 than for x =0.644 shown in Fig. 5 may
reflect the smaller gravitational rounding expected for
the smaller value of x.

Further comments on these effects will be found in

Sec. VI.

VI. CRITICAL BEHAVIOR'AT THE X CURVE

Our results for (Bx/B6) r p show a pronounced
peak at the X curve, a feature which was not ob-
served in the work of GBM" at these values of x nor
in that of Watts and Webb' but which has
been observed in the recent work of Ryschkewitsch,
Doiron, Chan, and Meyer (RDCM). "'6 Plots of
(Bx/B4) r p at constant x vs ln) t (, where t equals
((T —T&(x)]/T&(x), near the h. curve are shown in

Fig. 8. Somewhat arbitrarily, but with the guidance
of the fitting results discussed below, we chose T& to
be 1.066 550 K for x =0.594, the temperature of the

maximum observed value of (Bx/B6) r p. For
x =0.644, T& was chosen to be 0.944350 K, 200 p,K
greater than the temperature of the maximum.

For x =0.594, the data points for 2 x 10 4 &
~

r
~

lie
in reasonably straight lines consistent with (Bx/Bd) r p
~ ln~ t

~
+a constant for T both above and below T~.

The deviation for
~
t

~
& 2 x 10 " is consistent with the

irresolution estimates of Sec. V. For x =0.644, the
data points for 3 x 10 4 &

~
t

~
& 6 x 10 ' lie nearly in a

straight line, but for T ) T& they show a suggestion
of upward curvature, which could conceivably be
shared with the curve for T & T& with a small shift in
T~. The deviation for

~
r

~

& 3 x 10 4 is consistent
with the estimates in Sec. V of a somewhat larger re-
gion of gravitational rounding for x =0.644 than for
x =0.594.

In order to examine fur'ther the critical behavior of
(Bx/B4) r p near the X curve, we have fitted to our
data at constant x the expression

(18)

where a+, A+, and B+ are constants, the upper sign
applying for t & 0 and the lower for t (0. This ex-
pression reduces to

(Bx/Bd ) r p = —2 + ln
~
r ( + 8+ (19)

IX

XbX X X]b X~ X))

MO t. E F R ACT ION H@

FIG. 7. Schematic diagram of the influence of gravity near

the A. curve on the values of x at the tops and bottoms of
the upper and lower chambers.

in the limits a+ 0.
Fitting was carried out by using a nonlinear least-

squares program to select optimum values for A+,
B+, T& and various sets of 0.+. The data fitted were
those lying in intermediate regions above and below
the A. transition, far enough away to avoid the major
irresolution effects discussed in Sec. V but. close
enough to lie plausibly within the critical region.

Selected fitting results are presented in Table III
along with the temperature ranges of the data fitted.
The parameter errors quoted are simply the statistical
standard deviations of the parameter values derived
in the fitting process. It should be remarked that the
parameter values are highly correlated, so that a shift
in one parameter requires shifts in other parameters
to minimize the loss in quality of the fitting. The
standard error (SE) in (Bx/BLL) r p equals
[X/(W —n)]'~, where X is the sum of the squares of
the deviations of the data points from the fitting for-
mula, W is the number of data points, and n is
number of free fitting parameters. Note that the nor-
malizations of the data used for these fittings differ
somewhat from those used elsewhere in this paper.

For x =0.594, two fittings are listed, one with all
parameters free and one with the values of a+ both
fixed essentially at zero. Although. the first fitting in-
dicates a slight preference for somewhat-greater-
than-zero values for both a+, corresponding to a
weakly divergent (Bx/B6) r p, the quality of both fit-
tings is good and there is no strong evidence for the
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TABLE III. Fitting results for the concentration susceptibility as a function of T at constant x near the A. transition for two

values of x. The data were fitted with Eq. (18). SE is the standard error.

A+

(J/mole) (J/mole) '
8+

(J/mole) ' (J/mole) '
SE in (9x/Qh) T p

(J/mole)-~

x =0,594
Normalization: (Qx/Bh, ) T p =0.980 (J/mole) at T =0.950 K

1.06650 0,033
+0.00004 +0.037

0.052
+0.057

0.078
+0.016

0.038
+0.013

. —0.061
+0.047

0.538
+0.042

+0.0043

1.06650
+0.00002

0.001
(fixed)

0.001
(fixed)

0.095
+0;002

0.054
+0.001

-0.116
+0.009

0.485
+0.008

+0.0047

Data fitted in range —1.0X10 «t «—1.9 X10 and 1.9 &&10 «t «1.3 x10 relative to T =1.06655 K.

x =0.644

Normalization: (jx/Bb, ) T p =2.825 (J/wt e) at T =0.900 K

0.94438
+0.00005

0.089
+0.043

0.197
+0.066

0.149
+0.034

0.058
+0.023

—0.462
+0.110

1.369
+0,110

+0.0108

0.94426
+0.00005

0.188
+0.038

0.001

(fixed)
0.089
+0.018

0.185
+0.008

—0.262
+0.072

0.919
+0.045

+0.0117

— 0.94447
+0.00001

0,001
(fixed)

0.27
+0.06

0.24
+0.004

0,039
+0.014

—0.73
+0.02

1.46
+0.09

+0.011

0.94446
+0.00002

0.001
(fixed)

0.001
(fixed)

0.242
+0.004

0.215
+0.005

—0.740
+0.025

0.764
e0.032

+0.0138

Data fitted in range —0.6 X10 «t «—4.8 X10 and 3.2 &10 «t «1.3 &&10 relative to T„=0.94435 K.

values of e+ being other than zero or close to it,
consistent with the impression given by Fig. 8. For
x =0.644, four fittings are listed, one with all pararn-
eters free, two with one n value or the other fixed
essentially at zero, and one with both n values fixed
essentially at zero. Here the quality of the last fitting
appears to be significantly lower than that of the oth-
ers, and there appears to be a clear preference for
one or both of the n values to be greater than zero,
although there appears to be no strong preference
among the first three possibilities. This result con-
firms the suggestion of curvature given by the lowest
plot in Fig. 8.

It has occurred to us that the effects of gravity in
our cell, when considered in detail, might cause the

effective values of ci determined above to deviate
from the actual values. In particular, we are interest-
ed in the possibility that actual zero n values might
result in effective values greater than zero at
x =0.644. We are attempting to investigate this pos-
sibility by carrying out model. calculations based on
the thermodynamics presented in Sec. V together
with Eq. (19) (n+ =0).

Plots similar to Fig. 8 given by RDCM' of their
data at x =0.603 appear rather linear over the range
5 x 10 ' &

~
t

~
& 8 x 10 3, a range which includes sig-

nificantly smaller values of
~
t l than our range of

linearity for x =0.594. Rounding effects near the A.

transition'seem to be playing a smaller role in their.
experiments than in ours.
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UII. TRICRITICAL SCALING

Riedel, Meyer, and BehrinlIer(RMB)" proposed a
very simple form of tricritical scaling relationship for
(I)x/ jh,) r p in the T,x plane and showed that within a
certain region of the phase diagram near the tricritical

point the data of GBM" satisfied this relationship.
Since the data of GBM did not show the cusp that we
and RDCM' ' have observed at the A. curve, it is of
particular interest to see whether our data obey this
relationship in the vicinity of the ) curve.

RMB define a variable z given by the expression

I.5 I .I I I lilli I I & 111~1( I I I I 1 Ills I I I I I I II

{8x/8b)T &AT CONSTANT x NEAR T&

IO—
0
0 «0

~0«0
4.44 O~

4 4mO 0
T& T),

0.5—

O~
O~

4w~0 OOI 4
OO~

0~
4~0 T &T)

O~

I

4l

E

o.o
a. 5.0

CI

x %0.594

I I I IIl

I I I I I Ills l I I IIII

I l I I I I II

I I I I I lilt

I I I I Ill

I I I litt

2.0—

'o.o'4~0
0~

0
44 O. '0 l4 OOO

1.0—

0~
%0

%I0
4

Oi

bO.0

x =0.644

Oq

0.0
IO 5

I I I I I I I I

Io- a IO- a IO- I

I t I
= I( T-T„)/T„ I

FIG. S. Semilog plots of the concentration susceptibility versus the' absolute value of the reduced temperature near the X transi-

tion along paths of constant X. The lines are simply straight lines drawn to guide the eye.
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FIG. 9. Plot of our results at x =0.594 and x =0.644, those of WW at x =0.632 (see Ref. 13), and those of GBM at x =0.630

(see Refs. 11 and 15), in the scaling form of RMB (see Ref. 12). For our data and those of WW we have assumed T, =0.867 K

and x, =0.675. For this plot our data for (Bx/85) T p at x =0.594 were normalized to 0.950 (J/mole) at T =0,950 K.

(20)

where

and co is a constant exponent. Curves of constant z
are curves radiating from the tricritical point. In ad-
dition, RMB define a reduced inverse concentration
susceptibility given by the expression

(21)

where 8 is another constant exponent. Their scaling
hypothesis is that is a function of z alone. In this
relationship, the tricritical behavior of (IIx/85) r p as
a function of X, as observed in pure form along a
curve of constant z, is carried by the exponent 8 —1,
while the A. critical behavior, as observed along some

path of variable z cutting the lambda curve, is carried
in the detailed form of (z). Since the h. curve itself
must be a curve of constant z, co is taken equal to
unity, consistent with the remarkable linearity of that
curve near the tricritical point. RMB find 5 to be
2.05.

In order to test this relationship we have plotted in
Fig. 9 the function ' = (Bx/85) rpl XI"' vs z for
our data at x =0.594 and x =0.644 near the A. transi-
tion. Also plotted are the results of Watts and Webb
(WW)'3 at x =0.632 and those of GBM at x =0.630
as given by RDCM. We take the latter as represent-
ing the RMB scaling form for x (x, . It should be
emphasized that since our data require external nor-
malization at each value of x, they provide no evi-
dence regarding the 1/IXI' ' dependence of the scal-
ing function or the value of 5. In fact, for the pur-
pose of enhancing in Fig. 9 the coincidence of our
data near the A. transition for the two values of x, the
normalization of (Bx/1IA) r p for x =0.594 was in-
creased from 0.920 to 0.950 (J/mole) ' at T = 0.950 K.
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It will be seen that in the immediate vicinity of the
X transition at z& =1.907 and for z ( z), the scaling
relationship is well obeyed by our data, even though
the form of the relationship at the X curve is quite
different from that of WW or GBM. However, for
increasing z )z„our data for x =0.594 seem to be
diverging from those for x =0.644. These observa-
tions seem to be inconsistent with the fact that while
our data at x =0.594 are just on the edge of the
RMB scaling region for z & z&, they lie well within
the region for z & z&.

In Fig. 10 we have plotted ' vs z for our data at
x =0.680 and x =0.706. Also plotted in Fig. 10 is
the scaling form of RMB for x & x, . There appears
to be a reasonable degree of consistency among the
three sets of data in this form.

We note that an analogous tricritical scaling rela-

tionship for the Ising-like antiferromagnet dysprosi-
um aluminum garnet has been presented by

Giordano and Wolf. '

It is interesting to recognize that the RMB scaling
hypothesis for (Bx/86 ) r p implies the existence of a
scaling relationship for (Bs /flT) r „——cp„/T as a func-
tion of 7 and X.4~ This relationship may be written

Qs

gT p
= xd (~) +y(.) + ).( (22)

where @ and P are unknown functions of integration
and j is a scaling function remotely related to
through a succession of two integrations and dif-
ferentiations. The exponent a„=2—co(8+1) is that
which governs the behavior of cr„/T for r )0 at
x =0.

We may make an experimental test of this rela'tion-

ship without a priori knowledge of the forms of $, Q,
or j. From Eq. (22) may be derived the relationship

0.02
I

'
I

$CALING PLOT X & Xt

I

O e

o OUR DATA x =0.680

OUR DATA x &0.706
RMB

O
0.005—

0 a

0.00l—

0.0005
-2

I ) I i 1 I l

0 10 12

FIG. 10. Plot of our results at x =0.680 and x =0.706 in the scaling form of RMB (see Ref. 12) together with the scaling curve
for x )x, derived by RMB from the data of GBM. (See Ref. 11.)
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r

8$ (r, x) ——
~T Px

X —
Xp

(r. Xp)
Qs

)P,x

=4(r) + x . Xo

xo

where the arbitrary function Xp(r) gives a reference
value of X at any given value of ~. Let us choose
Xo(r) to have the form

(23)

(24)

(r, x) —— ' (r, xp)
, P,x , P,x

(x —x,) lrl

= g(r)+k X

xo(r) = aolrl

where ap is a constant, so that Xo(r) corresponds to a
curve of constant z =zp. (lapl = I/lzpl"). Then Eq.
(23) may be written

where $(r) = @(r) l rl " and k is a new scaling func-
tion which is derived from j and which depends on
the choice of ap.

As above, we take co equal to unity. Further, if we
assume —n„ to be accurately equal to unity, ~

corresponding to 5 =2, it follows that if we plot

(—Bs/BT) „(Tx)—( ris/f—)T) „(Tx )
X —Xp

versus (x —x,)/(T —T,) for several values of T, we
should expect to see curves of identical shape that
are merely displaced vertically from one another. We
show such plots in Fig. 11, where curves at four
values of T ) T, are plotted for the choice
xp=x, (Xp=0). The data used for these plots were
obtained from least-squares fitting of closed algebraic
forms to the data of Alvesalo, Berglund, Islander,
Pickett, and Zimmermann~ carried out by Docken-
dorf. 4' The range in T,x space covered by these plots
is shown by the horizontal lines in the phase diagram
of Fig. 1.

50 I I I I
)

I I I I
1

I I I I
(

I I I I
(

I

40—

Q.

I

I

)K

G.

20—

10—

0 I I I I I I I I I I I I I I I I I I I I I I I I

-I.5 -I.O -0.5 0.0 0.5

[x-x,] / [T-T,]
I.O

FIG. 11. Scaling plot derived from the specific heat results of ABIPZ (see Refs. 7 and 42 ) testing an implication of the RMB
scaling form. (See Ref. 12.)
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It will be seen that while the data in the superfluid
region to the left of the X anomaly appear to scale in
this fashion, those to the right do not. The situation
to the right would not be significantly changed if we
were to alter the plot so as to allow —n„ to be 1.05,
corresponding to 8 =2.05.

VIII. (8x/83k) VERSUS T AT CONSTANT 5

In considering questions of universality along the A.

curve, one is interested in behavior at constant 5
rather than at constant x. In particular, it occurred to
us that our observation in Sec. VI of somewhat larger
values of n+ for x =0.6~4 than for x =0.594 at con-
stant x might not reflect the situation at constant b.
In this section we describe the process by which we
have obtained (Bx/84) r p vs T at constant I near the
X transition from our data at constant x. This process
makes only rather weak use of the scaling hypothesis
of Sec. VII, and we believe that the results are not
significantly influenced by this use.

Our procedure is illustrated in Fig. 12. The RMB

scaling hypothesis specifies that (8x/85) r p varies
along curves of constant z in proportion to ~X~' '.
For co =1, curves of constant z are simply straight
lines in the T,x plane radiating from the tricritical
point. Thus from our values of ((lx/85) r p vs T at
constant x we may determine values at nearby points
with simplicity and reasonable accuracy.

%e determine the curve of constant d = bo which
crosses the A. curve at the same point as the line of
constant x =xo along which the data lie as follows.
At any value of T near T„(xo) = T,o we determine
h, (T) —40 by means of the equation

f

1 2+ — (T —T),p)2, dT'
(26)

taking values for (dd „/dT)0 and (d25„/dT )0 from
the work of Islander and Zimmermann. Then we in-

000l I I I I
[

I I I I

i
I I I I

[
& & I

P ICAL PATH

IN TEGRAT ION

O

0.000—
I-

I

~O 0o

CAI CURVE

ONSTANT z

xo= 0,594 LAMBDA

CURVE

000 . I l I I I I I I l I I I I I I I I I I

—O.OOI 0.000 O.OOI

LX= X-Xo

FIG. 12. Illustration of the construction of a path of constant 5 making use of data for (Bx/8A) y p along a path of constant x,
near the ) curve. The open circles show the data points recorded at constant x =xo and their counterparts at the same values of
z along the curve of constant 6 40. For a pair of points at a given value of z, note how much closer in temperature the point

at constant d lies to the A. transition than the counterpart at constant x.
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TABLE IV. Concentration susceptibility near the X transition along curves of constant x and

along curves of constant 6, .

xp =0.594

T„=1.066550 K

(d 5/dT) „=—13.57 J/(mole K)
(d~A/dT~) =—27.5 J/(mole K )

Constant x =xp
T Tg

(9x/eh) 7 p

(J/mole) '

T Tg

A.

Constant 5 = hp

(9x/gA) ~ p

(J/mole) '

X —Xp

0.009798
0.007 173
0.004454
O.Q03 235

0.002 391
0.001 828
0.001 360
0.000984
0.000 891
0.000797
0.000703
0.000609
0.000 516
0.000 422

0.000 375
0.000 328
0.000281
0.000 234

0.000 188
0.000 141
0.000 094
0.000 047
0

—0.000047
—0.000094
—0.000 141
—0.000 188
—0.000 234
—0.000 328
—0.000 422
—0.000516
—0.000 609
—0.000703
—0.000 797
—0.000 984
—0.001 266
—0.001 641
—0.002 203
—0.002 860
—0.003 516
—0.004 829
—0.006 14}
—0.008 017
—0.009 892

0.301
0.327
0.363
0.391
0.422

0.446
0.477

0.499
0.505

0.519
0.529
0.541

0.561
0.578

0.585
0.592
0.603
0.615
0.646
0.685
0.778
0.913
0.964
0.941
0.927
0.920
0.906
0.893
0.866
0.854
0.848

0.835
0.823
0.812
0.800
0.784
0.773
0.762
0.747
0.747
0.727
0,712
0.698
0.685

0.000 733 6

0.000 5110
0.000 292 8

0.000 200 9
0.000 140 8

0.000 1030
0.000 073 2

0.000 050 4

0.000 044 9
0.000 039 5

0.000 034 1

0.000 028 9
0.000 023 8

0.000 018 9
0,000016 5

0.000 014 1

0.000 011 8

0.000 009 5

0.000 007 2

0.000 005 1

0.000 003 2

0.000 001 5

0
—0.000 001 5
—0,000 003 0
—0.000 004 5
—0.000 006 1

—0.000 007 6
—0.000 0109
—0.000 014 2
—0.000 017 5
—0.000 020 9
—0.000 024 3
—0.000 027 8
—0.000 034 9
—0.000 045 8
—0.000 060 6
—0.000 083 4
—0.000 1106
—0.000 138 4
—0.000 1956
—0.000 255 5
—0.000 344 9
—0.000 438 9

0.316
0.339
0.371
0.397
0.427

0.449
0.480
0.501

0.506
0.521

0.530
0.542

0.562
0.579
0.586
0.593
0.604
0.615
0.646
0.685
0.778
0.913
0.963
0.941

0.926
0.919
0.905
0.891
0.864
0.851
0.845

0.832
0.820
0.808
0.796
0.778
0.765

0.753
0.735
0.732
0.707
0,688
0.668
0.648

'

0.003 750
0.002 793
0.001 769
0.001 298
0.000 967
0.000 743
0.000 556
0.000404
0.000366
Q.000 328
0.000 290
0.000 251
0.000 213
0.000 175
0.000 155
0.000 136
0.000 117
0.000 097
0.000 078
0.000058
0.000039
0.000019
0

—0.000019
—0.000039
—0.000 059
—0.000079
—0.000098
—0.000 138
—0.000177
—0.000 217
—0.000 257
—0.000 296
—0.000 336
—0.000 415
—0.000 534
—0.000 694
—0.000 934
—0.001 215
—0.001 498
—0.002 070
—0.002 649
—0.003 490
—0.004 345
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Constant x =xp

TABLE IV. (Cont'd, )

xp =0.644
T„=0.944350 K

(dh/dT)„- —10.70 J/(mole K)
(d25/dT2) —19.5 J/(mole K )

Constant 6, = hp

(9x/Bb, ) g p

(J/mole) ~

T Tg
(hx/Bb) q p

{J/mole) ~

X —Xp

0.008 948

0.007 465
0,006 195
0.005 559
0.004 818
0.004183
0.003 547

0.003 336
0.003 018
0.002 700
0.002 383
0.002 277

0.002 171
0.001 959'-

0.001 853
0.001 747

0,001 641
0.001 430
0.001 324

0.001 218
0,001 112
0.001 006
0.000900
0.000794
0.000688
0.000 582

0.000477
0.000424
0.000371
0.000318
0.000 265

0.000212
0.000159
0.000 106
0.000053
0

—0.000053
—0.000 106
—0.000 159
—0.000 212
—0.000 265
—0.000 318
—0.000371
—0.000424
—0.000477
—0.000 582
—0.000709

0.405

0.443

0.478
0.500
0.544

0,584
0.627

0.647
0.669
0.703

0.739
0.745

0.752

0.778

0.791
0.805

0.819
0.856
0.880
0.896
0.930
0.956
0.983
1.022
1.073
1.117
1.188
1.227

1,267
1.310
1.354
1.451
1.599
1.750
1.874
2.073
2.238
2.349
2.428

2.469
2.428

2.428
2,388
2,389
2.350
2.350
2.275

0.000 493 8

0.000 392 0
0.000 308 2

0.000 267 6
0.000 222 2

0.000 185 4
0.000 1503
0.000 139 1

0.000 122 6

0.000 106 6

0.000 091 3

0.000 086 3

0.000 081 3

0.000 071 5

0.000066 7

0.000 062 0
0.000 057 3

0.000 048 2

0.000 043 7

0.000039 4

0.000 035 2

0.000 031 1

0.000 027 0
0.000023 1

0.000 0194

0.000 015 8

0.000 012 4
0.000 0107

0.000 009 1

0.000007 6

0.000 006 1

0.000 004 6

0.000 003 3

0.000 002 1

0.000 001 0
0

—0.000 000 9
—0.000 001 8
—0.000 002 7
—0.000 003 5
—0.000 004 3
—0.000 005 2
—0.000006 0
—0.000 006 9
—0.000 007 7
—0.000 009 5
—0.000 0116

0.448

0.482
0.513
0.533
0.576
0.613
0.654
0.674
0.693
0.726

0.760
0.766
0.771
0.796
0.809
0.822

0.836
0.871
0.894
0.909
0.942
0.967
0.994
1.031
1.082
1.125

1.195
1.233
1.273
1.314
1.358
1.455
1.602
1.752
1.874
2.072
2.236
2.345
2.423

'2.462
2.419
2.418
2.376
2.375
2.335
2.332
2.254

0.002 931
0.002493
0,002 104
0.001 905
0.001 669
0,001 462
0.001 252

0,001 181
0.001 073
0.000 965
0.000 856
0.000 819
0.000782
0.000708
0.000671
0.000634
0.000597
0.000 522

0.000484
0.000446
0.000408
0.000370
0.000332
0.000 293
0.000 255

0.000 216
0.000 177
0.000 157
0.000138
0.000 118
0.000099
0.000079
0.000059
0.000039
0.000019
0

—0.000020
—0.000040
—0.000060
—0.000080
—0.000100
—0.000 120
—0.000 140
—0.000 161
—0.000 181
—0.000 221
—0.000270
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TABLE IV. (Cont'1. )

xp =0.644 (Cont'1. )

Constant x =xp

(9x/9h) q p

(J/mole)

Constant ~ = 4p

(9x/86) p p

(J/mole)

x —xp

—0.000 858
—0.001 006
—0.001 1 12
—0.001 218
—0.001 366
—0.001 483
—0.001 747
—0.001 959
—0.002 277
—0.002 488
—0.002 806
—0.003 018
—0.003 759
—0.004 395
—0.005 030
—0.005 665
—0,006 936
—0.008 207
—0.009 372

2.240
2.205

2.171
2.171
2.105
2.105
2.105
2.074
2.043
2.013
1.984
1.984
1.928
1.928
1 .901
1.875

1.875
1.875
1.901

—0.000 014 2
—0.000 0168
—0.000018 7
—0.000 020 7
—0.000 023 4
—0.000 025 7
—0.000 030 7
—0.000 034 9
—0.000 041 2
—0.000 045 6
—0.000 052 2
—0.000 056 8
—0.000 073 1
—0.000 087 7
—0.000 102 8
—0.000 1 18 5
—0.000 15 1 2
—0.000 185 6
—0.000 218 4

2.21 5

2.176
2.140
2.137
2.069
2.065
2.058
2.022
1.984
1.950
1.914
1.908 .

1.837
1.821
1.78 1

1.741

1.71 1

1.681
1.678

—0.000 327
—0.000 385
—0.000 426
—0.000 467
—0.000 525
—0.000 570
—0.000 674
—0.000 758
—0.000 884
—0.000 968
—0.001 096
—0.001 182
—0.001 485
—0.001 750
—0.002 018
—0.002 291
—0.002 850
—0.003 428
—0.003 974

tegrate (Bx/Bd, ) r'p at constant T according to the re-

lation

n i

5(T,x) —hp ——h, (T) + Bx
g x„(T)

dx —Ap (27)
, T,p

up, to whatever value of x causes the right-hand side
to vanish. We then have found the x coordinate of
the curve 5 = 4p at temperature T, and can then
evaluate (Bx/I)5) r p there.

It proved possible to develop a simple search rou-
tine for carrying out this calculation which enabled
direct integration of values of (I)x/Bb) r p determined
from our data without interpolation and which yield-
ed values for (Bx/85) r p at d p for which z was the
same as for the original points. Thus these calculated
values were in one-to-one correspondence with the
original values. Table IV lists these corresponding
valups of (Bx/I)6) rp together with their reduced
terr peratures relative to T&p and the corresponding
va.ues of x(d p) —xp. Each row of Table IV
corresponds to a particular value of z.

Plots of (Bx/85) r p at constant d, vs In~ t
~

near the
curve are shown in Fig. 13. Table IV is the source

for both Fig. 13 and Fig. 8. It is interesting to note
that the temperatures of the points in Fig. 13 are
more than an order of magnitude closer to the A.

transition than those of the corresponding points in

Fig. 8, a situation which Fig. 12 provides help in
understanding. However, the shapes of the plots in
Fig. 13 are very similar to those in Fig. 8. While the
plots for xp =0.594 appear to be reasonably straight,
the plot for T & T& at xp =0.644 appears to have a
distinct upward curvature, which could conceivably
be shared with the curve for T & T& with a small
shift in T&.

Thus the transformations that we have made from
paths of constant x to paths of constant 6 fail to ac-
count for the departure from In~ t

~
behavior which we

observe at x =0.644 along a path of constant x. We
note in passing that a transformation of this type is
the (inverse of the) one considered by Fisher leading
to exponent renormalization. Ryschkewitsch and
Meyer have carried out a similar transformation of
their data for x (x, by a somewhat different tech-
nique.

IX. CONCLUSIONS

In this work we have measured the temperature
dependence of (tix/Bto r p at several values of x near
the tricritical point by means of differential osmotic
pressure measurements. In particular, we have stu-
died the behavior of (ex/86) r p near the k transition
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at two values of x and found pronounced peaks there.
At constant x, for 3 x 10~ &

~
t

~
& 10 ~, these peaks

may be characterized both above and below the tran-

sition by the form (A+/n+)(~t~ +-—1) +8+ with
exponents n+ lying in the range from -0.0 to -0.2.
At constant 5, the peaks appear to be characterized
by similar exponents.

According to the universality hypothesis, the ex-
ponents a+ describing the asymptotic behavior at
constant 5 should be independent of position
along the A, curve. Furthermore, these exponents
should be the same as those describing the tempera-
ture dependence of (8s/BT) p g = cp g/T along paths
of constant 4 at the X curve. This latter property

I I I I I II I I I I I III I I I I Illli I I I & III
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FIG. 13. Semilog plots of the concentration susceptibility vs the absolute value of the reduced temperature near the p transition
along paths of constant 5. The values of x given are those at the X curve. The lines are simply straight lines drawn to guide the
eye.
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may bc obtained by use of the thermodynamic rela-
tionship

gx
9h TP

$$

Ph

ds

dT P~

dh
dT

dh dx

Px P)

(28)

where the total derivatives are to be evaluated along
curves at constant P parallel to the A. curve passing
through the points in question. ' The total derivatives
will then all be finite and nonzero at the A. curve, and
although they may still be singular there, their range
of variation near the X curve should be relatively
small. Further, the quantity

(ds/dT) p „(d5/dT—)p, (dx/dT) p,
I

at the A. curve is quite smail compared to our expec-
tations for (ds/BT) p g near there, at our values of x. s

Thus the asymptotic form of (Bx/86) r p should re-
flect well the asymptotic form of (ds/BT) p q.

Gasparini and Gaeta4 have shown that when pro-
vision is made for confluent singularity corrections to
simple power-law critical behavior, the specific heat
of Gasparini and Moldover4' for mixtures with values
of x up to 0.39 are consistent with cP ~ along paths of
constant 5 having universal values of the leading ex-
ponents n+ equal to —0.022.

Our data at x =0.594 appear to be consistent with
their result without allowance for confluent singulari-
ties. The significance of our observation of a+ ex-
ponents somewhat greater than zero at x =0.644 is
not clear. If the effect is not of experimental origin,

it is conceivable that tricritical crossover is playing a
role and that our measurements do not extend suffi-
ciently close to the A. curve to see pure asymptotic A.

behavior.
We have tested the RMB scaling hypothesis in the

form

x —x,
x,

where f(x) is some function of x alone, against our
data. Except for some sign of a discrepancy in the
normal-fluid region for x & x, away from the X

curve, we have found reasonable agreement both for
x & x„even quite close to the X curve, and for
x ) x, . The RMB hypothesis that f(x) =

~
(x —x,)/x, ~' '

was not included in our test. However, when the
scaling form for the specific heat eP„ implied by the
complete RMB hypothesis was tested against specific-
heat data, the data were found to scale in the super-
fluid region but not in the normal-fluid region.
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