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A, type of theory capable of reconciling the localized- and itinerant-electron models of a fer-

romagnetic metal is discussed. This kind of theory contemplates a distribution of "exchange

field" configurations which correspond very roughly to the spin configurations of the localized

model. Computations involve thermal averages over these configurations, each configuration V

having an effective energy E(V). Starting from the band structure for ferromagnetic iron, the

E( V) have been estimated for certain configurations V. The results are reasonably consistent

with the observed Curie temperature of iron, in spite of the presence of exchange fields -1—2

eV, and give some suggestion of behavior characteristic of the Heisenberg model.

I. INTRODUCTION

The development of a satisfactory theory of fer-
romagnetic metals has been made diScult by the ex-
perimental data. Some data are readily interpretable
in terms of a band-theory (itinerant-electron) model,
other data in terms, of a localized-electron model.
For example, how in the localized model can one
understand the non-half-integral atomic moments ob-
served? Or how, in the itinerant model, explain a
Curie temperature -1000 'K for iron when calcula-
tions always give an exchange field -1—2 eV?

These questions have, of course, been the subject
of much debate over the years (see, for example,
Herring' ). Some progress in the right direction has
been made by starting from the itinerant model and
allowing approximately for spin-fluctuation effects, '
but the relationship of these results to the localized
picture remains vague. The experimental results sug-
gest that one could usefully look for some sort of
amalgam of the localized and itinerant models. One
approach to such a theory is represented (within its
limitations) by the work of Prange er al. ,

4 ' which
has much in common with the ideas presented here.
An alternative way in which such an amalgam might
be achieved is revealed by the older type of theory
developed by Schrieffer, Evanson, and Wang' ' and
by Cyrot. " ' In this paper we have followed the
latter approach; the prime question studied is: Can
the Schrieffer-Cyrot kind of theory give a reasonable
account of the properties of a ferromagnetic metal
such as iron?

The theories of Refs. 8—13 are necessarily based
upon the functional-integral technique'4'5 for many-
body problems, since this is the only known tech-
nique which gives the desired kind of result. Howev-
er, the application of this technique is beset with am-
biguities and alternative methods of formulation (see
Appendix A). For example, the formulation of the
method corresponding most closely to the approach

of this paper is different from any used in Refs.
8—13; this new formu'lation is derived in Appendix A

(it has also been independently derived by Prange
and Korenman7). Thus, if the applicability of the

method to iron is to be.tested these ambiguities must
be avoided or resolved. To this end we have in the
main body of the paper made use of only the most
general results [Eqs. (I)—(4) of Sec. III] obtained by

functional-integral method. Remaining ambiguities
have been resolved by an appeal to certain physical
arguments and some parameters have been fixed by a

study of the relationship of the method to the
Hartree-Fock ferromagnetic-ground-state calculations.
The rather general results obtained in' this way have

then been augmented by certain special calculations
(see Secs. IV and V) to test how the method might

work when applied to iron.
The results obtained in this way do, indeed, sug-

gest that such an approach is of value. They provide

an explanation of why the Curie temperature of iron

is so low in spite of the largeness of the exchange
fields (—I —2 eV). They give an indication of why

iron seems in some experiments to behave very

much like a Heisenberg model of localized spins.

However, an attempt to reduce the-results more pre-

cisely to a Heisenberg model along the lines of
Cyrot's" cluster expansion suggestion did not work

very well.

The general plan of this paper is as follows. In S'ec.

II we motivate the theory by a discussion of one of
the serious problems facing the itinerant model,
namely the low value of the Curie temperature T~
compared to the necessary exchange fields. A way
out of this dilemma, suggested by the localized
model, is considered and the resulting physical pic-
ture described. In Sec. III the manner in which this
physical picture may be formalized using the
functional-integral method is specified and its rela-
tionship to the Hartree-Fock ground-state calculations
indicated. In Secs. IV and V we detail approximate
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calculations (based upon the ferromagnetic band
structure) of the energy of an "impurity" in the fer-
romagnetic ground state of iron, the impurity being
an iron atom with its moment reversed (in Sec. IV)
or turned at an angle (in Sec. V) relative to the direc-
tion of magnetization. These calculations provide
useful information concerning the energies E(V)
which appear in the formulation of Sec. III and sug-
gest that this formulation is actually capable of
resolving the T~ problem. Some conclusions are
given in Sec. VI. In Appendix A the ambiguities of
the functional-integral method are discussed and the
variant closest to that required by the arguments of
Sec. II is derived. In Appendix B certain technical
details relating to the calculations of Sec. IV and V
are described.

II. PHYSICAL PICTURE

The need for the kind of theory to be discussed (at
least in the case of iron) may be illustrated by consid-
ering the problem of calculating the Curie tempera-
ture Tc within the framework of band theory (itiner-
ant-electron theory). Self-consistent calculations of
the band structure of ferromagnetic iron'6 give a very
reasonable account of the ground state properties,
e.g. , the size of the magnetic moment. Inevitably
they give exchange splittings h,„-2eV between the
energies of the up and down spin d-electron bands.
If one now tries to extend this calculation to finite
temperatures and determine at what temperature the
magnetization disappears, one obtains an estimate
Tq'" for the Curie temperature given by
ks T '" -5,„, i.e., TP'" -20000 'K, since the only
excited states entering the calculation are the Stoner
excitations of electrons from the majority to the
minority spin band. As the observed Curie tempera-
ture T~-1000 'K, one must conclude that there ex-
ist other more important excited states, that these
other excitations. have much lower energy and are ca-
pable of reducing the magnetic moment.

%hat is the nature of these excitations? They
might be thought of as some sort of spin-wavelike
collective mode; it is this thinking which underlies
the work of Moriya et al. ' and Klenin et al. ' Anoth-
er approach is suggested quite naturally by considera-
tion of the localized electron model. In this model
the magnetization is reduced as the temperature in-
creases not by a reduction in the magnetic moments
of the atoms (as in the case of the Stoner excita-
tions), but by the appearance of excited states in
which the atomic moments are no longer oriented
parallel to each other, but are to some degree ran-
domized in direction.

How would one describe such excitations in the
itinerant model? One approach is exemplified by the
work of Prange et al. 4 ' An alternative method,

based upon the notion of the exchange field, will be
described here. The total magnetic moment on an
atom is a vector quantity s. Furthermore, the ex-
change interaction is suSciently localized in nature
for one to think of the exchange field acting on the
electrons of an atom to be mainly determined by the
magnetic moment of that atom. Thus one would ex-
pect the exchange field at an atom with moment s to
be given by v =Js where J is some constant [the ex-
change field has in reality the character of a vector in
spin space, see Appendix A or Eqs. (21)—(23)]. In
the ground state all the atomic moments are parallel
and the same exchange field exists at all atoms [as in-
dicated schematically in Fig. I (a)1. However, in an
excited state in which the directions of the atomic
moments are disordered the exchange Geld varies in
direction from atom to atom as indicated in Fig. 1(b).
This suggests that the 1ow-energy excited states of
the itinerant model are states in which the exchange
field varies from atom to atom, and so are not easily
describable in ordinary band theory, except in some
special cases of high symmetry such as an antifer-
romagnetic arrangement.

One is led in this way to the following physical pic-
ture. At temperature T =0 only the ground state is

important, the exchange field is the same at all atoms
and band theory calculations are good. At tempera-
tures -Tc many other excited states in which the ex-
change field varies from atom to atom are present.

(c)

(e)

FIG. 1. Various exchange-field configurations (see text).
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As the itinerant electrons move from atom to atom
they are influenced by the variable exchange field in
such a way that if the exchange field at an atom is v
there will be a preponderance of electrons at that
atom with spin in the direction v; it is this preponder-
ance which in turn generates the field v in a kind of
selfconsistent fashion. One may think roughly of the
localized model as giving a description not of the
spins of electrons localized at the atoms, but rather
of exchange fields localized at atoms. The electrons
are itinerant, but are influenced in their motion by
the localized exchange fields in a way which tends to
make the latter self-maintaining. It is this physical
picture which may be formalized in the kind of
theory developed by Cyrot" ' and Schrieffer
et al. ,

' to be discussed in Sec. III. E(V, T) =J ' Xv; +F(V, T), (4)

moving in the exchange field specified by' V. X(V, T)
is just the value of the property recalculated for
noninteracting electrons in the field V.

The ambiguities of the method center upon the na-
ture of the exchange fields specified by V and the
coefficients occurring in the quadratic g(V) of Eq.
(3). We will make a choice which corresponds most
closely to the physical picture of Sec. II. This choice
differs in one way or another from any of these used
in Refs. 8—13 and is discussed in Appendix A, For
this particular choice, V specifies a set {vi, vi, . ..} of
vector exchange fields, v~ at atom 1, v2 at atom 2,

. etc. (the v, may be of any magnitude and direction).
Further, E(V) takes the form

III. EXCHANGE FIELD DISTRIBUTION

X(T) =Z ' X(V, T) exp [ PE(V, T)) . —
{v

(2)

Here Vdescribes (for more detail see below) some
exchange field configuration, P = I/ks T, T is the ab-
solute temperature, kq is Boltzmann's constant,
E(V, T) is a kind of energy associated with the confi-
guration V, and X(V, T) is the contribution to Xas-
sociated with the configuration V; the sums (more
strictly integrals) are over all configurations V.

Furthermore, E(V, T) has the form

E(V, T) = Q(V) +F(V, T),
where Q ( V) is a quadratic function of the field
V and F(V, T) the thermodynamic potential (at tem-
perature 7) of a system of noninteracting electrons

We next discuss how the physical picture of $ec. II
can be rendered into a computational scheme. One is
contemplating a distribution of exchange fields
corresponding roughly to the distribution of spin
configurations of the localized model. The only
method known to lead naturally from first principles
to such a picture is the functional integral tech-
nique' ' for many-body problems, and it is this
technique which was used in Refs. 7 —13. As
was pointed out in Sec. I, and is discussed further in
Appendix A, the application of this method suffers
from serious ambiguities. For this reason we will
only make use of its most central results.

The results we shall require (see Refs. 8 —13 and
Appendix A for more details) are that one can write
the partition function at temperature T approximately
in the form

Z(T) = exp [—PE(V, T)),
Iv

and that any electronic property Xcan be approxi-
mately written in the form

where J is a constant energy and F(V, T) is the ther-
modynamic potential of noninteracting electrons
moving in the atomic exchange fields v; [the way in
which a vector exchange field acts on electrons is
specified at Eqs. (21)—(22)). Thus, for example, the
ground state of the ferromagnet corresponds to the
configuration V = {—u, —u, —u, ...},where u is a
vector with the direction of the magnetization and
magnitude equal to the exchange field in the ground
state.

It may be seen that the formalism described above
corresponds very closely to the physical picture of
Sec. II. The configuration V = {vi, vi, ...} corresponds
to the state with atomic exchange fields vl, v2, ... and
therefore roughly to one of the spin configurations of
the localized model. Any, quantity X (e.g. , the mag-
netic moment, an electron Green's function, etc.) is
expressed as a thermal average over the exchange
field configurations V, just as in the localized model it
would be expressed as an average over spin con-
figurations. However, the contribution X(V) corre-
sponding to a configuration is calculated for itinerant
electrons in the field V. What the functional integral
method has particularly provided is the prescription
(4) for E(V), the "energy" to be associated with the
configuration V when forming the thermal averages.

If the theory is suitably formulated (see Appendix
A) it bears a simple relationship to the Hartree-Fock
ground state. If T 0 the sums in Eqs. (1) and (2)

0 0are dominated by the configuration Vo = {vi,vi, .. .}
with the lowest energy E( V). In fact, from Eq. (1)
one sees that at T =0 the energy of the system is just
E(VO) and the value of any quantity X is just X(V0).
Thus one would expect V0 to correspond to the ex-
change field in the ground state. Since E(V) is a
minimum at V = V0, one has
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which gives, using Eq. (4),
i J 8F(V) 0U(= 2J = —Jm(,

8VI v vp

where m! is the spin moment at atom i calculated (at
T=O) for electrons moving in the field V0. Equation
(6) is just equivalent to the Hartree-Fock equations if
the parameter J is identified as that giving the rela-
tion between the exchange field at an atom and the
moment of that atom. Furthermore, E(Vc) coincides
with the total binding energy calculated according to
Hartree-Fock theory; F(V0) is the total energy of the
electrons in the field V0 and. the first term of Eq. (4)
allo~s for the double counting of the exchange ener-

gy in F( VD).

Of course, Eq. (6) may have many solutions and
one must pick the one giving the lowest E( V0) to ob-
tain the ground state. In the case of a ferromagnet
we would expect this to correspond to

(6)

v; = —u, rn;. =rn for alii with u= Jrn,

i.e., the same exchange Geld —u and the same mo-
ment m at all atoms. Equation (6) will determine the
magnitude of u and m, but not their direction (the
magnetization may be in any direction since no
effects giving rise to anisotropy in spin space have
been considered). One sees that the parameter Jmay
be obtained independently of the ambiguous first-
principles theory of Appendix A from a knowledge of
the Hartree-Fock ground-state solution. The latter
gives both the strength of the exchange field and the
moment per atom whence Jmay be obtained using
Eq. (7). From the calculations of Tawil and Calla-
way' for iron we estimated a value J=0.85 eV in this
way.

It may be noted that the theory formulated via Eqs.
(1)—(4) is actually more general than that contemplat-
ed in Sec. II. In Sec. II we considered only the possi-
bility that the atomic exchange field might be turned
at an angle to the direction of magnetization (as do
Prange et al. 4 7). However, the formulation de-
scribed above also admits the possibility that the ex-
change field might vary in magnitude as well as direc-
tion from atom to atom since the vI may vary in
magnitude as well as direction [as indicated schemati-
cally in Fig. 1(c)]. This circumstance enables one to
investigate to some extent how closely the behavior
of the system does resemble that of a localized
Heisenberg model in which the spins only rotate
without change of magnitude (see Sec. V).

It has been argued in Sec. II that a theory of the
kind reviewed above might provide an escape from
the difficulty with the magnitude of Tc in the itin-
erant theory. In the rest of this paper we consider
whether it might actually work when applied to the
case of iron. The crucial question here concerns the
magnitudes of the energies E(V) for configurations
V with magnetic moments M( V) which are small

compared to that of the ground state. If the theory is
to account for the observed Tc, then the energy
differences EE(V)=E(V)—E(VD) between these
configurations V and the ground state configuration
V0 must be -0.2 eV per reversed spin in V (relative
to V0), in spite of the fact that the exchange fields
themselves have the order of magnitude -1 eV. We
shall, in fact, obtain some evidence that the relevant
LE are of this order of magnitude.

IV. ENERGY OF SPIN REVERSAL

In this and Sec. V we shall address the question
posed at the end of Sec. III by describing some calcu-
lations which yield information concerning the mag-
nitudes of the energy differences 4E in iron. The
general problem of calculating E(V) from Eq. (4) is
a very difficult one since it involves estimation of the
thermodynamic potential F( V) of electrons moving
in the disordered exchange field specified by V.

Cyrot"'& investigated the problem by making a clus-
ter expansion of F and also by applying the coherent
potential method (see also Liu"). Prange et al. 4 '
base their calculations on a perturbation expansion for
F appropriate when the angle between neighboring
VI vJ is small. We have preferred to follow the ap-
proach of Schrieffer et al. 9 and obtain information
about the dE(V) by the consideration of more pre-
cise calculations which are possible for certain special
configurations V. In particular, in this and Sec. V we

study the case in which the configuration V differs
from the ferromagnetic ground-state configuration Vp

in only one respect, namely that the exchange field at
a single atom has been changed from its ground-state
value. In this case one is dealing essentially with the
problem of an "impurity" atom in the ferromagnet
and the change hF may be expressed relatively sim-

ply in terms of the (assumed known) ferromagnetic
band structure.

Suppose the magnetization is in the z direction and
that the electron spins are quantized in this direction
so that the majority spins have spin a. =1, the
minority spin a———l. The corresponding ground-state
configuration Vp is given by

Vp. v;= —uz for all i,
where u is the strength of the exchange field in the
ground state and i a unit vector in the z direction. In
this section we shall consider the change in energy
)LE(V~) on going to the configuration Vt [shown
schematically in Figs. 1(d) and (e)] in which the ex-
change field at one atom, i =0, is changed but
remains parallel or antiparallel to the direction of
magnetization,

!

V~.'v~= —ui ifi &0, v0=(v —u)z .
e

The change in the exchange field at atom 0 is vz;
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v & u represents a reduced field [Fig. 1(d)] and
v ) u a reversed field [Fig. 1(e)] at site 0.

To estimate bE(Vi) for iron we will make various
simplifying assumptions which we hope will not in-

validate the conclusions. We will study only the d
band, neglecting effects of hybridization with the s
band. Let us denote by $„ the d-band Wannier
functions of the ferromagnetic band structure, where
s =1,2, . . .,5 labels the five subbands and can=+1 the
spin. We will assume that the pl, are so localized
that the exchange field v; acts only upon the P;,
(i.e., not on the $&, with j & i) and that it acts
equally on all the $1, with different s and oppositely
on $„with opposite o.

The exchange field in the configuration Vo has
translational symmetry and this case can be complete-
ly solved by ordinary band theory. The result is, of
course, the ferromagnetic band structure with energy
levels ok, (k is the Bloch wave vector) and the

corresponding Wannier functions @;, .

The configuration Vi differs only from Vo in that
there is an additional impurity exchange field v at site
0. The Hamiltonian describing the electron motion
in this case can therefore be written

H = X ~ k, c~, c-„, + v $ o no,
kscr

(10)

where p, is the Fermi energy. The g, (t») are "phase
shifts" due to the impurity potential for electrons of
energy ~ in the s 0- subband, given by

cr 7r vp(co),
8, (co) =-arctan (13)

(the branch between 0 and vr must be taken for
o = I, between 0 and —m for o =—I), where

p, (a)) = W ' X S(o)—e k, )
k

(14)

where the c„-, are the destruction operators for the

ferromagnetic band states, the first term describes
ferromagnetic band structure, and n;, = c;t c;, ,
where c&, is the destruction operator for an electron
in the Wannier orbital P„,

c„=N ' Xc-„, exp(ik R;),
k

where R& is the position of the atom i and N the
number of atoms; the second term of Eq. (10)
describes the effect of the impurity field at atom 0.

The change in the thermodynamic potential F of
the electrons due to the impurity term in Eq. (10)
can be calculated in a standard fashion (see Appendix
B) and the result can be written (at T =0 which will

suffice for the present purpose since k~T& &( d-elec-

tron bandwidth),
Qp,

bF[Vi] = de —Xg, (a)), 02)

is the density of states per atom of the st subband

and

(15)

where P indicates the principal-value integral [so

G,
'

('r») +i rr p, (ru) is the single-site retarded Green's

function for the so- subband at energy co, see Appen-

dix B].
The formulas (12)—(15) show that b F can be ob-

tained simply from a knowledge of the densities of
states p, (r»), so these quantities represent all the in-

formation required concerning the ferromagnetic

band structure for the present purpose. Inspection of
the total densities of states for ferromagnetic iron cal-

culated by Tawil and Callaway' shows that to a good

approximation the o——1 and ca=—1 bands are rigidly

translated in energy relative to each other, so it is

possible to write

p, (a)) =p, (cu+ou), (16)

~here u is the same exchange field that appears in

Eq. (8). Unfortunately we did not have available the

p, (co) for the individual subbands and so have made

the approximation

p, (~) = —', p(~) . (17)

where p(~) is the total d-band density of states
(for one spin direction); it is desirable that these cal-
culations be repeated with the proper p, (o&).

p(co) was estimated from the densities of state for
the up and down spin directions given in Ref. 16 by

subtracting out an estimate of the s-band contribution
to the density of states. At the same time we ob-
tained an estimate u=0.95 eV for the exchange field

and p, =4.06 eV measured relative to the bottom of
the d bands (before they were shifted up and down

by the potential u), which correspond to 7.36 elec-
trons in the d band and a moment of 2.22 Bohr
magnetons per atom.

The total change in energy bE(Vi) is given, ac-

cording to Eq. (4), by

bE(Vi) =J '[(v u)' u']+—bF—, (IS)

with bF given by Eq. (12) and I=0.85 eV estimated

as described in Sec. III. bE(Vi) was evaluated using

Eqs. (12)—(1S) and the p(ro) obtained as described

above. The result is plotted as a function of v in Fig.
2, Of course there is a minimum at v-0, but what is

of more interest is the appearance of a second
minimum at v-2.35 eV corresponding to more than

a complete reversal of the exchange field. The
corresponding change in the magnetic moment may

be estimated since one may show (see Appendix B)
that the change 4M in the total magnetic moment
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due to the impurity term in Eq. (10) is given by

hM = ——go.8, (p,) .1

~ sa
(19)

ations of the type shown schematically in Fig. 1(f).
In this configuration the exchange fields have the
form

At v=2.35 eV one finds AM= —4.65 Bohr magne-
tons, so at this minimum the change in M cor-
responds almost exactly to &he reversal of the mo-
ment of one atom.

The energy change hE(V~) at the minimum
v=2.35 eV is DE=0.194 eV, very small in spite of
the large exchange fields involved. One has, in fact,
found a configuration in which the moment of one
atom is reversed with an excitation energy of order of
magnitude 0.1 eV as was required according to the
discussion at the end of Sec. III. Indeed, in the
Heisenberg model one has k~T~ = —, 0, where 0 is

i

the energy required to reverse one spin in the fer-
romagnetic state (for the case spin=1, : roughly
corresponding to iron), so a value 0=0.194 eV
would give T~ =700 K, a surprisingly good result in
view of the many approximations.

One may note that the second minimum in Fig. 2

occurs at v=2.35 eV, rather greater than 2u=1.9 eV,
and that the peak in Fig. 2 is by no means symrnetri-
cally disposed between the two minima. For these
reasons it was not found possible to make any rea-
sonable Gt of the curve of Fig. 2 to the sort of cluster
expansion result suggested by Cyrot [Ref. 11, Eq.
(11)].

V2.' vi= —ui fori WO, vp=v —u~, (20)

2U'Sp (21)

representing the interaction of the electrons with the
additional field at site 0, S; being the total electron
spin operator at site i given by

qa ~~ ga
i 2 ~ ~ a rr'~is cr ~is ry' & Xi3

I
(22)

where the s sum is over the five d subbands, the
o-, cr' sums over +1 and the A are the Pauli matrices

01 0 —i 10
(23)

IF(V2) may now be calculated much as hF(V&)
was (see Appendix B), the previous result (12) being
generalized to

where one can assume without loss of generality that
V is an arbitrary vector in the x-z plane: v=(v„, 0, v,).

One has again an impurity problem to deal with in
calculating 4F, the impurity being the additional ex-
change field v at site 0. In Sec. IV the impurity field
was in the z direction and gave rise to the last term in
Eq. (10). In the present case this term is replaced by

I

V. ENERGY OF SPIN ROTATION
—1aF(V,) =—

Ji des Xtr8, (cv),
s

(24)

In this section we consider a slightly more general
case than that of Sec. IV, namely one in which the
exchange Geld at a single site is rotated away from
the ferromagnetic direction as well as changed in

magnitude. In other words, we consider configur-
8,(cu) =Imln [1 —V G,(~)1,

where Im means imaginary part,

(25)

where tr means the trace over the ~8(~) which are
now 2X2 matrices in spin space defined by

0.6-

0.5 and

vz
V=

vx

vx
—v z

(26)

0,4

d, E (eV)

0.3

I

Gs't +i mp, t

G,(e) =
6s) + i&ps]

(27)

0.2
G,', p, being defined at Eqs. (14) and (15).
EE(Vz) is given by

0.1 AE(V2) =J '[(V—uz)z —uz]+SF(Vz) . (28)

0.0
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

v (eV)

FIG. 2. The excitation energy h, E(V~) as a function of the

change v in the exchange field at one site (see Sec. IV),

AE(Vz) was calculated as a function of (v„, v, )
from the formulas (24) —(28) using exactly the same
assumptions concerning the form of the p, as in
Sec. IV. In Fig. 3 a contour plot of hE( Vz) against v
is given [hE( Vz) is symmetrical under the reflection
v„-—v ].
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Figure 3 reveals the presence of a ring shaped val-

ley in the d E(V2) surface. The two minima of Fig. 2

correspond to the points where the v„=0 section of
this surface intersects the floor of the valley. Figure
3 indicates that the lowest-energy excitations corre-
spond to configurations V in which the exchange field
is rotated away from the ferromagnetic direction
without substantial change in magnitude, a result giv-

ing some support to the view that the important
configurations are those corresponding roughly to the
Heisenberg picture. This result supports the method
of calculation of Prange et al. ~ ' (at least for iron) in
the sense that it shows the most important excita-
tions to be spin rotational in nature; the question of
whether the angles between neighboring spins remain
small is left open, however.

To pursue this point further, we have plotted in

Fig. 3 the curve ABO marking the Qoor of the valley.
It will be seen that it is almost a perfect circle cen-
tered on the point C at which v=(0, 0, 1.2) eV. It

seems probable that if the change AM(V2) in the
magnetic moment were calculated one would find
that this circle corresponds to the rotation of the
magnetic moment of a single atom (we have so far
only calculated d M for the case v„=0).

In the Heisenberg model the change in energy on
rotating a single spin out of the ferromagnetic direc-
tion has the form

hE = Ji sin'(P/2), (29)

where J~ is some combination of the spin coupling
parameters and $ the angle of rotation. In Fig. 4 we
have, for comparison, plotted the energy dE(V2)
along the line OBA of Fig. 3 as a function of the an-
gle $ of rotation about C (from CO). This curve
does not have exactly the form (29), but bears some
resemblance to it [a curve of the form (29) with Ji
chosen to have the same area under it has been plot-
ted in Fig. 4 for comparison]. The use of Ji obtained
in this manner would give Tc —1200 'K.
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VI. CONCLUSIONS

On the basis of the calculations of Secs. IV and V,
limited in scope though they may be, we would like
to draw some tentative conclusions. These calcula-
tions seem clearly to open up the possibility that the
type of theory described in Secs. II and III can actual-
ly explain the coexistence of a low T~ and rather
large exchange fields and thus resolve a long standing
problem. They imply that two energy scales are
operative in iron, one of the order of electron volts
which is characteristic of the itinerant behavior (e.g. ,
the bandwidth and the exchange fields), and another
of the order of one tenth of an electron volt charac-
teristic of the "localized" behavior [e.g. , ks Tc, the
dE(V)). The theory of Refs. 8—13 and Sec. III is
seen to provide a rather neat synthesis of the
itinerant and localized behavior; the evaluation of the
sums in Eqs. (1) and (2) is analogous to the calcula-
tion of thermal averages over the spin configurations
of a localized model with Boltzmann factors involving
the "localized" energies hE(V); but the quantities
X(V) in Eq. (2) and F(V) in Eqs. (3) and (4) must
be evaluated according to itinerant electron theory.

Finally it should be remarked that the calculations
of Sec. V gave a strong indication of behavior charac-
teristic of the Heisenberg model in that the most im-
portant excited configurations V were found to be
those corresponding to the rotation of the atomic mo-
ment rather than a change in magnitude of the mo-
ment.

FIG. 3. Contour plot of the excitation energy 4E(V~) (in

eV) against(v„, v, ), the components of the change in the ex-

change field at one site; the broken line OBA marks the
"floor of the valley" (see Sec. V).

APPENDIX A' FUNCTIONAL-INTEGRAL

DERIVATION

The derivation of the kind of results represented
by Eqs. (1)—(4) has been discussed at length in Refs.
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2—7, so we shall only consider here some aspects which are most relevant to the arguments of this paper. The
results always follow from an identity of the form2 9

ra ~ p ta p te p

„ II [» (t)~exp —K X„, [v; (t)l dt Tr exp+ —„, Ho(t) dt —X„v, (t) X,. (t) dt
la ia ia

'I

~TrexP PH, +—P(4K)-' XX, X;
la

where i labels atoms, v; (t) is some "field" at site i

defined for t on (0, P) (a labels the different com-

ponents), Dvi (t) indicates a functional integration

over the field component v; (t), Tr means the quan-

tum mechanical trace over the Hilbert space of the

system, exp+ means the time-ordered exponential,

Ho = g{.' —p.N, where ac is the Hamiltonian describing

the band motion of the electrons, N, is the electron

number operator, and p, the Fermi energy, and the

Xj are one electron operators acting on the electrons

at site i (bilinear combinations of the c„and c„of
Sec. IV). This identity is applied by choosing K and

the Xl so that the last term in the exponent on the

right-hand side represents the electron interaction,

which makes the right-hand side of Eq. (Al) just

equal to the grand partition function; the left-hand

side then gives a representation of the partition func-

tion as a functional integral. The usual first approxi-

mation is to neglect the time-fluctuating part of the

fields v, (t) in the functional integral and write it as

an ordinary integral,

Z ~ „' II (dv; ) exp —PK X (v; )'
ja ia

xTr exp PHD PX vi X—;—
ia

(A2)

In simpler cases9 this approximation involves the
neglect of certain collective behavior, but in view of
the ambiguities discussed below we may suspect it of
having more serious implications in this case.

The ambiguity of the method arises from the fact
that it may be possible to resolve the electron interac-

tion into a quadratic form (4K) ' X, X X, in more

than one way. Equation (Al) remains true whatever

decomposition is used, but after the approximation
(A2) has been made one may obtain different results

from diA'erent decompositions. For example, in the
case of the narrow energy-band model with one orbi-

tal per atom of each spin and the Hamiltonian

1
Uni)n, t

=
) Un, —2U(SI*)i

= —Un, i —U(S/) 2
4

1 2 1 2= —Unj ——US
4 i 3 i

(A4a)

(A4b)

(A4c)

are some of the possible alternatives, [Eq. (A4a)
used in Refs. 9 and ll, Eq. (A4b) in Ref. 18, and

Eq. (A4c) in Refs. 12 and 13], where

nt = nit + n, t, SI*= i (n,
~

—n;t) and S, is the total spin

of atom i When Eq. (A4a) is used the field v; has

only one component, when Eq. (A4c) is used the
Geld v& is a vector v, (attending only to the exchange

~2
part USt ); one has in these two cases

v&scalar, XI =2Sf, K =1/2U,

v, vector, X& = 2S&, K = 3/U . (Asb)

Un, ~n, t
=

4 Un( —U(e, ~ S,)i . (A6)

The result (A2) is essentially of the form used in
Sec. III since the Tr exp ... factor is just e p~ where F
is the thermodynamic potential of the band electrons
moving in the field X, v; X, . However, the form

(ASa) does not correspond to the physical picture of
Sec. II since the field vj is now a scalar and the rota-
tional symmetry (in spin space) is lost. The form
(ASb) is suitable in that respect, but has the defect
that the procedure leading to Eq. (6) does not give

the Hartree-Fock equations appropriate to the Hamil-

tonian (A3) (one obtains equations of the same form

but with a coeKcient
3

Uwhere one should have had

Thus none of the schemes so far used would, when

applied to Eq. (A3), give a result of the kind looked
for in Sec. II. Nevertheless, one can exploit the am-

biguity to obtain a formulation of the required kind
for the Hamiltonian(A3). To see this we introduce

yet another decomposition of the interaction. (A4b)
is derived by quantizing the electron spins in the z

direction; however, one could equally well quantize
them in the direction of the arbitrary unit vector e;
and obtain the identity

H' =~+ U Xn„n„,

the following decompositions of the interaction

(A3) Using this decomposition one would obtain from Eq.
(A2) [omitting for simplicity the nonexchange term,
the first term of Eq. (A6), which leads to the nonex-
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change part of the Hartree-Pock field],
r

Z ~ Jl gdv;exp —pK g v,.
2

XTrexp —PHD —P $2v;e; S; . (A7)
I

This form does not have rotational symmetry because
the (ei) have specified directions. However, since
Eq. (A7) is supposed to hold for arbitrary (e,), one
could restore the symmetry by averaging Eq. (A7)
over all directions for each e&. When this is done one
obtains, writing v; = vie;,

1

Z ~ Jt g dv;exp —PK Xv,
'

I I

1

XTrexp —PHD —P X2v; S;, (A8)
I

where one now has E =1/U. This form does have a
vector field v; and does yield the Hartree-Fock equa-
tions by the procedure leading to Eq. (6). The same
formula has been obtained by Prange and Koren-
man', they make the further approximation of drop-
ping the integration over the lengths of the v;, which
they hold fixed, allotting only angular integration
over the v&. The degree of ambiguity present may be
seen by recognizing that the form (A8) is the same
as that obtained from Eq. (ASb) except for the
coefficient E.

X VI X& = X X X Vg, A(roCJaCis .a'.
a $$' ITO'

(A 9)

in the notation of Secs. IV and V, involving the field

Let us summarize some of the relevant results (for
the theory of Sec. IIO following from the above dis-
cussion: (a) in all cases Eq. (A2) has the form
represented by Eq. (1) and (3) [and Eq. (2) follows
easily]; (b) amongst the possibilities are those with
rotational symmetry in which the field v; is a vector
and E(V) has the form (4); (c) amongst the latter
possibilities there exist some which lead to the
Hartree-Fock result by the procedure described in
Sec. III. The assumptions of Sec. III may thus be
realized for the Hamiltonian (A3) in a suitable for-
mulation of the method. It will be seen, however,
why we wished to make minimal use of the first-
principles theory, and preferred, for example, to
determine the parameter J (or E in the above) by the
procedure of Sec. III.

In the case of iron one is dealing with a d band and
the Hamiltonian does not have the simple form (A3).
What we did in practice was simply generalize the
above results to this case by interpreting S; as the to-
tal spin of an iron atom. This corresponds to assum-
ing that the exchange field acts equally on all the d-

electron states, i.e., is independent of the azimuthal
component of the orbital momentum. The most gen-
eral form for the exchange field could be written

0.35—

0.30—

0.25

0.20—
~E (eV)

0.15—

0.10—

0.05—

0.00
0 20 40 60

I i I i I i l

80 100 120 140 160 180

tt) (deg)

FIG. 4. The excitation energy AE(V2) along the line OBA of Fig. 3 plotted as a function of the angle of rotation about C from
CO (solid line); the broken line is a fit corresponding to the Heisenberg model (see Sec. V).
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v„with 75 independent parameters. The assumption
that the action of the exchange Geld is independent
of the spacial state is equivalent to taking

= i P ' X X a 6,.(~„)[1 —avg, (m„)] ',
9v Srr v

(86)
&ss' ~ss'& (Alo)

which may be integrated at once to give
in which case Eq. (A9) reduces to 2v; S,. We
would expect that this assumption would not lead to
large errors, but have little evidence on the point. It
should be noted, . however, that this assumption is
consistent with the observation that the two spin
bands calculated by Tawil and Callaway' are almost
rigidly translated in energy relative to each other.

APPENDIX B: CALCULATION OF 5F

In this appendix we briefly sketch the derivation of
the results used in Secs. IV and V. The analysis is
based upon that given in Ref. 5. We want to calcu-
late the thermodynamic potential defined by

—PF =ln Tr exp[ P(H p—N,)], — (81)

where H' is the Hamiltonian (10). To this end we
introduce the "unperturbed" Green functions 6,'J (z)
between atoms i, j,

6'~ (z) =N ' X exp[ik (R; —Ri)]
z —6

k kso.

(82)

for the ferromagnetic band structure &k, , where the
sum is over the Brillouin zone and N is the number
of atoms. We may also introduce the corresponding
perturbed Green's functions g," (z) for the Hamil-
tonian (10) [a single s a label suffices since the im-

purity term in Eq. (10) does not mix the different
subbands] and easily show5 that

g,' (z) = 6,'i (z) + G," (z) (rv

where f (ao) is the Fermi-Dirac distribution function.
From Eq. (84) one has

6, (co —io+) =6,' (o)) +irrp, (cu) (89)

using the definition (15). Substituting Eq. (89) into
Eq. (88), taking the imaginary part and letting T 0
so that f(cu) =1 if co ( p, and f (ro) =0 if co & p, , one
obtains Eqs. (12) and (13).

The total magnetic moment (in the z direction) of
the perturbed system is given by

M = X a (nI, ) = i P ' X X a g,
" (o)„) . (810)

isa isrr v

Substituting for g," from Eq. (83), one has for the
change in the moment due to the perturbation

hM=ip ' X Xv[1 —avg, (ru„)] '

xXG»( )g" ( ). (811)

~F=F —Fo= —I'P ' $ Xln[I — VG,.(,)],
sa v

(87)

where Fo is the thermodynamic potential at v =0,
i.e., that of the ferromagnetic ground state.

Transforming the v sum into a contour integral in
the usual way and deforming the contour to surround
the real axis, Eq. (87) gives

AF = —X—Jt d(u f(o))
1

sa

xim ln [1 —a-vg, (~ —IO+)], (ag)

x [1 —a.vG, (z)] ' 6, (z), (83) From Eqs. (82) and (84) we have

where

6, (z) =—6,'«(z)

XG» (z)G, '(z) =

so Eq. (811) reduces to

—86, (z)
Qz

(812)

I
~

pro. (M) d&

Z +as~
(84)

(85)= X a. (n«, ) = i P ' X X a g,"(«)„)
V s(r Srr v

where the v sum is over all co„of the form
cu„= (i harv/P) +p„v= +1, +3, +5. Substi-
tuting Eq. (83) into Eq. (85) we have

[p, defined at Eq. (14)l.
Now, differentiating Eq. (Bl) with respect to v fus-

ing Eq. (10)] one has

9{in[1—avG, (~„)]]AM=iP ' a
Srr v Q o)y

fO

= $ a d«) f (au)—8
$ rr VP

x {Im in[1 —~vg (~—IO )]]la~

=pa. des —5, (o)),Bf
so (813)
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which yields the result (19) on putting
Bf/Bra= —5(co —p) as T 0.

The results used in Sec. V are obtained in an exact-
ly analogous fashion. The perturbed Green's func-
tions are no longer diagonal in spin space and it is
convenient to introduce Green's functions glj(z)
which are 2&2 matrices in spin space. The
corresponding unperturbed Green's functions take
the form

(B14)

analogous to Eq. (B5)

='/3 v X Xtr Vg, (o)„),
S V

(B16)

where v = ~v~ and tr means the trace over spin space.
Substituting Eq. (B15) into Eq. (B16) we have

~F =i P 'v ' X Xtr V G,(1 —V G,)-~ (B17)
S V

which can be integrated to give

One finds analogous to (B3)
AF = —iP 'Xxtrin[1 —VG, («i„)j .

S V

(B18)

g,"= G s+ G', (1 —V G,) ' V G,J, (B15)

wher V, G, are defined at Eq. (26) and Eq. (27), and

Converting the v sum to a contour integral around
the real axis and taking T 0 the results (24) —(27)
follow.

~C. Herring, in Magnetism, edited by G.T. Rado and H. Suhl
(Academic, New York, 1966) Vol. IV, Chap. VI.

2T. Moriya and A. Kawabata, J. Phys. Soc. Jpn. 34, 639
(1973).

M.A. Klenin and J.A. Hertz, Phys. Rev. B 14, 3024 (1976).
4V. Korenman, J.L. Murray, and R,E. Prange, Phys. Rev. B

16, 4032 (1977).
5V. Korenman, J.L. Murray, and R.E. Prange, in Ref. 4, p.

4048.
6V. Korenman, J,L. Murray, and R.E. Prange, in Ref. 4, p.

4058.
7R.E, Prange and V. Korenman (unpublished).
S.Q. Wang, W.E. Evanson, and J.R. Schrieffer, Phys. Rev,

Lett. 23, 92 (1969).

9W.E. Evanson, J.R. Schrieffer, and S.Q. Wang, J. Appl.
Phys. 41, 1199 (1970).

' J.R. Schrieffer, W.E. Evanson, and S.Q. Wang, J. Phys.
(Paris) C 1, Supp. 2—3, Tome 32, 1 (1971).

M. Cyrot, Phys. Rev. Lett. 25, 871 (1970).
& M. Cyrot, J. Phys. (Paris) 33, 125 (1972).

P. Lacour-Gayet and M. Cyrot, J. Phys. C 7, 400 (1974).
R.L. Stratonovitch, Dok. Akad. Nauk. SSSR 115, 1097
(1957), [Sov. Phys. Dokl. 2, 416 (1958)].

J. Hubbard, Phys. Rev. Lett. 3, 77 (1959).
6R.A. Tawil and J. Callaway, Phys. Rev. B 7, 4242 (1972).
S.H. Liu, Phys. Rev. B 15, 4281 (1977).
D.R. Hamann, Phys. Rev. Lett. 23, 95 (1969).


