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Spectral excitations in the one-dimensional spin--, dimerized Heisenberg chain:
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A zero-temperature lattice renormalization-group calculation is presented and applied to the

antiferromagnetic one-dimensional dimerized spin- —Heisenberg chain. The calculation indi-
2

cates the existence of a gap in the spectrum of the dimer system, which vanishes only in the

limit of a uniform spin chain. To improve the accuracy of the numerical estimates of the

ground-state energy and gap, an iterative extension of finite-chain techniques is also applied.

These approximate techniques are checked against the dimerized XYchain, for which an exact
solution is found.

I. INTRODUCTION

The existence of a gap in the excitation spectrum
of a dimerized antiferromagnetic spin-

2
Heisenberg

chain is not yet rigorously established. Recent mag-
netic measurements' on the spin-Peierls system
(TTF) (CuS4C4(CF2)4) (TTF = tetrathiafulvalene)
provide rnotiv'ation for consideration of this question.
These measurements have been interpreted in terms
of an earlier Hartree-Fock (HFA) treatment2 of the
dimer Heisenberg system, which does indicate the ex-
istence of a gap. More recent numerical calculations
on finite chains'4 support the HFA calculation.
Ho~ever, a calculation' based on a Green's-function
decoupling which conserves the spin isotropy of the
dimer chain produces an acoustic band in addition to
the band with gap of the HFA.

The Hamiltonian for the Heisenberg dimer chain
with free ends is

N

Jl S2j ' S2j+1 + J2S2j+1 ' S2j+2 ~

1

where S~ is the spin-
2

vector operator (Sg,Sg, S~) at

site p, and

1 0S'=—
2 0 —1

etc.

We will also consider the XYdimer chain, the Hamil-
tonian for which has the form (I), where S is a two-

component vector (S",S'). In both cases, we consider
the limit of a large number 2N of spins. We also
take Ji «J2 «0. There pre two limiting cases about
which exact statements can be made:

(i) For J2 =0, the chain breaks into N noninteract-

ing dimers. The Heisenberg (XB ground-state ener-

gy per spin is @0—Eo/2N = —
—,J1 (—„J1),and there

is a gap I Ji (2 Ji), corresponding to the energy re-

quired to excite a single dimer.
(ii) For J1-J2, both ground-state energy' and

low-lying excitation spectrum' are known for the
Heisenberg system. The ground-state energy per site
is $0 = —0.4431J; and the spin-wave excitation spec-
trum is gapless, 5=0. For the XYmodel, these
quantities are $0= —J1/2r and 5 =0.

The XYdimer system can be solved exactly for its
ground-state energy and excitation spectrum, for all
values of y =—J2/Ji. Details are presented in Appen-
dix A.

This paper describes another approximation to the
one-dimensional dimerized spin systems, utilizing a
particular renormalization-group (RG) approach
which has already proved useful on other quantum
systems in particle theory9 as well as statistical
mechanics' " ar;d solid-state theory. ' ' The
present calculations do not require the full RG
machinery', a critical-point analysis is not needed for
the questions of interest here. As a test of this RG
calculation, a second series of calculations, essentially
an iterative extension of finite-chain techniques '
(IFC), is presented. Unlike the RG calculation,
which provides information on the scaling behavior
of the system, the IFC approximation as applied here
provides useful inform. ation only on the eigenvalues.
The two treatments do share some common features,
however. In both, the full lattice is viewed as a sys-
tem of coupled finite blocks, each of which is to be
solved exactly. The coupling between adjacent blocks
is written in terms of a truncated basis which is a
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subset of the full set of single-block eigenstates. It-
eration of this scheme produces approximate eigen-
vectors and eigenvalues for arbitrarily large lattices.

Section II of this paper contains a more detailed
exposition of the RG calculation and a discussion of
results for both the XYand the Heisenberg dimer
chains. Section III describes the results of the IFC
calculation for both models. The IFC and RG results
are discussed and compared in Sec. IV.

where i =1,2, ..., N, labels the position of the site
within block 2p or 2p+1. The intrablock terms have
the form

II2p=J(S2p. l S2p, 2+ys2p, 2 s2p3

+y S2p, N —1 S2,N )
S

2p+1= J(y S2p+ 1, 1' S2p+ln 2+ S2p+1 2
' S2p+1

II. RENORMALIZATION-GROUP CALCULATION

A. Description of the method

+ +S2p+1N 1 S2p+1N)

and the interblock couplings have the form

(6)

In this section we shall describe calculations-which

are similar in approach to the lattice renormalization-
group techniques" frequently used to calculate critical
behavior. We shall establish recursion relations on a
set of parameters which define the Hamiltonian, and
we shall find fixed points of these recursion relations.
We shall not, however, carry out the usual analysis of
trajectories about the unstable fixed point. In order
to maintain the symmetries of the system throughout
the iterative process, we shall cast the Hamiltonian
into the form

II "'= (—J'"')X [(S2JS2J+( +S2JS2J+1 +2)2, " $2JS2J+1)
J

+y (S2J+1S2J+2 +S2J+1S2J+2

+ 2 p'"'s;j+ 1s;j+2)

+ C (I2J + I2J +1)]

2p, 2p+1 J S2p, N S2p+1, 1

~zp+1, 2p+2 7JS2p+1,N Szp+2 1

N

s2 X s2
J~1

(g)

We choose our new basis to contain the two states
{[+),, (

—),), where )+), ([ —.),) is the state of
lowest energy E+ (E ) in the subspace

1 1
S,*=+

2 (——,). These states are the lowest-energy

states of the old basis, and they may be expressed as

In Eqs. (6) and (7) the labels n are suppressed.
The diagonalization of the intrablock Hamiltonians

and subsequent truncation of the bases are expedit-
ed' by the observation that 5, commutes with H, "
(for q = 2p, 2p + 1), and thus that the eigenstates of
Hq may be chosen to be eigenstates of S,, where S,
is the total spin z component in block q

where I represents the 2 x 2 identity matrix. The ini-
tial conditions, compare Eq. (l), are

J(Q) J (Q) y(Q) c f( ) f C( ) 0jtL

where c =1 for the Heisenberg system, c =0 for XY.
We now proceed to demonstrate the recursion from n

to n +1.
As mentioned above, the first step is to associate

the lattice sites into blocks of N, sites. The Hamil-
tonian is written as a sum of intrablock and inter-
block terms

(n) M (n) (n) (n)
~~ 02p +02p+1 + ~zp, zp+1 + ~2p+l, zp+2

(n)

p

N

+ C(") X (I2p; +I2p+1;)

{+)("'"=X"XA"".),„I " "&'"',
S

'N
S

) (n+1) X.. . X )
—(n) {a . . . a )(n)

S

1 N
S

)
( +() nX. . . Xp —(n)

~e . . . ~ )(n)

1 N
S

whereX, represents a summation over the two-spin

states {
+)((") at site I of the block, and {el eN )(")

is the product state {el)(") {eN )("). From the sym-

metry of Eq. (6) it is easy to see that E+("+') = E("+')
and that

~ + (n) A
+ (n)

"«N «N
S S
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The next step is to rewrite the interblock coupling
terms. To this end, we calculate the matrix elements
of Sn+I

" and Sn I" in the new basis

and similarly

2n+1, 1 4N —I +1 S2n+1
C'+ (n) (n) + (n +» (lib)

0
g+(n) g(n) g(n)g+(n+»

2p I S I 0 p S I 2p (11a)
S~(n) &(n)Sn(n+1)

p, l '9I 2p s

~2p+1, I —'9N —I+1 ~2p+1
Cz(n) (n) z(n +1)

(11c)

(1 ld)

where
z(n) %'. . . %' % . . . % X +(n) g-(n)

1 I -1' +' I +1'
S S'I -1'I+1 'N,

I

(n) Q. . . Q. . . g& g +(n)
~ " +I"'&N

1 S
S

The coupling terms become

V2n 2n ~1 ~ (2 J "') [(g~"')'(S2nS21, +1 +H.c.) +2II, " (r)II" ) S&I,S&n+1]

V2n '+1 2, +2 ~ ( 2 y
" J "') [($1" ) (S2n+(S2n+2 +H.C.) + 21 " (2),"')'S2n+)S2, +2 ]

(12)

(13)

The recursion may now be demonstrated. Putting
Eq. (13) into Eq. (5), we obtain the original form,
Eq. (3), where we have

J(n +1) (g (n)) 2J(n)
S

1 2
((n)

(N+ 1) 1 (n)

fiY,
'

1

(n)

(n+» s (n)
gN (n)

y( + ) ~ p( )

g
(n)

l

C("")=N C(n)+E("»
S (14)

In general the eigenvectors
~

+ )
("+') and eigen-

values E0"+'), as well as the recursion coeIIIcients of
Eq. (14), are determined by machine. For the XY
system (p, (0 = v' ' =0) with N, = 3, however, the
algebra is simple and the results instructive; details
may be found in Appendix B.

B. Results

We have done the calculation for N, =3, 5, 7, and

9, finding always the fixed. points corresponding to

These recursion relations define a renormalization-
group transformation for the ground state of the
Hamiltonian. The parameters J n and y" provide
information on the splittings of the lowest states of
the system, p,

" and v" determine the symmetries
of the fixed point, and C'" may be used to find the
ground-state energy per site $0 through the relation

(15)

the limits discussed earlier.
(i) For0~y &I, y" Oand J" J as

n 0 . The Hamiltonian at the fixed point
describes a system of noninteracting dimers, with a
nondegenerate ground state and gap LL =J" (2 J")
for the Heisenberg (XY) system p,

(0) =1(0) = 1 (0).
(Strictly speaking, E+'"' =E'") and the odd-N, ap-
proximation yields a doubly degenerate ground state.
This degeneracy is due to the fact that the odd-N,
block at y =0 contains a free spin. )

(ii) For y( =1, y" =1 for all n, and J" 0.
The system remains at the uniform limit, with a mul-

tiply degenerate ground state of finite energy.
In Table I we have listed, for the XYsystem, the

calculated values of $0 and 4 for several values of y
and for N, =3,5,7, and 9; also listed are the
corresponding exact values, calculated from Eqs.
(A9) and (A10). Figure I contains the exact results
for h(y) (solid line) and a more complete collection
of N, = 7 results (open circles). Observe that our ap-
proximate results for IIIO are in qualitative agreement
with the exact results, and that agreement improves
with increasing N, ; for N, =9 our results are within
5% of the exact values for all y (for fixed N„ the er-
ror in @0 increases as y increases to 1). On the other
hand, results for h(y) are relatively insensitive to N,
The values of LL(y) at the limits y =0, 1 are correct,
but the derivatives are not. The approximate curves
approach y =0 as (1+y') ' [compare Eq. (B7)] and
approach y =1 as (1 —y) with a ——0.72 (N, =7),
whereas the exact curve is described by the relation
5-

2 (1 —y) [Eq. (A10)].
Table II contains RG values of 6 and @0 for the

Heisenberg system, as well as the HFA values. The
HFA (filled circles) and N, =7 (open circles) results
for I (y) are also presented in Fig. 2. Again, increas-
ing N, decreases, and hence improves, the estimate
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TABLE I. RG results (in units of J~) for XYground-state energy per site and for the gap, for several values of y, compared

with exact values (Appendix A).

Ns

'y —4p —4p —4p —4p

9 Exact

0.0
0.2
0.4
0.6
0.8
1.0

0.2500
0.2501
0.2513
0.2557
0.2649
0.2828

0.500
0.481
0.429
0.351
0.237
0.0

0.2500
0.2511
0.2543
0.2608
0.2725
0.2927

0.500
0.480
0.422
0.334
0.218
0.0

0.2500
0.2514
0.2559
0.2638
0.2769
0.2983

0.500
0.480
0.420
0.325
0.207
0.0

0.2500
0.2517
0.2568
0.2657
0.2797
0.3019

0.500
0.480
0.420
0.322
0.198
0.0

0.250
0.253
0.260
0.273
0.292
0.3183

0.500
0.400
0.300
0.200
0.100
0.0

of $0. For N, =9 the values for @0 represent an im-
provement over the HFA; for y =1 the approximate
@0 is within 5% of the exact value. As before, results
for h(y) are relatively insensitive to N, and correct at
the limits y =0, 1. The results seem to approach
y=1 as (I —y) with a=0.76 (N, =7).

Note that information concerning only the lowest
states of each block at iteration (n) is used to con-
struct the blocks of iteration, (n + I), information
concerning higher states being ignored. This would
explain the poor convergence of the gap with increas-
ing N, .

. III. ITERATED FINITE-CHAIN APPROACH

In order to improve" our estimates of 6 and $0,
we have carried out another series of calculations, in
which the truncated basis at each step is taken to be
the NL & 2 states of lowest energy, regardless of sym-
metry considerations. Instead of identifying a new
spin Hamiltonian (J ",y ",p, ",v ",C '

I of given
form at each iterative step, we consider a general ma-
trix formulation of the problem. This scheme can be

thought of simply as an extension of finite-chain
techniques: one solves equivalent blocks (even N, )
on the original lattice, truncates the basis to NI.
states, couples adjacent blocks in pairs, and iterates
the pairwise coupling. Details of the scheme may be
found in Sec. III of Ref. 13(b).

We have carried out these calculations for NL, =4
and Ni =8, with original blocksize N, =4, 6, 8.
Results of these calculations for the XY-dimer chain
are presented in Table III and in Fig. 1; for Heisen-
berg results, see Table IV and Fig. 2. In all cases we
find one of three behaviors as n ~~: (i) For y ( y',
we have the gap 4" 5"WO. The ground state is
nondegenerate, and the lowest excited states highly
degenerate, characteristic of the limit y =0. (ii) For
y = y', we have the gap 4 " 0, and the ground
state has high degeneracy, characteristic of the uni-
form chain, with splittings —I/N. The value of y" is
not exactly unity. (iii) For y ) y", the ground state
is'four degenerate, with a finite gap to the highly de-
generate excited states. This four degeneracy is
characteristic of the limit y" = ~, which creates two
free spins, one at each end of the even-N, block. '

0.5

0.4

I.O»

0.8

0.3 0.6

0.2

O. I

0 0.2 04 0.6

+ 0
~ X +

oi" i+
0.8 I.O

0.4

0.2

0 0.2 04 O.B 0.8

~ o

I.O

FIG. 1. Results for the XYgap. The solid line represents
the exact result. Open circles are the RG results, N, =7.
IFC results for various (N„NL) are also presented: filled

circles for (4,4); crosses (+) for (4,8); crosses (x) for

(8,4).

FIG. 2. Results for the Heisenberg gap. Filled circles
represent the HFA results of Bulaevskii; open circles the
RG results for N, =7; crosses (+) the IFC results for
(N„NL) = {4,8); crosses (x) the IFC results for

Ns NI ) = (6, 8) .
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TABLE II. RG results (in units of J~) for the Heisenberg ground-state energy per site and gap for several values of y, com-

pared with HFA results (Ref. 2).

N,

y —4p —4p —4p —4p

HFA

0.0
0.2
0.4
0.6
0.8
1.0

0.3750
0.3748
0.3736
0.3729
0.3765
0.3913

1.0
0.976
0.893
0.747
0.525

0.0

0.3750
0.3756
0.3771
0.3795
0.386/
0.4069

1.0
0.976
0.884
0.706
0.460
0.0

0.3750
0.3760
0.3788
0.3836
0.3928
0.4157

1.0
0.976
0.884
0.697
0.421
0.0

0.3750
0.3762
0.3798
0.3861
0.3969
0.4212

1.0
0.976
0.884
0.695
0.402
0.0

0.3750~

0.3764
0.3774
0.3825
0.3943
0.4196b

1.0a

0.885
0.738
0.557
0.329
0.0

'Exact result.

Exact result (Ref. 6) is —gp =0.4431.

TABLE III. IFC results for the XYground-state energy per site and for the gap, for several values of y, compared with exact

values. The last row contains our estimates for y'. . Results are in units J~ =1.

N„N,
y —4o —4p

4,8 6,4
—4p

6,8 8,4
—4p

8,8 Exact
—

@p

0.0
0.2
0.4
0.6
0.8
1.0

0.2500
0.2517
0.2569
0.2662
0.2796
0.3060

0.500
0.402
0.308
0.223
0 023a

0.191'

0.2500
0.2522

0.2588
0.2698
0.2842

0.3048

0.500
0.408
0.327
0.239
0.135
0.039

0.2500
0.2518
0.2573
0.2670
0.2807

0.3053

0.500
0.404
0.310
0.218
0.067
0.152

0.2500
0.2522
0.2589
0.2700
0.2855
0.3060

0.500 0.2500 0.500 0.2500 0.500 0.250 0.500 .

0.408 0.2519 0.405 0.2522 0.407 0.253 0.400
0.327 0.2578 0.310 0.2589 0.324 0.260 0.300
0.245 0.2679 0.216 0.2701 0.237 0.273 0.200

0.153 0.2823 0.094 0.2850 0.136 0.292 0.100
0.027 0.3060 0.123' 0.3065 0.041 0.3183 0.0

y
4 0.78 1.07

y )y, see text for discussion.

0.82 1.05 0.86 1.08 1.0

TABLE IV. IFC results for the Heisenberg ground-state energy per site and for the gap, for several values of y, compared
with HFA results (Ref. 2). The last row contains our estimates for y'. Results are in units J~ =1.

N. NL
—4p

4,4
—4p

4,8

4p

6,4

4'p

6,8
—4p

8,4

4p

8,8 HFA
—4p

0.0
0.2
0.4
0.6
0.8
1.0

0.3750
0.3761
0.3799
0.3870
0.3983
0.4162

1.0 0.3750 1.0 0.3750 1.0 0.3750
0.890 0.3766 0.893 0.3763 0.893 0.3766
0.757 0.3816 0.766 0.3807 0.762 0.3817
0.598 0.3907 0.618 0.3887 0.606 0.3909
0.403 0.4044 0.452 0.4012 0.413 0.4056
0.151 0.4248 0.260 0.4204 0.156 0.4270

1.0 0.3750
0.892 0.3765
0.761 0.3813
0.621 0.3900
0.444 0.4034
0.226 0.4232

.1.0
0.893
0.762
0.607
0.427
0.207

0.3750
0.3765
0.3816
0.3908
0.4051
0.4254

1.0 0.3750' 1.0'
0.895 0.3764 0.885
0.763 0.3774 0.738
0.613 0.3825 0.557
0.442 0.3943 0.329
0.253 0.4196 0.0'

1.201.07y'=
'Exact result.
Exact result (Ref. 6) is —

@p =0.4431.

1.07 1.16 1.15 1.20 1.00a
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This behavior is equivalent to the situation (i) under
interchange of J] and J2 (7 y ').

Unlike the RG approach, the IFC calculations
reproduce the linear behavior of h(y) for the XYsys-
tem; they also provide more accurate values of of It p.

These observations are in agreement with an earlier
comparison of the two approximations, applied to the
one-dimensional Ising chain in a transverse external
field. " The improvement may be understood as the
result of retaining a larger number of states per itera-
tion in the IFC; the choice of states without regard to
symmetry presumably accounts for the fact that y

' is
only approximately unity. However, the general
trend for y'is improvement with either increasing N,
or increasing NL.

The NL =4 results for the XYgap show unexpect-
edly strong behavior for all values of N, which we
have considered. For y & 0.7 the gap function is
linear, extrapolating to zero at a value of y greater
than one; however, at y =0.7 a kink occurs, and we
find y' & 1. The occurrence of the kink coincides
with a level crossing which changes the degeneracies
of the N, -block eigenvalues, in ascending order, from
(1,2,2, 1,. . .) to (1,2, 1,2, . . .), and thus aff'ects the
choice of states for NL =4. Neither the kink nor the
difference in truncated basis appears for NL =8. In
Table III we have listed, for the NL =4 calculations,
the gap (with respect to the four-degenerate ground
state) for y

' ( y ~ l.
For the Heisenberg system, tge IFC approximation

provides an improvement over the RG for both the
estimate of $p(y) and the agreement with the HFA
on the gap for small y. The IFC also provides
greater accuracy (4% at y =1) in @p(y) than the
HFA. For these calculations, y' ) 1 always. Also, it
is difficult to discern trends in the results with in-

creasing NL and Ns.

IV. DISCUSSION

sized blocks. For example, in the IFC for
NL = N, =8, the value of the gap is renormalized
from 0.530 at the first iteration (corresponding to the
standard calculation'4) to 0.442 after several itera-
tions. This is consistent with the renormalization of
Jwhich occurs in the RG calculations, see Eqs. (14)
and (B7).

Finally, we note that a similar RG study' of a
more general system, the spin- —, dimer XYZ chain,

yields information which may be useful in under-
standing the special cases considered here.

Note addedin proof: The program which produced
the results listed in Table IV contained an error af-
fecting later iterative steps. A correct treatment
yields a slight further improvement in the ground-
state energy and quantitative, though not qualitative,
differences in the gap h(y). Correct results for
NL = Ns =4 are presented by Fields, et a/. ' Interest-
ingly, for the Heisenberg dimer system, the NL =4
IFC calculation is equivalent to an N& =. 4 RG calcula-
tion. That y' ~1 is due to the lack of J~ J2 sym-
metry in the lattice block Hamiltonian for even NL.
The author thanks H. Blote for suggesting the ex-
istence of an error.
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APPENDIX A: SOLUTION OF THE

ANTIFERROMAGNETIC XYDIMER CHAIN

The major result of this work is a strong indication
of the existence of a gap in the spectrum of the anti-
ferromagnetic dimer Heisenberg chain. This is an
immediate consequence of the fact that y =1 is an
unstable fixed point of the system, while y=0, ~ are
stable fixed points. For y A 1, the system is
equivalent to a completely dimerized system y =0 (or
~) insofar as its ground-state symmetries are con-
cerned.

Support for this conclusion is provided by the IFC
approximation, which we expect, from trial calcula-
tions on the XY dimer system, to provide estimates
of the gap which are quantitatively correct at small y.
In this region the IFC calculation supports the HFA
results. 2 As y approaches unity the IFC values for
the gap are larger than the HFA values; however,
they are smaller than the values produced by the
more standard finite-chain calculations, for equally

We consider the Hamiltonian

N

H = (2 J) x [SJ ]SJ 2 +SJ ]SJ 2
J~]

+ y(SJ+2SJ+] ] +SJ2SJ+] ])] (Al)

SJ i Sg+]]ltt i (A2)

Converting to fermionic operations ]t]J ] and ]i]J 2 as in

the treatment of the dimerized Heisenberg chain, ' we

rewrite Eq. (Al) in the form

H = (
2
J) g [ttkt b„(l + ye'") +H.c.]

k
(A3)

where the index i =1,2 labels a particular site within

the jth dimer unit cell. We impose periodic boundary
conditions
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where we have

1/2

= 1 —IkJ

' 1/2

l}i/2 = X bk8

and

k=2n 2/rIl/, n =1,2, . . . ,W

(A4)

(AS)

H = X H2p +H2p+1 + V2p, 2p+1 + ~2p+1, 2p+2

g
+C" X (I2p1+I2p+11)

where we have

H2p = (
2
J) (S2p 1S2p 2 + yS2p 2S2p 3 +H.c.)

(Bl)

and

tan2@, =
1+y cosk

takes the Hamiltonian (A3) into the form

H = X Wk(Ak™k PkPk)
k

(A6)

(A7)

wk = (—,J) fcos2$k + y cos(k +2/k) l . (As

The ground state of the system consists of a filled p-
particle band; its energy is

NJ 1/2
Eo= —X Wk = — (1+y)E

71
,
1+7,

(A9)

Note that we have taken the dimer length to be uni-
ty. The canonical transformation'

nk ll/(2) l (k +pk) e

bk = [I/(2)' 'l(~k pk)e

Hip+1 (2 J) (yS2p+1 1S2p+1 2 +S2p+1 2S2p+1 3 +H.c.)

V2p 2p+1=(2 J)(S2p 3S2p+11 +H c).1

1
p2p+1 2p+2 = ( 2

J) (S2p+1 3S2p+2 1 +H.c.)

(B2)

( 1 J) (I + y2) 1/2 (83)

In Eqs. (B2), and henceforth, the superscript n is
suppressed,

The first step is to diagonalize the block Hamiltoni-
ans 02~ and 02~+1 within the invariant subspaces
corresponding to S'=+ —,, where S' denotes the

total-spin z component. The, subspace for S'=+ —is
2

(I++—&, I+—+&, I

—++&};
the subspace for S'= —

2
contains the complements

of these states. The diagonalized is easily done.
Denoting the states of least energy by I+ &, and the
corresponding energies by E+, we find

~here E is the complete elliptic integral of the second
kind. The second equality in Eq. (A9) is obtained by

converting the sum on k into an integral, a correct
approximation for large N.

The minimum excitation energy of the Hamiltoni-

an (A7), which is the gap 5 in the original spin sys-

tem described by Eq. (Al), is

I+)„=(2)-'" y I++—) —I+—+)
2) 1/2

1

1+
2 1/2 I ++)

/

a=W =(—J)(1 —y) (AIO) I-&2p=(2& '" y
I
—+& —

I

—+—
&

(I + 2) 1/2

In the limit y =0, our results reduce to those ex-

pected for A/ independent dimer pairs: @p/Il/ =—
2
J

and 5 =
2

J. In the opposite limit of a uniform chain

(y =1), our results likewise agree with the results of
Lieb, Schultz, and Mattis, when account is taken of
the increased periodicity of the lattice.

AFFENDIX B: RG ON THE LYDIMER, -

BLOCKS OF THREE SITES

We begin with the Hamiltonian of Eq. (S), with

Ns =»

1

(I + 2)1/2 I

I+&2...= (2)-'" ' I++-& —I+-+&
(I + y2)1/2

+
( 2), /2 I

—++)

I -&2p+1 (» '"
I
—+& —

I

—+—
&2) 1/2

1

y+,„,I+—)
1

(B4)
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We now construct the new spin operators. Simple
algebra leads to the result

(n+1) ( (n))3

(n +1) &(n +1) 0 p

(88)

(89)

&+ l&2'p, 1I -& = &+ l&2p+1, 31-& =
1+y2

&+1~2;.3I-& = &+1~2;.1.) I-& =
1+~2 I/O

(85)

—1

(1 + 2)1/2 '
(1 + 2)1/2

Use of Eq. (14) gives the recursion relations

(86)

all other matrix elements being zero. Comparing Eq.
(11),we have

C(n+1) 3g(n) 1 J(n)[1 + (~(n))2]1/2
2 (810)

Equation (88) is a recursion relation with two fixed
points in the range 0 ~ yo + 1: an unstable fixed
point 7

' =1 and a stable fixed point 7 "=0. [The
stable fixed point y" =0 is equivalent to y

' = ~,
under change of scale from Ji to J2 in Eq. (1).]
Machine calculations for larger N, indicate that Eq.
(88) has a simple generalization

J(n+1) [1 + ( (n))2] —1J(n) (87)
(n + 1) ( (n)) s (811)
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