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Polarization effects in the penetration of a barrier with a magnetic field applied;
relativistic corrections
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The spin polarization of an electron moving through a potential barrier V(z) with also a con-
stant uniform magnetic field (0, 0,B) applied is calculated in such a way as to find the first rela-
tivistic corrections to the nonrelativistic result. The particle is described by the Dirac equation
with Pauli anomalous-magnetic-moment term. The polarization is defined by the ratio of the
first two components of the wave function. Approximations appropriate to a field-emission

spin-polarization experiment are made and a WKB type of approximation for the z dependence
of the wave function is used, The corrections are found to depend on a certain parameter P
which is proportional to (g —2), the size of the electric field, and the square root of the area
of the x-y projection of the orbit of the particle.

I ~ INTRODUCTION

It is established that the spin polarization of elec-
trons field emitted from magnetic materials in the
presence of an external magnetic field can be ob-
served. ' This raises the question: What happens to
the polarization of the electron as it passes through
the surface barrier in the presence of the externally
applied magnetic field? This question was studied
nonrelativistically by Schmit and Good', they found
that the electron jumps through the barrier with very
little change of polarization.

The purpose of the present paper is to make a rela-
tivistic treatment of this problem. Although relativis-
tic corrections are expected to be small it is
worthwhile to have a quantitative estimate of them.
Also the problem is perhaps of interest in itself, espe-
cially to see the effects of the anomalous moment
and the strong field gradient at the surface.

As far as we know this problem has not been
solved before. It was discussed by Regenfus under
the assumption that the Bargmann-Michel-Telegdi
equations7 apply even in the classically forbidden re-
gion inside the barrier. He was led to the conclusion
that there would be a large change of polarization
direction associated with the barrier penetration. We
do not find confirmation of this assumption and our
result is that the change of polarization is small, not
much different than in the nonrelativistic case, and
negligible under ordinary operating conditions in a
field-emission experiment.

Since the calculations are lengthy they are

described here only in sufficient detail to establish
the notation and show the approximations made. '

II. HAMILTONIAN

The Dirac-Pauli Harniltonian for the electron in po-
tential Vand magnetic field 8 is

8=u 7r+p+ V+ 4eKpa. .B 4ie puKE—

. where n =p+e A, e E= V V, and K=g —2
=2.32 &10 '. In terms of the 2 X2 Pauli matrices cr

the 4 &&4 matrices are

0 1 0
0' P 0 —I '

a 0

0

11+ V+ —eK8(rz
H=

a. 2'+ —ie KE a,

1
g m ——te KE(r

4 z

—1+ V ——eK8cr1

4 z

The units are such that factors of m, c, .and h do not
appear. The symbol e indicates a positive number so
the electron charge is —e. The particle eigenstates of
H, with eigenvalues near unity, are of interest.

The potential is considered to be a function of z

only, of the form indicated in Fig. 1. The magnetic
field is taken to be of the form (0, 0, B) where B is a
positive constant. (Results for negative B can be
derived from those for positive 8 by a time-reversal
consideration. ) A convenient vector potential is

( —, By, 2
Bx, 0). In—this special case the Hamiltonian

simplifies to
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III. INTEGRALS OF THE MOTION

The operators

1
xp =

2
x pf/eB

yp = 2y+ J—f~/eBI

1J, =xp~ —yp„+ 2
o.,

(3a)

(3b)

Here the c's are functions of z alone, p is
2

e8r', and

L„ is the associated Laguerre polynomial in the no-
tation of Magnus, Oberhettinger, and Soni, ' As may
be verified, these functions satisfy

Bp pi= [(2n +1)/eB](if,

J,&=my

commute with the Hamiltonian of E(1. (2). Classical-

ly xo, yo are the coordinates of the center of the x-y
projection of the orbit. The operator

~o =xo +3'o

is introduced also in order to get to a separation of
the variables in the problem. The point is that the
operators H, Ro2, J, all commute with each other so
one may consider functions that are simultaneously
eigenstates of all three of them. In cylindrical coordi-
nates (r, Q, z) the eigenvalue problems for Bp2 and J,
determine the dependence of the wave function on r
and Q. The probiem of finding the eigenfunctions of
H then reduces to a problem in ordinary differential
equations for four functions of z only.

IV. EQUATIONS FOR z DEPENDENCE OF

%AVE FUNCTION

n =0, 1, 2, ...,
1 3 5

m =-n+ —-n+ —-n+ —...f 2' f ~ ~ ~ f

and if c1 and c3 are zero but not c2 and c4 the al-
lowed values are

n =0, 1, 2, ...,
1m= —n ——
2

(10a)

(lob)

The allowed values age displayed in Fig. 2.
With the r, 1t dependence of the wave function

thus established, the eigenvalue problem for the
Hamiltonian

where m and n are the quantum numbers for the
states. The ranges of the quantum numbers are esta-
blished from the requirement that the wave functions
be integrable. If all the c's are not zero the allowed
values are

The eigenfunctions-of Ro and J, relay be written simplifies to a set of ordinary differential equations
for the c;(z),

C
[m (1/2)]/

C1p
[m + (1/2)]/2

C2p

C3p

l
c [ +('/ ]/
C4p

—p/2

e
—[[)/2

—p/2

e
—p/2

L [m —(1/2)1( )

L [m + (1/2)1( )

L [m —(1/2)1( )

g fm +(1/2)1( )

e i [m —(1/2)] g

ei[m+ (1/2)]4

e I [m —(1/2)[g (6)

e i[m+(1/2)]4

1 1 dc3
(1 —W'+ V+ e)(B)c, + — ———ienEc24 i dz

—i (n + m + —,
' ) (2eB) '/'c, =0, (12a)

V(z)
0o 00 0»-- 00 Qo Qo Qo Qo

0o 0o2-- 0& Qo Qo Qo Qo

incident

reflected 5
2

3
2

0o1-- Oo

1
2

Oo

n

Qo

fA
2

FIG. 1. Potential model for the surface of the material.

FIG. 2. Allowed values of the quantum numbers n, m for
the eigenfunctions of R02 and J„according to Eqs. (7) and

(8). The double circles give the quantum numbers of eigen-
functions which have all four c; in Eq. (6) not zero. The
single circles are for functions which have c1 and c3 equal to

zero, c2 and c4 not equal to zero.
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(I —W+ V — en—B)c2+ i(2eB) c3 =—1 dc4
4 I dz

+
4
ienEc4=0, (12b)

+ —ieKEc, —i(n +m + —)(2eB)' c2
dc1 1

i dz 4 2

according to

A y = (n + m + —,
'

) (2m/eB) y .

The operator may also be expressed as

A = m[(x —xp)'+ (y —yp)']+(rr/eB) o, .

(14)

(15)

+(-I —W+ V ,'—eK—B)c,=o, (12c)

i (2eB) c~ —— ——ie nEc21/2 1

i dz 4

+ (—1 —W+ V+
4 e KB)c4 ——0 . (12d)

A = n [Rp' + (2/eB) J,] (13)

At this point the quantum numbers n and m only
occur in the combination (n +m +-, ). This combi-

nation labels the eigenvalues of the operator

so it corresponds to the classical concept of the area
of the x-y projection of the orbit with an additional
spin contribution.

V. T%0-COMPONENT SYSTEM OF EQUATIONS

Further progress can be made by converting to a
second-order system of equations. One can solve
Eqs. (12c) and (12d) for c3 and c4 and substitute into
Eqs. (12a) and (12b) to obtain equations involving
only c1 and c2. Disregarding some of the smaller
terms, as discussed in the next paragraph, one is led
to this set of equations

d c1 eE dc1+. +[—I+(W —V) ——en —(n+m+ z)2eB]c~dE 1

dz2 1+ W —V dz 4 dz

=.
z eKBc~ —

z ( +n1)(n +m +-)eE(2eB)' c2, (16a)1 . 1

d c2 eE dc2+ + [—1 + ( W —V) —
4

e n —(n + m + —,)2eB]c2
dE 1

dz2 1+ W —V dz 4 dz

z (K + I)eE(2eB) '
c~ z

e &Bcz . (16b)

All quantities are expressed in terms of m, c, and
k In a conceivable field-emission experiment: the
kinetic energy would be about 5 eV so 1 —8'+ V

would be about 10 ', the electric field, as estimated
by the image field at the Fermi level, would be about
7 x 10 V/cm so eE would be about 5 x10 ', the mag-
netic field would be about 104 6 so e8 would be
about 2 &10 ' . To estimate the field gradient one
considers the derivative of the image field e/4x'
evaluated at the point where the work function P
equals the size of the image potential ez/4x. This
gives a field gradient of 32/3/e5 and, for a work
function of 5 eV, it makes e dE/dz about 6 x10 'p.

The first approximation for the c's is that they vary
as

r fa

exp i J~ [2(1 —W+ V)]' zdz
r

so d/dz applied to cq or c2 is order of magnitude
4 x10 3.

In obtaining Eqs. (16) from Eqs. (12) terms 10 'p

and larger were retained, terms 10 ' and smaller
were discarded. The calculation is carried this far be-
cause then the effects of the field gradient and the
coupling between the equations can be seen. In a
lower degree of approximation, if the terms smaller

cl = (I + W —V) 'i2(n + m + -') 'izf
c2=(1+ W —V) i f2

(17a)

(17b)

one obtains an equivalent pair of equations without
first-derivative terms and with a symmetric coupling
matrix on the right-hand side:

d'fi
dz2

+ qZ(z) fi
= af, + aP(z) f2

d f2
dz2

+ q (z)f2
= aP(z) f~

—af2

where qz, a, and P are defined by

(1&a)

(1&b)

than the (n + m + —,)2eB terms (less than 4 x 10 'p)

are disregarded, then the equations for c1 and c2 are
uncoupled and each equation reduces to

1

d c —2(l —W+ V) c —(n + m + —)2eBc =01

dz 2

This is the nonrelativistic limit of the problem, Eq.
(12) of Ref. 5. The relativistic effects come in as the
smaller terms are included in the calculation.

By changing the dependent. variables according to
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q (z) =—1 + ( 1V —V) ——e K —(n + m + )—2eB2 dE 1

4 dz 2

3 e E' 1 edE/dz
4 (1+%—V)' 2 1+%—V

where

[q2 (1 +p2) t/2] t/2

cos 8 = [
t + (1 + p2) 1/2]1/2 (24a)

1a= —eKB (20) sine =+[t — t (1+p) '/]t/2 (24b)
' 1/2

p= — (n+m+ —) / eEK+1 1 12 2

K e8
(21)

The special case when (n + m +
2 ) is zero is to be

treated by discarding the ft term in Eq. (18b) and
solving it for f2 alone, then obtaining c2 and c4 from
Eqs. (17b) and (12d) with ct =0.

VI. SLOWLY-VARYING-WA VELENGTH
APPROXIMATION

/

cosH

sinesin +
(22)

A WKB type of approximation can be developed
for the f(z) equations, along lines suggested by Pau-
li."

The approximate solutions for waves propagating in
the positive z direction are

The two solutions correspond to the two possible spin
states. For waves propagating in the negative z direc-
tion the opposite sign in the exponent is to be used,
the rest of the solutions remaining the same. The
solutions are written in a form appropriate for a clas-
sically allowed region, with p+ having positive real
values. In an unallowed region p+ is a pure ima-

ginary and the exponent will be + ~p+I dz or

-„' lp+I d'
A question is what to do about connecting the

solutions across the zeroes of p+. From a considera-
tion of the uniform-electric-field case one concludes
that the exponential factor connects in the same way
as in the conventional %KB method, while the H+

dependence remains the same on both sides of the
zero.

One can now collect results and write complete for-
mulas for a barrier transmission problem, as set up in
Fig. 1. For definite values of the quantum numbers
8' n, m and in terms of two arbitrary constants D+
and D, the incident wave from the left is given by

t
1

'1/2 r g t pg
ct ——(1+ 1V —V)'/2 n+m+ —, D+p+'/2 cose+exp i J~ p—+(g) dg +D p '/ cose exp i ~~ p (g) —dg

(25a)

t a+ r ~g
c2=(1+ iV —V)'/2 D~p+'/2 sine+exp i p+—([)d( +D p

'/' sine exp —i J p (g) dg (2Sb)

~here a+ are the smaller roots of p+. Using the connection formulas on the exponential factors in the usual
way, one finds that the transmitted wave on the right is correspondingly given by

2

.
1

'1/2 f b+ r pz
c&=(1+ 1V —V)'/2 n+m+

2
D+p+'/ cose+exp —J ~p+~ di.' exp i &I p+d( +D p '2cose

/ +

b 2 2

&&exp —
J (p ) dg exp i J p dg (26a)

t
p b+ 2

c2=(1+ W —V)'/' D+p+'/ sine+exp —
Jl ~p+~ di.' exp i J p+dg +D p '/' sine

+ + i

2

b 2 2

xexp — p d exp i p d (26b)

where b+ are the 1arger roots of p+. There will also
be a reflected wave on the left which we disregard.
The above results for the c's, along with Eqs. (12c)
and (12d), are to be used in Eq. (6) to get the com-
plete ~ave function.

VII. POLARIZATION EFFECTS

We define the polarization of the particle, in the
presence of the external fields, to be given by the
Pauli matrices o- acting within the space of the first
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two components of the wave function (](t and (])2

This means that, at any point in space, the spherical
polar angles (8, qh) of the direction of polarization are
given by

tan
2

8 e'p = Q2/Q) (27)

This definition agrees with the way polarization is de-
fined for a free particle (this subject was reviewed by
Fradkin and Good"). Also Sidhu and Good" have
shown that the polarization so defined agrees, in the
nonquantum limit, ~ith the definition that leads to
the Bargmann-Michel- Telegdi equations.

In principle Eqs. (25) and (26) solve the barrier
transmission problem since they provide the connec-
tion across the barrier for a complete set of solutions.
However to see what the solution implies about the
polarization is not straightforward because the states
with definite quantum number's, W, n, m do not have
a polarization which varies with z alone. Thus the ra-
tio (i(2/(i(( as given by Eq. (6) depends on p and @ as
well as z. What is needed here is to get relativistic
corrections to the nonrelativistic problem, in which
the p, $ dependence is

&m/2e 2L (p) exp(im y)

A = n R p' + (2 '/eB) L,
= m [(x -xp)'+ (y —yp)'] (2g)

with eigenvalue (n +m + 2)(2n/eB)
For the incident wave in the region of constant po-

tential 13 is zero and in that case one can build a rela-
tivistic wave with the same properties as the nonrela-
tivistic wave. Thus when P-O, Eqs. (25) simplify to

c) =(1+W —V)'i (n +m +—)'i D+p2

t a+
x exp i „—p+ d(

r a

c2= —(1+ W —V)'2D p '2 exp i —p dg
(

If now one superposes a D+ solution with quantum
numbers, W, n, m and a D solution with quantum
numbers, W, n, m'= m —1 then the wave function
components in the P =0 region are

for both components and there is a definite polariza-
tion depending on z alone. This nonrelativistic state
is an eigenstate of the operator for the area of the x-y
projection of the orbit,

)

(i()

(1 + W V)(/2&(m —((/2)l/2 e-v/2 L (m —()/2)) e(lm —((/2))&
2

( pa+
[n + m + ]'/ D+p ~'/ —exp —/ „p~d (

Dp' '/' ex—p /q~~ p' —d(
(29)

where the prime on a symbol means it is to be evaluated at m'= m —1. These states, eigenstates of A with eigen-
value (n + m) (27r/eB), form a complete set just as well as those that are eigenstates of A but these have a polari-
zation that depends on z alone.

We will make expansions in the type of integral that occurs here in order to isolate the polarization effects and
provide a ready comparison with the nonrelativistic problem. Let

p = —1 + ( W —V) 2 —2eB (n + m) (30)

and let a and b be the roots of p 2. In the integrals we expand for the case when the rest of the radicand is small
compared to the p term. This leads to

(~) d~+ ),t" 1 dE 3 e E 1 2dE/dg dg
4 dg 4 (I+W —V)2 2 I+W —V p

"' eB+u(1+P')'/2——, J' d(
Z p

a'
p' (() dg = (same first two terms)

2

( J"' eB + u (1 +p') '/'
d

z

We will disregard the difference between the factors p+' and p'
Applying these approximations to the incident wave of Eq. (29), one finds in the P =0 region

—D ] ('v 2eB+~(I +P )(/ +()(I +P' )(/
x exp —I

2 d(
(n+m+ ,')' 'D~- P

(31)
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%e let
i/0= tan —eoe2

(n + m + —,')'/'D,

so then the polarization direction for the incident wave (8;, $;) is given by
r

(32)

1 i&i 1
)an —8;e ' = tan

2 8o exp i po —e+
~ a I + —K(1 +P2) 1/2 + K(1 + P'2) 1/2

df (33)
1

The polarization precesses at constant angle 8;=8o to the 2 axis. The contributions to the integral from the P %0
region near the turning point influence the phase of the precession but the exponent varies simply asI.
i-, geB ~~ d(/p in the P =0 region.

For the transmitted wave there is not a p =0 region. However, away from the surface, p will be small in ordi-
nary applications. Thus with a magnetic field of 10 6 and an electric field of 5 &10' V/cm, as might be found
just outside a field-emission tip, the value of p is about 0.2(n +m + 2) . The value decreases rapidly with dis-
tance from the tip. Accordingly we assume that, although P might be appreciable near the barrier, there is a re-
gion outside the tip where P is negligible and we evaluate the polarization there. Using the same ideas as for the
incident wave, one finds for the polarization direction (8„$,) of the transmitted wave

P b I + —K (I +P2) 1/2 + K (I +P'2) I /2

tan 28te '=tan 280exp eB df~a

Pr 1 + K(1 +p2)1/2+ K(l + p'2)1/2
&exp/ +o+e8 J b P

d( (34)

Equations (33) and (34) solve the problem of what
happens to the polarization in the penetration of a
barrier by a wave component. Equation (33) may be
used to get the polarization incident far from the bar-
rier and Eq. (34) to get the polarization transmitted
far from the barrier.

Pg 'P oo'

~Arel ~4nonrel —„' «& J~ + J
2 y (I + p2) 1/2 + (I +p 2) 1/2

X dg

(35)

UIII. DISCUSSION

It is interesting to compare the results with those
of the nonrelativistic problem, Eqs. (23) and (24) of
Ref. 5. If 5@ denotes the phase of the transmitted
wave far from the barrier, pr(z ~),minus the phase
of the incident wave far from the barrier,
$, (z —~), then

This formula provides a convenient way to test
whether a relativistic treatment of the phase of the
polarization is necessary. As is seen, it depends on
the value of P in the classically allowed region.
There is a similar relativistic correction in the relation
between 8; and 8„depending on P in the unallowed
region.
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