
PH Y SICA I RE VIE% 8 VOLUME 19, NUMBER 1 1 JAN UAR Y 1979

Time-dependent correlations for spin Van der Waals system@

Raf Dekeyser
Instituut voor Theoretische I'ysika, Katholieke Universiteit Leuven, B-3030 Heverlee, Belgium

M. Howard Lee
Department of Physics, University of Georgia, Athens, Georgia 30602

(Received 3 May 1978)

The time-dependent autocorrelation function has been derived for the x component of the total spin for the
S = 1/2 constant-coupling anisotropic Heisenberg model, i.e., the Van der Waals system. For T & T„ the
time correlation is shown to be Gaussian for both XY-like and Ising-like regimes of the model. For T & T„
the correlation function is still Gaussian if the model is XY-like; but it is oscillatory if the model is Ising-
hke. Critical slow down appears only with the Ising-like system for this time-correlation function.

I. INTRODUCTION

By a spin Van der Waals system, we mean a
system of lattice spins each of which is coupled
to all other spins with equal streng th,. Such a sys-
tem may be thought of as the high-density limit of
an anisotropic Heisenberg model. Van der Waals
systems belong to the class of mean-field models
and are analytically soluble. Although limited in
scope, the exact solutions for this class of systems
can be useful in providing an insight into more
complex systems. Recently, these mean-field
models have taken on an added significance through
the discovery that certain metal hydrides exhibit
mean-field critical behavior. The static proper-
ties of spin Van der Waals systems have been ex-
tensively studied by Kittel and Shore, ' Niemeijer, '
and Vertogen and DeVries. ' They proved that
equilibrium thermodynamic properties of spin
Van der Waals systems are independent of spin
dimensionality. That is, the isotropie Heisenberg
and Ising systems in the high-density limit have
identical equilibr ium thermodynamic behavior. '

To our knowledge the dynamic properties of spin
Van der Waals systems are not yet well known.
It would be interesting to learn exactly how the
Van der Waals systems respond to a time-depen-
dent perturbation and dissipate it in time. It would
also be. of interest to learn whether spin Van der
Waals systems all have dynamically equivalent be-
havior, or whether they all belong to different
dynamic universality classes. ' For these pur-
poses, we shall consider the S =-,' constant-coupling
anisotropic Heisenberg model and study the time-
correlation function in appropriate physical reg-
imes. ' To obtain the time-correlation function,
it is necessary to resolve the time-dependent part
(by solving the Heisenberg equation of motion) and
then to evaluate various quantities which do not
depend on time. We shall study the transverse

component of the time-correlation function g""(t)
=(S„(f)S„(0)),where S„ is the x component of the
total spin. Since S„(or S,) is not a constant of
motion for the anisotropic Heisenberg model [see
Eq. (2}], S„(t) has a nontrivial time evolution. On
the other hand S, is a constant of motion. Hence,
the longitudinal component of the time-correlation.
function 8" is trivial. It should be remembered
that in this paper we discuss the Sransvexse-
correlation function only (whether the anisotropy
is XY'-like or Ising-like). '

For the one-dimensional nearest-neighbor XF
model, the time-correlation function 8""(t}at the
high-temperature limit is now known. Sur et al. ,'
Brandt and Jacoby, "and Capel and Perk" have
shown that it is Gaussian. Since there is no phase
transition in the one-dimensional nearest-rieigh-
bor XF model, the high-temperature form for the
time-correlation function may be expected to per-
sist, if in some modified way, into lower tempera-
tures. We find that there seems to exist an inter-
esting but evidently coincidental connection be-
tween this result for the one-dimensional nearest-
neighbor g7 model and our result for the constant-
coupling XF model.

In Sec. II, our spin Van'der Waals model is
briefly described. In Sec. III, we review the tech-
nique of calculating the static quantities in the
thermodynamic limit. In Sec. IV, the time-cor-
relation function is derived for different physical
regimes and also for different anisotropic limits.
In Sec. V, we make a few concluding remarks.

II. DESCRIPTION OF THE MODEL

Consider a system of N —,
' spins, where N is con-

sidered to be a large number (the thermodynamic
limit is always implied in our analysis). The com-
ponents of the individual spin operator at site i are
denoted by S;; S,-', and S';, 1 «i ~N, and those of
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the total spin by S„, S„and S„e.g. ,

N

s„=gs", .
t~l

In this system all spins are assumed to interact
pa.irwise and with equal strength, independent of
their relative distances. The interaction, how-

ever, is assumed to be anisotropic with respect
to the spin components. With a conveniently chosen
additive constant, the Hamiltonian of this system
is given as follows:

1
Z = —— [J(s(s/+S', S/)) +JS',S,'] ——,'(2J+ J)

W(s) = 2[(1—s}ln(1 —s}+(1 + s) ln(l+ s)]

=2(S/N)'+ T(S/N)'+

(»)
(6b)

It may be recognized that the degeneracy factorg(S)
represents the number of possible equivalent spin
configurations (i.e. , configurations having the same
energy) for a given value of S." Thus, Ing(s) is re-
lated to the entropy of the system, "and the free
energy I' =3C- TS, has a minimum at a certain value
of the total spin S. The partition function may be
evaluated in the following way:

Z= Tre '

(2)
8ubstituting

(q)eBSR(s+1)/))/ 8&s-~///

S =-98

for g(s), we obtain
where

5 = (s„,s„s,)
and

X=J-J„J», J,&0. (4)

—2))/+1 ~( /N e//c(s)
~s '& I +2S/N

where

(10)

III. STATIC PROPERTIES

The eigenstates of Hamiltonian (2) may be char-
acterized by a set of quantum numbers (S and S,).
Evidently these states are multiply degenerate.
The degeneracy must be accounted for in summing
over states in evaluating, e.g. , the partition func-
tion. For convenience we assume N to be an even
number. The degeneracy- g can be expressed as
the difference between two binomial coefficients

where —,'& ~ S ~0." The above expression can be
approximated for large N as

g(s) =2 +~[s/(I +s)]e "«'1

where

s =2S/N

(6)

and

We observe that the Hamiltonian is diagonal, i.e. ,
with P =S(S+1),3C=f(s, S,) only. Now X can be
either positive or negative. If X&0, the model
is XY-like; and if X& 0, it is Ising-like. We shall
not consider the isotropic Heisenberg case (X =0)
since all the components of the total spin, being
conserved quantities, have trivial dynamic proper-
ties. The static properties of this system are not
our main interest. But we shall begin by describing
them first, since dynamic quantities must ultimate-
ly be expressed in terms of time-independent
quantities.

N' N s,

= -(2 —PJ) — + ~ ~ ~ +—ln e z
$2 1 -8&s iv

:N N

(lib)

We observe that -P 'G(S) is the free energy per
spin for a fixed value of the total spin S. Evidently
the phase factor G(s) is the most important factor
in determining the sum in Eq. (10). The dominant
contributions come from the maximum of G(S)
given at some value of S=S,. Hence, it will be
found sufficient to evaluate the sum about S„
where G(so) =G,„." Now So must be a macroscopic
number, i.e. , So=f(N) in order that the prefactor
of e"n~s) in the partition sum [the term inside the
parentheses in Eq. (10)] does not vanish when
evaluated about S,. We shall find S, to be related
to the long-range order of the system.

For both the XF-like and Ising-like systems
there are two general classes which need be dis-
tinquished: high- and low-temperature regimes.
For high temperatures, however, the XY and Ising
systems are physically very similar so that they
may be treated together. Our mathematical solu-
tions for the partition function (given later in Sec.
III) have a simple physical basis. This basis is
first briefly discussed below and, we believe,
will make the ensuing mathematical analysis rather
tr anspar ent.

At high temperatures (i.e. , PJ«2), the interac-
tion energy JS(S+'1)/N' is small compared with
kT. Hence, the free energy or -Q is determined
largely by the entropy term -W [see Eq. (lla)].
At a fixed high temperature, the maximum entropy
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2

88 =-S

The maximum of the S summand of Eq. (12) is
attained when S =SO =0(N"~). Thus, replacing
the sums in Eq. (12) by integrals over S=N'" x
and S, =N'" z, we have

(12)

(i.e. , minimum F or maximum G) results from the
state of N —,

' spins which are maximally disordered,
i.e. , S,&O(N), so that S,/N-0 as N-~." For
both the XY and Ising systems we shall see that
So =O(N'") confirming what is already known about
the absence of long-range order at high tempera-
tures.

At low temperatures (i.e. , pJ»2), the interac-
tion energy JS(s+1)/N' is now large compared
with 47' and it competes with the entropy in deter-
mining G. An ordered state will decrease the
contribution of the entropy to G; but it can still
increase G through the interaction energy, which
of course increases with the ordering of spins.
A maximum G can result from a such macroscopi-
cally ordered state of N —,

' spins, i.e. , So = O(N)
so that S,/N =O(1) as N- ~. This implies, of
course, that there is a condensed phase for PJ
~P,J for some P„ to be later determined.

A. High-temperature XY and Ising solutions

When P=1/kT is small, the phase factor of Eq.
(10) is dominated by the entropy term -W. Since
large values of S give little contribution to the
partition function, we may approximate W(S) by
its first term in the series expansion, giving the
following Gaussian form:

N 2 2@=2""
~

—" e " '"' '"
(N

conditions affect the result, we derive the fluctua-
tions. For Van der Waals systems, the high-tem-
perature spin fluctuations are given by"

y" = S"'S" =2 lnZ,
1 g

r =1

Y"= S'S„' = lng.8
0 r paJ

(»a)

Thus, it follows directly from Eqs. (14) and (15)
that, for the XY-like system, Y"*=-,'(p, J- pJ) '
and Y"=-,'(P,J- PJ, ) ', and that for the Ising-like
system, Y""=-,(p,J, —pJ) ' and Y"= —,'(p,J, —pJ, ) '.
That is, for the XY-like system, Y'" is divergent
but Y" is nondivergent at 7."„' whereas, for the
Ising-like system, the reverse holds. %e have
used here the results shown later in Sec. III that
the XY-like system has P,J= 2 and the Ising-like
system has p, J, =2.

-W'+ pJSO/N=0 (16a)

or

8. Low-temperature XY solutions

For X positive (i.e. , XY regime), the S, depen-
dence in the partition function [see Eq. (12)] re-
mains Gaussian for all P and the main contributions
still come from S, =O(N'"} or less. But for pJ& p,J
=2, the S dependence is not Gaussian, i.e. , the
previous high-temperature approximation for W(S)
is no longer valid. An examination shows that the
phase factor G(S) [see Eq. (10)] has a sharp maxi-
mum at S =SO= 0(N), so that expNG(S) is sharply
peaked at S=S,. The condition G'(So) =0 gives the
familiar mean-field equation for the long-range
order of the system, "

g 2N+lpgl/2 d -(2-8J)g

0
S,/N = —,

' tanhpJS, /N. (16b)

x 2x dec 8~~,
In the usual way, nontrivial solutions exist for g
below 7, = J/2Z if S, = O(N). Hence, defining o
=2S,/N, we may rewrite Eq. (16b) as

where the upper limit. on x has been extended to ~
introducing little error. The above integral can be
directly integrated by parts giving o = tanh(p/p, )o, (16e)

Z N 21(+~ )1N/R ( 2pJ) -1(2 pJ )
-1/2 (14)

The leading correction to this expression comes
from the neglected (1+s) ' [see Eq. (10)] and the
correction will be a factor N'" smaller than the
above term in Eq. (14). The specific heat vanishes
for 7' above 7', as it must for a. mean-field model. "

Observe that our result [Eq. (14)] is independent
of X positive or negative. It must be remembered,
however, that for the XY-like system the above
result applied with J& J„whereas for the Ising-
like system J,& J. To show how the two different

with p,J 2." Observe that Eq. (16c) is independent
of J, as long as X is positive (i.e. , J& J,). That is,
the critical temperature p,J=2 is universal. for the
Van der %aals XF-like system.

One can now expand G(S) in Eq. (10) about S, and
carry out the S integration by substituting S =8,
+Nx. The S, integration may be kept as before.
Also since the two exponential functions are peaked
at different regions with little overlap, the limits
of integration in both cases may be extended. Thus
we have
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Z=d(3)ee e ' J dae 3" ' f dee
asymptotic form fassuming of course that S, = O(N)].
The asymptotic expansion of D(Y) is as follows:

=g( ,'No-)e 8 """Nw(PXB) '"
f 1+O(N ') ],

where

(17a)

2g 'f 2„~ 1 1D(y)=P, (2y) '" '=—+ + ~ ~ ~

n =. 0 . gt 2g 4/3

for y large. ~ Hence, we obtain for the phase
factor G(S),

(21)

Z=Z()[l+Z, N '+O(N ')], (18a)

where g0 denotes the partition function givenby
Eq. (17a) and

1 (pj) 2pj 4
2B 2 a(1+a) a(1+a)')

((3 4a e3d*+23da(1 —a'))
(1 —o')'

B = [2/(1 —o')] —Pj= (P - P, )j as P- P, + . (17b)

The specific heat follows directly from Eq. (17a)
giving the usual mean-field result, in particular,
C/N =3k at T = T,

To calculate the fluctuations in the long-range
order, it is necessary to include the corrections
of order & in the partition function. The correc-
tions may be obtained by retaining second-order
terms in the expansion of the S integrand about

Sp The partition func tion valid to the order
is as follows:

G(S) = -W+ Pj(S/N)'+ PX (S/N)'

= -W + PJ,(S/N) (22)

which is the same expression as that for the XY
system with J, replacing J. The condition that
G'(S,}=0 gives the same mean-field equation as
Eq. (16c), with J', replacing J,

o = tanh(P/P, )o (23)

—g(1NO)e8dz)3 ed l4o2 2

P. o

but now with P,J,= 2. Thus, if J,&J, the mean-
field Eq. (23) is independent of J. That is, a,ll
Van der Waals Ising-like systems have the same
value for T,."

The evaluation of the partition function follows
the same procedure as that for the low-tempera-
ture XF system and we obtain,

Z=g( —,'Ng)e~~d"' '4, dXe N84"2V
A. 0

20 0
3B3 (1 ')4 '

C. Low-temperature Ising solutions

(18b)

where

e ( ( ((e)O),)) (24a)

For negative A. (i.e. , j,& j}, the sign of the phase
factor -XPS, changes. Thus, the S, summation
[see Eq. (10)] becomes very strongly dependent on
its limits (-S, S) so that, unlike in the XY system,
it can influence the value of So (the maximum of
the phase factor G(S)). Introducing A. =-X', where
X' is a positive quantity, we express the 8, sum or
integral in terms of Dawson's integral

$
8& 's /x 2 8~ 's /x

S

B, =2/(1 —o) —Pj, . (24b)

Z = Z [1+ Z N '+O(N ')],
where Z, is given by Eq. (24a) and we have

1 (PJ)' 2Pj 4 & 1

2B, 2 1+o (I +o}'&~ B',

1 —4o+7cr' 2Pjo
(1 -o')' (1 -o')')

(25a)

If the correction terms are included, the partition
function is

x ---, 0 $-, 19

where Dawson's integral is defined as

2 20 g
PX'o' 3B,' (1 —o')' ' (26b)

(20)

which is related to erfi y. We note that the argu-
ment of Dawson's integral y = (pX'/N) "2 S can be
large if S=0(N). Since it is sufficient to expand
G(S) about S =So, one may thus replace D(y) by its

All standard static quantities of interest can be
readily obtained from our results for the partition
function. In deriving the time-correlation func-
tion, it will be found necessary to evaluate still
other static correlation functions such as (S,'") and
(S',"S'„) where n is any integer. These shall be
treated at appropriate places in Sec. IV.
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IV. TIME-CORRELATION FUNCTIONS

S„=-cu„(2S,S„+iS„),
S, =&a«(2S,S„-iS,),

1

S, =O,

(26a)

(26b)

(26c)

where &u«=A/AN. These equations may be com-
bined to give second-order differential equations
separately for S„and S,. They are then readily
solved to give '

For the Van der Waals Hamiltonian Eq. (2),
the time evolution of the total spin 5 may be ob.-
tained from the following set of Heisenberg equa-
tions of motion:

( )n ( «) (bing)
p 2so

oo I2+ t)2n +1

(2n+1)!

Taking advantage of the XF symmetry, i.e. ,

PR n SQ
—& ((SenSn) (SR n +2 ))

we finally obtain

t)2n
2gnx(t) p ( )n

2~«t) (ynSe S2n+2)
n —0

t)2n +I
N i n+2

(2n + 1)!

(sob)

(31)

(32)

S,(t) =[cos(2(u«tS, )S„—sin(2(u«tS, )S,]e ' «',

S (t) =[cos(2u«tS, )S +sin(2u)«tS, )S„]e

S,(t) =S„

(27 a)

(27b)

(27c)

where S„=S„(t=0),etc.
The time evolutions of S„and S, appear to be

oscillatory. In fact, however, they are rather com-
plex owing to the presence ofS„which is a. constant in
time but still an operator. Thus one must maintain
the order of these noncommuting operators. Using
the above results, we shall deduce the time-corre-
lation function (S„(t)S„(0))for the XY-like and Ising-
like systems and study the time-dependent be-
havior for T above and below T, for each of these
systems. This time-correlation function is par-
ticularly useful since one can obtain from it the
dynamic form factor or spectral density function,
hence all other important dynamic quantities such
as the relaxation function and dynamic susceptibil-
ity."

For convenience we shall absorb the trivial ex-
ponential factor which appears in Eq. (27) in the
definition of our time-correlation function by
defining it a,s

Observe that the time part has now been completely
resolved from time-independent-correlation func-
tions. To obtain the time-correlation function
8'"(t), one needs to know the two equilibrium cor-
relation functions (S',"S ) and (S',") only. These
equilibrium quantities depend on X and also on
the temperature. They may be evaluated in the
manner of the partition function shown in Sec. III.
We shall consider them in three different regimes:
high-temperature XY-like and Ising-like, low-
temperature XV'-like, and low-temper ature Ising-
like.

A. High-temperature XY and Ising models

We shall evaluate (S',") and (S',"S') and also a
few derivative terms of interest closely following
the static analysis previously given (see Sec. IIIA).
For any integer n (including n =0),

(S2n) Z I g g g(S)Sen e 8'e(s sn!

8""(t)=e' «'(S, (t)S„(0)), (28)
—Z-~2&+ ~~~+ ~/2

0

which satisfies time-reversal symmetry. Using
our results given above we obtain

I""(t)= (cos(2&v«tS, )S'„-sin(2'«tS, )S,S„). (29)

Now since $, is diagonal with respect to the eigen-
vectors of the Hamiltonian, we observe that, in
the second term in Eq. (29), only the diagonal part
of S,S„can contribute in the ensemble average.
Hence, we can reduce Eq. (29) to the following:

6""(t)= (cos(2ur„tS, )S'„)+-',i(sin(2&v«tS, )S,), (30a)

x 2g Age 8

2n! (
nt ~(4(2 —pZ, ))

Observe that

(S',) = ~/(2 —Pg,), (ssb)

which by expanding the trigonometric functions
leads to

which for the pure XY model becomes independent
of the temperature, (S,') = —,

' for T&T,. Similarly
we have
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(S'"y) Z"=2""~"""J dec ' '"*'
D

x 2m* f dz e '"*z"

~

~

1,2n+I l 2s! N
2- pJ '2- r)J, j n! 4(2- pJ) j~

(34a)

We note that by setting n =0 in Eq. (34a) we have

(S') = —,'N[2/(2 —PJ}+ 1/(2 —PJ,)]
and with Eq. (33b)

&S'.& = &S',& =-,'N/(2- t)J).

(34b)

(34c)

The high-temperature spin fluctuations are all Df
order N and behave mean-field-like near T, as
was discussed in Sec. III. These may also be used
to show that in the high-temperature regime the
longitudinal and transverse factors of the static
correlation functions decouple, e.g. ,

O' N) '" which has no temperature dependence at
all at high temperatures (P,J~ 2). This general
form of the width, we believe, may be preserved
if the number of interacting "near-neighbor"
spins were reduced from pf to a small number,
say q. In this case we have for the width a, '
=(-,'qJ'/8') '", where we have restored the inter-
action strength from J/N to J. [Recall that N was
introduced in Eq. (2) to keep the energy per spin
finite in the limit N- ~.] It is interesting to note
that a dynamic mean-field version of the three-
dimensional nearest-neighbor (nn)XY model for T
& T, gives exactly this form of the width for the time-
correlation function, where q is the nn number. "
Also, the same form is obtained for the time -correla-
tion function for the one -dimensional nnXP mod-
el 9&1

8. I.ow-temperature XY model

We shall evaluate (S,'") and (S',"S') following the
static analysis given in Sec. IIIB. For any integer
n we have

&S',"S.'& = &S'."&&S'.&. (36)

Substituting Eq. (33a) and Eq. (34a) in Eq. (32),
we obtain (after some simple sums)

P"(t}=[&S',&+I-,'Xt/(2- PJ,)5]

yRn& g-1 +P g(S)one-8R(s, sz)
S Sz

2n! t' N )"
=.. ~(4t. &~

(37)

X e (") ~' e~z) (36a)

S""(f}=&S'& e '~'"
where

(36b)

which evidently is valid for 0 «t & t,„.where k,„
= (O'N/X')"'. Since &9& =O(N), for this range of
time the time-correlation function valid to the
leading order of N is given by

Hence, &S,'& =N/2PX For th. e pure XY model, it
becomes (S,) =N/2PJ, which at the critical point
pJ= p,J=2 assumes the high-temperature value,
becoming independent of the temperature. In
evaluating (S2"S ), we recall that the maximum con-
tributions of S and S, come from widely separated
regions of pf so that the two integrations have
effectively two independent limits, i.e. , the corre-
lation function decouples,

ay(A) =[X /K N(2 —PJg)] (36c) &S'."S'& = &S',"&«&. (38)

The time-correlation function satisfies time-rever-
sal symmetry, It is Gaussian, implying that the
dynamic form factor is also Gaussian. " Although
our result [Eq. (36b)] applies equally to the XY-
like and Ising-like systems (i.e. , X& 0 an'd X& 0,
respectively) the temperature-dependent behavior
of the "width" of the Gaussian factor a„'(A.) is
markedly different between the two systems. For
the Ising-like system, the width narrows as the
critical temperature is approached from above and
the system exhibits critical slow down.

For the XV-like system, the situation is rather
different. Here the static criticality is resolved
from time, being contained in(S,') and not in the
width a„. Hence, the time-correlation function
for the XY-like system cannot exhibit critical slow
down. '8 For the pure XY model (i.e. , J, =0 or
A = J), the width factor reduces to a„'=(—,

' J'/

We can directly evaluate (S'& as, for example, in
Eq. (37) giving

(39)

where we have used o and J3 previously defined
(see Sec. 1118). It follows that we have

3+a l 2'' '; N
II'(I —~')2 4!8)

'

(40)

Observe that (S'„)= O(N') unlike in the high-tempera-
ture case [see Eq. (34c)]. The second-order terms
shown in Eq. (40) are needed when evaluating the
spin fluctuation since (S,&

= O(N).
Using Eq. (37), Eq, (38}, and Eq. (40) in Eq. (32),

we obtain for the time-correlation function
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s (t)**=((s,')+ +,~) e "'" ~",

which evidently is valid for 0 ~ t ~ t',„.where t',„
=(O'PN/X)'~' H.ence, for this range of time, we

may take the correlation function to be

gal(t) (y)e ta-yt) (41b)

where a'„=(X/O'PN)" . It is again Gaussian, but
the width is now temperature dependent. As the
temperature is lowered, the width grows as T '".
As the temperature is raised, the width narrows
to a finite value. For the pure XY model the width
has no discontinuity at T„ i.e. , for X = J, a„=a„
at Pj=2. As in the high-temperature side, the
static criticality is resolved from time [see Eq.
(41b)]so that there cannot be critical slow down in
this time-correlation function as T- T,.

C. Low-temperature Ising model

por A negative, the evaluations of (S',") and (S',"S')
must be proceeded. with more care as pointed out
in Sec. IIIC. Writing X=-X' (where X' is a positive
quantity), we have for any integer n

(gn) g-& g g(S)&8Js lit

)( (Q gneax's IN 1

&s, i

The term inside the parentheses in Eq. (42a) may
be handled as follows:

(42a)

$2ffeCSg eCS2 (ai
s, &~&& s,

t' s
[2a '~'e'~ D(y~'5')]

=a 'e" S'" '~1- . + ~ ~ ~ [,i ' (42b)

where a= pX'/N, D is Dawson's integral [see Eq.
(20}], and in obtaining Eq. (42b) the asymptotic
expansion of Dawson's integral [Eq. (21)] has
been used.

Substituting Eq. (42b) in Eq. (42a), we finally
obtain

(&")=(r'N~)'" I-—
~
2s&- I +O(N '),2 t n(2n —1)&

No ( Bo j
(43a)

where we recall that S, = —,'No. The terms of order
N ' in Eq. (43b) thus determine the spin fluctua-
tions F"=(S,S,) —(S,)'. We note that F" are O(N)
and have critical behavior. In evaluating the time-
correlation function 8""(t) with Eq. (43a), the terms
of order pf, which also depe'nd on n, will give
additional time-dependent factors. To be consis-
tent with the spirit of our expansion (i.e. , an ex-
pansion inpowers of N '), we must restrictlargest
values of n to be less than O(N'").

Similarly, we obtain for any integer n,

(S',"S'„)= S'"N/2P '. (44)

V. CONCLUDING REMARKS

Observe that by setting + =0 in Eq. (44), we get
(g) =O(N). It is linear in N, whereas the leading
term of (S,) is quadratic in N. The spin fluctua-
tions Y"' have no anomalous behavior at T,.

Substitution of Eqs. (43a) and (44) in Eq. (30b)
gives the following expression for the time-cor-
r elation function:

ig x~g""(t)= --, ——(Aa —B, ')i cos —t
2 px' 2h *

& h

, . f', PX g . (Xa+-,'i~ 2No —A-, sin~ —t. (45a)
2B,A'

In the above expression, those containing t and t

come from the terms of N '. Hence, our results
are valid for 0 ~ t& t,„.where t,„=(h2N/Xa)'". In
this range of t, the correlation function is

8"*(t)= (S'„) cos(Xo/5)t+-,'t(S',)'" sin(Xo/h)t.

(45b)

In the low-temperature region (T& T,) the cor-
relation function is oscillatory, whereas in the
high-temperature region the correlation function
shows Gaussian behavior. Since v- 0 as T- T, —,
it is evident that the Ising-like system exhibits
critical slow down as in the high-temperature side.
The form of critical slow down is, however, very
different from the conventional form. " Finally,
we note that in the isotropic limit (i.e. , X-0) both
the XY- arid Ising-correlation functions, in Kqs.
(41b) and (45b}respectively, reduce to the same
time-independent correlation function as is re-
quired.

where

. 1 2g 1 Pj
B,(1+a) B,(l-o'}' PX o 2B, '

and see Eq. (24b) for B,.
Observe that for n =1 we have

(S',) = S',[I +O(N-')],

(43b)

We have derived the transverse component of the
time-correlation function 3""(t) for the spin Van
der Waals system, valid to the time scale t & O(N '~')
in an appropriate choice of units. Our results for
the time-correlation function are not of exponential
form as one might have expected from the simi-
larity between the Van der Waals and Ornstein-
Zernicke-type models.
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As is already known, all the Van der Waals sys-
tems belong to one static universality class quite
unlike the nearest-neighbor models. Our work
shows that dynamic properties are, however, rebore
subtle: For T&T, there is one dynamic class,
but for T&T, there are two classes.

That there is but one static universality class
for the Van der Waals system seems nevertheless
reasonable. In the high-density limit, the spin in-
teraction evidently is smoothed out, thereby masR-
ing spin dimensionality, at least to first order.
But for dynamics, time evolution is still governed
by the commutation relations of spin operators
which are not affected by high densities. As a re-
sult, apparently not all subtle details of quantum
origin are averaged out. For example, for the
Ising-like system in the condensed phase, 8'"(f)
shows a kind of Larmor precession about the axis
of the spontaneous magnetization (S,). It preeesses
indefinitely and has a frequency which depends on
the spontaneous magnetization. At high tempera-
tures, the system ceases to precess as there is
no longer any spontaneous magnetization. For the

XY -like system in the condensed phase, the same
correlation function cannot precess as in the Ising-
like system, since the spontaneous magnetization
now is also in the transverse direction. Thus, the
time-correlation function smoothly approaches an
equilibrium and it is also unaffected by the onset
of critical fluctuations. Finally, since these dy-
namic features are consequences of the comm'uta-
tivity property of spin operators, it seems rea-
sonable to conjecture that the nearest-neighbor
models would have qualitatively similar dynamic
behavior as described by the Van der Waals
models.
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