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We propose a new renormalization-group (RG) method applicable to quantum systems de-

fined on a lattice at zero temperature. We apply our method to the one-dimensional Ising

model in a transverse field and the two-dimensional triangular Ising model in a transverse field.
In both cases, a nontrivial fixed point of our RG transformation is found. Critical exponents
are calculated and compared with exact and previous RG results.

I. INTRODUCTION II. FORMAL DEVELOPMENT

In recent years there has been considerable interest
in applying real-space renormalization-group (RG)
methods to quantum systems defined on a lattice. '

The pioneering work in this area was carried out by
Wilson in his study of the Kondo problem. ' Since
this work, a great deal of effort has focused on quan-
tum spin systems in d dimensions which map onto
(d + I)-dimensional classical systems. 3 ~ 9 In particu-
lar, there have been a number of studies of the Ising
model in a transverse field at zero temperature. '
Our work is closest in spirit to the work of Drell
et al. Their idea was to divide the system into cells,
determine the two lowest-lying energy eigenstates of
the intracell Hamiltonian and use only the matrix ele-
ments of the Hamiltonian between these lowest states
in mapping onto a new Hamiltonian. This idea is in-
tuitively appealing, but it is not clear from their work
how to systematize and improve their method. In
this paper, we will show how to make contact with
these ideas and how to systematically extend them.

This work has developed from the work carried out
by one of us (GM) in the area of critical dynamics. '0

The relationship between the two problems centers
about RG transformations mapping operators onto
operators. A development similar to that in Sec. II of
this paper has also been established in the critical
dynamics case and will be discussed elsewhere.

In Sec. II and III of this paper we discuss a general
formalism for developing RG transformations for
quantum systems on a lattice. In Sec. IV we apply
this method to one- and two-dimensional Ising
models in a transverse field. Finally, in Sec. V, we
end with a short discussion.

e.T[1 l~l =H, T[I l~],
with the normalization on the cr variables

Tr.T[u, l ~] T'[u, l ~] =I,

(2.1)

(2.2)

~here Tr indicates the trace over the cr degrees of
freedom. We can obtain an explicit expression for
the new renormalized Hamiltonian H„by multiplying
Eq. (2.1) on the right by Tt[plcr], tracing ove, r the a
degrees of freedom and using Eq. (2.2),

H, = fr.H.T[1 l~]T'[I l~] . (2.3)

If T[p, la.] is constructed to have components along

Consider a quantum-mechanical Hamiltonian H
governing the behavior of a set of operators 0- lo-
cated on a lattice specified by the set of points [m }.
We want to map that part of this Hamiltonian that
corresporids to the lowest-energy states onto a new
Hamiltonian H„describing the behavior of a new set
of operators p~ defined on a new lattice specified by
the set of points {p}. This new lattice has a lattice
spacing s ( ) 1) times larger than the spacing of the
original a- lattice. Physically we think of the index p
as labeling cells which include sd (d is the spatial di-
mension) sites on the original o lattice. With a prop-
er choice of mapping this transformation H H~
constitutes a renormalization-group transformation of
the real-space variety.

We carry out this transformation by introducing a
quantity T[p, l

o.] which is a product of vectors in both
the Hilbert spaces of the a- and p, operators and
which satisfies the equation
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the ground and first excited states of H then, as we
show in Secs. II and III, the ground-state and first
excited-states energies of H„are the same as those
for H . Thus, the ground-state and first excited-state
energies are preserved under our RG transformation.

Within our present prescription there is still a great
deal of freedom in choosing the form of T[pl o]. In
practice one chooses T [p, I o] such that H~ "looks" as
much as possible like H . Thus far, we have suc-
ceeded in constructing useful transformations T[p, la.)
using perturbation-theory expansions where one
breaks H into an intracell piece H and an intercell
coupling V,

tion theory. We find, for example,

=Tr.V.To[pl ~) To'[pl ~]

H,' =Tr.V.Tt[pI~)Tot[pl~] .

(2.9)

(2.10)

We note that T will not, in general, satisfy Eq. (2.2).
Instead there will exist some operator 5 defined by

Tr.T[pI~]T [pl~] =iI[pt . (2.1 I)

This is not a problem however, since we can intro-
duce an operator S, operating on the p, Hilbert space,
that rotates T into T,

H. =H.o+ZV. (2.4) T[pl~] =s[p]T[plul (2.12)

Tr To[pl o.) Tot[pic.] =1 (2.5)

Once we have specified H, V, and To we can
proceed to carry out a systematic perturbation-theory
analysis by writing

and then treating the X term as a small perturbation.
Clearly the initial problem is the choice of the ap-
propriate Tp[p, la] corresponding to a given H . We
discuss the choice of Tp[p, l

o.] in Sec. III. In this sec-
tion we assume To is known and satisfies the normal-
ization condition

clearly T satisfies Eq. (2.1), with H„now given by

H„=S [p]H„S ' [p] (2.13)

S[p]6[p]St[p] = I (2.14)

It will be useful to note that T[pl al also satisfies the
normalization condition

Tr T[plo']Tot[pla'] =S[p] (2.15)

and we require that T satisfy Eq. (2.2) or, equivalent-

ly

H =H'+ZH' +Z'H&i+

T[pl~l = To[pl~]+&T, [ply]

+ z'T2[pl ~] +

(2.6a)

(2.6b)

The renormalized Hamiltonian H~ is not yet com-
pletely determined. The reason is that S[p,] in gen-
eral is a sum of Hermitian and anti-Hermitian terms
and we cannot determine both from Eq. (2.14). We
need another condition.

Let us write To in the general form

and inserting these equations in Eq. (2.1) and equat-
ing powers of A. to obtain

To[pl o') = X li& x (2.16)

Ho To HoT

(H —Ho) Tt = (H„"' —V ) Tp,

(H —H~) T2=(H~' —V ) Tt+H Tp

(2.7a)

(2.7b)

(2.7c)

where {Ii)]is a subset of the eigenvalues of Hp, with
eigenvalues o;, and {Ip, ,) ] is a set of states is the p,

Hilbert space chosen to be complete so that Eq. (2.2)
is satisfied to zeroth order. The zeroth-order Hamil-
tonians can be written

Tr T [p I o] To t [p I o] = I (2.8)

This normalization is convenient since it allows one
to avoid the difficulties associated with the zero
eigenvalue of the operator H —H„when operating
on any vector along To[p, la.]. We can then unambi-
guously solve the set of Eqs. (2.7) to obtain T [p.la)
and the corresponding H„order by order in perturba-

etc. This set of equations is very similar to the usual
equations appearing in perturbation-theory treatments
of the Schrodinger equation. An important differ-
ence is that the "eigenvalue" H„ is no'w an operator.
We satisfy the set of Eqs. (2.7) with the normaliza-
tion (2.2) in two steps. First we introduce the quan-
tity Tlp, lo-] satisfying Eq. (2.7) with the normaliza-
tion

(2.17a)

(2.17b)

Tfp, lcr] =Xlli)) x lip, ;)') (2.18)

where lli)) is the eigenstate of H that evolves from
the unperturbed state I i) when the interaction is

where {In)] are the remaining eigenstates of Hp

which we are not mapping onto the new space.
We now want to construct the full T to a given

order of perturbation theory and the corresponding
H„, so that Eq. (2.1) is satisfied. The most general
form for T that one can construct to satisfy Eqs. (2.1)
and (2.2) is of the form
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turned on. The set (Ilp, ;))} is a complete set of
orthonormal states in p, space, so that Eq. (2.2) is sa-
tisfied, but is otherwise arbitrary. The corresponding
H„satisfies, due to Eq. (2.1),

Eqs. (2.13) and (2.26) as

H„' =H„',
H~'~ =H"',

(2.28a)

(2.28b)

H~llp, ;)) =E;lip, ;)) (2.19) and

where E; is the eigenvalue of lli)). Thus, the eigen-
values of H„are a subset of the eigenvalues of H .

Let us insert Eqs. (2.16) and (2.18) into Eq. (2.15)
and trace over the complete set of unperturbed o-

states to obtain

(2.28c)

H, = Tr.H.7'o[p
I ~] 7'o '[pl ~] (2.29)

Ht'& =H„"'+ [S&'&[p],H„'] .

While H„ is not in general Hermitian, H„" is Her-
mitian. Note that we can write up to first order

X &ili))lip, )) &p,, l =s[p] .

Taking the adjoint we find

X «IIJ) Ipi) «p, li=st[p, ]

(2.20)

(2.21)

That is, to first order the new Hamiltonian is ob-
tained by just taking the matrix elements of the old
Hamiltonian with the subset of states Ili)}. This
corresponds to the Drell et at. ' prescription.

Subtracting Eq. (2.21) from Eq. (2.20) and taking the
matrix element between unperturbed p, states we ob-
tain

&pII(s-s'Ip. &
= X(&mli» &p, lp, »

—«Ili) «alp &) . (2.22)

III. CHOICE OF To

We have discussed in Sec. II a well-defined
prescription for obtaining T[pI o.] and K~ to any ord-
er of perturbation theory starting from a To satisfying
Eq. (2.5). In this section, we address ourselves to
the question of finding a useful To to start our calcu-
lation. Let us assume that our original Hamiltonian
is of the form

We, of course, would like to choose

&ml»& = «p lp-) (2.23)
H. =QH.o(m)+ X V.„A:A". , (3.1)

since, from a renormalization-group point of view,
we want the p, states to be "as much as possible" like
the o- states. This choice is not possible because of
normalization problems. The "sum rule" satisfied by
this "ideal" mapping

where Ho (m) and A are operators constructed from
a. at site m. We can then relabel every site m with a
cell index p and a set of basis vectors within each cell
a [m (p, a)] and we can rewrite H in the form

H. =
X Ho(p)

X(&ml»& &alan)) « I I» «p;lp.—&) =o
l

(2.24)
+X X V„(a,a')A (p, a)A (p', a')

p,p'a, a'
(3.2)

can, however, be preserved by choosing S to be Her-
mitian. With this choice our procedure for evaluating

H„ is completely determined. Let us consider a
second-order calculation. We see then, due to the
normalization conditions (2.5) and (2.8),

Tr T[plo]T [pla] =5(p)=1+X'Tr T&[plo']

x T,'[p, l~]+O(g3) .

(2.25)

It follows from Eqs. (2.14) and (2.24) that S[p,] is of
the form

7'o[pl l=g 7'o'[pl l (3.3)

Using Eq. (2.29), we find for the first-order renor-
malized Hamiltonian

H~= XTr H (p) To [p.la] To [p, lo]

+ $$ V„(a,a')

where Ho (p) includes Ho (p, a) and any intracell
component from the V term. V» (a,a') gives the
coupling between cells. We then assume that To is a
product of factors for each cell, i.e.,

S[p,] =1+XS ~ [p]+O(d) (2.26) p,p'a, a'

Since S is Hermitian, this determines St ~[@,] as

S 2 [p,] = Tr Tt[p, lcr]T, [pl—(r] (2.27)

The "renormalized" Hamiltonian is given then by

x A~(p, a)A~(p', a') + O(X')

where we have defined

A„(p,a) =Tr A (p a) To~[pl o](7o'[plo])'

(3.4)
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State Energy

TABLE I. The eigenstates li) and eigenvalues F.; for
the cell Hamiltohian Hp given by Eq. (4.21).

%e then have that our RG transformation leaves the
form of the Hamiltonian invariant to first order.

In choosing Tp~ we diagonalize exactly the intracell
Harniltonian H (p), find its two lowest-lying eigen-
states, IO)~ and ll)~, and define To~ as

lo)=, „,(Ill)+ oltt))
(1+ap )'

I» =(» '"(Itl)+lit))
I» =(» '"(-I tl) + Ill))

I» = „...„,(- oli»+ltt»
1

(~p + Ap)' —
~p

ap=
Ap

E =—(q2++2)~i2

E) =—hp

E2 =+Ap

E3 —+(g2+ g2) &I2

To

~plier)

= I0&elpo)r + II& Ipr) (3.10)

lpo&, =ll&&, lpr)&=IT&& . (3.11)

where the states I po), and I pr), form an orthonor-
mal basis for the p, spin at cell p, and are chosen so
as to satisfy Eq. (3.6). In the two cases we have stu-
died, it is appropriate to choose the eigenstates of p, ,
i.e.,

We want to choose To [pl o.] such that

A.(p, a) =f,(a)A:, (3.6)

where A~ is formally the same operator as A, except
it operates on the p, Hilbert space and is defined on
the p lattice, and f~(a) is a number. We have then
that

The states Ii) of Eq. (2.16) will then be all eigen-
states of H that can be constructed by taking pro-
ducts of the cell states IO)~ and ll)~, in. particular,
the ground state and first excited states of the unper-
turbed system are among them. Assuming the levels
do not cross when the interaction is turned on, the
renormalized Hamiltonian H„will then have the
same ground-state energy and first excited-state ener-
gy as H .

with

and

H„=$Ho (p) + X Vp„A ~~A ~~ + 0 () 2)

H„'(p) =Tr.H.'(p) T ~apl j(To'(r I
~~)'

(3.7)
IV. APPLICATIONS

As a first example, we consider the Ising model in
a transverse field in one dimension governed by the
Hamiltonian

V = Xf (a)f (a') V (a,a')
a,a'

(3.9) m g X m m+11 (4.1)

Since Ho (m) and Ho (p) are single-site operators
they can both be cast into the same form using the
irreducible representations for the operators o. and p, .

where the o-„and o-, are the usual Pauli matrices
and represent spin' at site m. %e divide the chain
into cells of two spins each, so that we have for the

TABLE II. Comparison of our results for the one-dimensional Ising model in a transverse field

with exact and previous RG results.

Approximation

ye

Deviation of y,
from exact value c(s)

Exact
First order
Second order
First order'
Second order'
First orderb

Second order"
First order'

Second order'

Four-spins/cell
Seven-spins/cell

'Reference 12.
Reference 7.

2

2.553
2.187

1.636
1.996
2,018
1,780
2,211
2.106

0
28%
9.4%

22%
8.5%

18%
0.2%

1%

11%
11%
5.3%

1

1.48

0.882
1.12

0.949
0.922
0.888
1.13

0.951
1.24

1.16

'R.eference 8.
Reference 6.

0.125

0.408
0.170
0.707

—0.021
0.216
1.21

Ap &0
Xp (0
0.185
0.145

0.5
0.68
0.52

0.63
0.60
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intracell and intercell Hamiltonian

H. =H.'+ V. ,

Ho = X (t ap[o, (p, 0) +o, (p, 1)j

—ap~„(p, 0)~.(p, '1)j,
V = —6,0X~„(p,1)~.(p+1, 0)

(4.2a)

(4.2b)

(4.2c)

The intersection of the critical surface with the Ising
axis (x =0) gives

y, =2.187 (4.8)

This is to be compared with the exact value (Ref. 11)
y, =2. The first-order result is y,~' =2.55.

Linearizing the recursion relations around the fixed
point and diagonalizing the resulting matrix we find
the two eigenvalues

where o (p, a) is the spin operator for site a =0, 1 on
cell p. The eigenstates and eigenvalues of the cell
Hamiltonian are listed in Table I. Applying the for-
malism described previously to second order, we gen-
erate three-spin next-nearest-neighbor interaction
terms of the form EC p, p 'p, , p, p+'. Treating E as a
second-order quantity, we get after n iterations the
Hamiltonian

H„" = d„X1+—,
' n„$ p,,' &. $ p-'p, n+'

p P P

Z, =2.194,
X2 =0.259,

which lead to the "thermal exponent"

v = — =0 882
lo 2

log kq

(4.9)

(4.10)

(4.11)

The exact value" is v =1, while the first-order value
is v =1.48. For obtaining the magnetic eigenvalue we
introduce an odd perturbation

Xpn &ppIJt p+~

P

(4.3) V '=ho $a.„ (4.12)

where the coefficients are determined by the recur-
sion relations

h„+1 = 2bnhn (4.i3)

To lowest order, we obtain the recursion relation

2221 1
+1 E1 E0 +bncn ~n

1 0
(4.4a) which yields, using the first-order fixed-point result

for bn,

5„+1= bn25„—2b„C„E„

1 1
+n+1 2 -n n n n En

= ——bc/-+
1 0

d„+ i
——2d„+ —,(Ef +Eo) + —, b „'

c4

En En En+En

(4.4b)

(4.4c)

(4.4d)

Xl, =2b„( (i) =1.65
C

and from the relation

log h. i,

v log2

we find

/3 =0.408

(4.14)

(4.is)

(4.i6)

with

1 Qn

[2(1 + g &)]t~~

(4.Sa)

(4,sb)

This agrees with the value obtained by Drell et al. 5

via a direct calculation of the spontaneous magnetiza-
tion. In the next order, we generate, after n itera-
tions, a contribution to the Hamiltonian

H„'"= h„Xp, n+ L„$(p,„'p,, +'+ p,,'p,„'+'), (4.17)
P P

with the coefficients satisfying the recursion relationsand a„and E;" as given in Table I, with e„, bn replac-
ing ~0, 40. We study the recursion relations for the
ratios

n

h =t2b —b bc 2 1 1 1
n+1 ' n n n n En+En 2 En En

'
n+ — + h

1 0 1 0

J'n = ~nlbn

x„=IC„/b „

and find a nontrivial fixed point at

y' = 1.709 854

x' 0.269 725

(4.6a)

(4.6b)

($.7a)

(4.7b)

—2c„(1+ b„~)L„, (4.18a)

L = ——Abc 2 + — + hn+1 2 n n n En +En 2 En En n
1 0 1 0

& bn cnLn (4.18b)
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and

z~ =1.75,
X2 ——0,61,

(4.19a)

(4.19b)

p =0.170 (4.19c)

These values should be compared with the exact
result p =0.125. An important aspect of our calcula-
tion is that the values of all quantities computed are
improved in going from first to second order.

The relation we use to connect the magnetic eigen-
value with P merits some discussion; our recursion
relations at the fixed point leave the Hamiltonian in-
variant only up to an additive and a multiplicative
constant

H"„+' =c(s)H~+g(s) (4.20)

where s is the length scale change, s =2 in our case.
The multiplicative constant corresponds to the ratio
of temperatures

c(s) =lim T"/T" +'
T p

(4.21)

Diagonalizing the transformation using the first-order
fixed-point results for the thermal parameters yields
the two eigenvalues

Since the temperature corresponds to the length of a
(d +1)-dimensional classical Ising system in the
(d +1) direction, s one expects at the fixed point4

c(s) =s '. Given this assumption, one can calculate

p from the relation
I

+=d+I—
I/' logs

(4.22)

c(s) =0.68 to first order,

c (s) =0.52 to second order,

(4.23)

(4.24)

which appears to be approaching the correct value
c(s) = —,.

1

In Table II, we summarize our numerical results
and compare them with other RG calculations.
Reference 12 is the Niemeijer —Van Leeuwen cumu-
lant approximation for the two-dimensional Ising tri-

where A.~' is obtained from the recursion relations for
the ratios of the coefficients of the Hamiltonian [as is
done with Friedman's method, s because c (s) cannot
be obtained by his method]. We believe that it is
consistent in a finite-order calculation to take the fin-
ite order c(s) instead of assuming c(s) =s ', and
indeed we obtain much better values in p by our
method. For c(s) we obtain from our calculation

TABLE III. The eigenstates li) and eigenvalues E, for the cell Hamiltonian Hp for the two-

dimensional Ising model in a transverse field.

State

, „,(-ap
I ill) +

I l]]&
+

I ]11)+I]]l) &

(3 + g 2 ) 1/2

Energy

Ep = Ep
—Qp —2(cp + &p &p~p)

1/2

bpl ] l]& +
I ill) +

I [ll) +
I ll]»

(3 +b2)1/2
E = ep —b,p

—2(ep+5p +epAp) /

I2) =(2) ' (I]ll) —Ill]))

I» =(6& '"(l]ll& -2ll]l&+ I[][&)

l4& = „...„,(-,I]»&+ I»»+ I»»+ I»»)
1

(3 + ~2)1/2

E2 =—op+ 5p

E3 =—~p+ 6p

E4 =—
6p Ap+2(6p + Ap E'p4p)

E5 =ep+hp

16& = (6) '"(I l]]) —21]l]& + I]tl)) E6 ——~p+ ap

I» = „„,,„,(-dpi]»&+ Ill]&+l»l&+ Ill»&
p

E7 cp bp +2(&p + ~p + &p~p)

ap I —2ap/hp 2 [(ap/hp) ap/hp+ I]
bp I +2ap/hp —2[(ap/hp) +ep/hp+I] i

cp ~ I 2ap/hp+ 2[(ap/hp) ap/hp+ 1]

dp~ 1+2ap/hp+2[(ap/hp) +ap/hp+1]
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TABLE IV. Comparison of our results for the two-

dimensional Ising model in a transverse field with high-

temperature expansions and previous RG results.

and we get for the thermal exponent

H =0.724 (4.29)

Approximation

High-temperatures series

Our calculation

First order'
Second order'
2 x2 x2 cellb

3 x3 x3 cell

Reference 16

'Reference 4.
bReference 14.

0.625
0.724
0.967
0.924
0.&27

0.844

0.629

0.3125
0,394
1.271
0.512
0.332
0,403
0,324

to be compared with the high-temperature expansion
result for the three-dimensional Ising model'

R =0.625 (4.30)

3 (2 —a„b„)—
[(3+a')(3+b„')]'" " (4.31)

which gives at the first=order fixed point the eigen-
value A.„=2.23; the magnetic exponent is then

For the magnetic eigenvalue, we introduce a magnet-
ic perturbation and get to lowest order the recursion
relation

angular lattice to second order. References 7 and 8
are calculations by G. Um on the model discussed
here using Friedman's technique to second order
with two and three spins per cell, respectively. Our
results are somewhat worse for y, and v but much
better for P. Reference 6, by Jullien et al. , is a cal-
culation using the method of Drell et aI., ~here the
number of spins in a cell is varied from two to seven.
We show two representative results, for four- and
seven-spin cells (their results improve systematically .

with increasing cell. size). Our results to second order
are worse than the ones for seven-spin cells [except
for c(s)] but better than the ones for four-spin cells.
We believe that applying our method to second order
with a bigger cell would significantly improve the ac-
curacy of our results.

As a second example, we consider a two-
dimensional Ising model on a triangular lattice in a
transverse field, described by the Hamiltonian

p =0.394 (4.32)

to be compared with P =0.3125 from high-
temperature series expansion. '

In Table IV we summarize our results and compare
them with other RG calculations. Reference 4 (see
also Ref. 3) is a calculation on the model discussed
here using Friedman's technique. Our results for
both exponents at lowest order are better than the
second-order results of Ref. 4. Reference 14 is a cal-
culation on the three-dimensional Ising model using
the Niemeijer —Van Leeuwen cumulant expansion to
second order with a variational parameter, as intro-
duced by Kadanoff and Houghton. ' Our results are
comparable for the magnetic exponent but better for
the thermal exponent. Reference 16 is a "lower-
bound" variational calculation on the three-
dimensional Ising model using the "one-hypercube
approximation. " This more sophisticated scheme
gives better results than our lowest-order calculation.

+~=&O $ ~x ~O go'x o'x
m (mn)

(4.25)

V. SUMMARY AND DISCUSSION-

Ht =de $1+&x XPx ~n X PxPx
p u Qu')

and the recursion relations

~. +l = —, (Et —Eo) ~

1

(2 —a„ —b„)'
"

(3 + a ') (3 + b )

d„+i =3d„+—(E[+Eo)

(4.26)

(4.27a)

(4.27b)

(4.27c)

We find a nontrivial fixed point for y„=e„/b„at
y' =2.038; the "thermal" eigenvalue gives

A. T =2.1350 (4.28)

We divide the lattice into three-spin cells as in Ref.
12 and diagonalize the intracell Hamiltonian. The
resulting eigenstates and eigenvalues are listed in
Table III. A calculation to first order yields

We have proposed a new renormalization-group ap-
proach for quantum spin systems at zero temperature
and have applied it to the one-dimensional Ising
model in a transverse field to second order and to the
two-dimensional triangular Ising model in a
transverse field to first order. From the numerical
results for the one-dimensional model, we see a sub-
stantial improvement in all numbers in going from
first to second order. This systematic improvement
does not seem to occur in any of the previous work
on this model. The numbers for the two-dimensional
case, even at lowest order, are more accurate than a
previous calculation to second order for this model.
They also compare well with calculations on the
three-dimensional classical Ising model. Our method
seems to be rather general and applicable to a variety
of other problems. A point one must be careful
about is that our method does not guarantee that the
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renormalized Hamiltonian has the same symmetry
properties as the original one. The cell must be prop-
erly chosen in each problem so that at least the
ground state has the correct syrrimetry. %e have not
encountered any such problem in the two models we
studied, but it may appear in other models. Applica-
tions of our method to other problems are under
way.
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