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A theory of liquid 'He is formulated that incorporates the principal elements of approaches found mo t
successful in the past. It is grounded in quantum-mechanical correlated-basis-function formalism, which
produces an elementary-excitation model for the flowing liquid. Standard statistical-mechanical techniques
are used to derive explicit formulas for thermodynamic and hydrodynamic properties that are relevant to the
macroscopic two-fluid equations. An important feature of this work is that it produces an explicit formula for
the Lagrangian used by Zilsel to derive the two-fluid equations from a variational principle. The general
formulas developed here take into account effects of interactions and constraints involving elementary
excitations. It is demonstrated that temperature-dependent energy levels occur in ordinary statistical-
mechanical formulas as a consequence of interactions. The fact that energy widths of elementary excitations
do not enter the formulas is discussed. The formulas are applied to some simple models, and they are used
there in a detailed study of the specific heat. Temperature and flow dependence of thermodynamic variables
are exhibited in graphical form. It is observed that the Helmholtz potential has a peculiar behavior, and the
possibility that this is connected with the changing flow properties at T& is studied within the context of a
stability analysis involving general thermodynamic criteria. That same potential suggests that a state of flow

may be thermodynamically preferred over the rest state for a range of temperatures reaching somewhat
below T&. This is one factor that motivates a calculation of properties of quantized vortices in the liquid in
the final section of the paper.

I. INTRODUCTION

The extraordinary character of liquid ~He has
generated problems challenging physicists for
more than two-thirds of a century. Considerable
progress in explaining the observed behavior has
been made by applying a great variety of theoreti-
cal techniques and formalisms, many of which were
developed for this specific purpose. But there
are still some basic properties of liquid 4He that
are not well understood at a fundamental level
even though substantial theoretical effort has been
concentrated there for about 40 years; so major
problems remain to be solved. Now it would ap-
pear to be highly useful to consolidate and extend
the existing theory by adopting a single point of
view and using a formalism which incorporates the
principal elements of the approaches that have
been most successful quantitatively. That is the
goal here.

The methods and results of this paper are brought
into focus in the following discussion, which also
explains the main connections with earlier work.

The theory here is based on a microscopic, cor-
related-basis-function (CBF) description of the
liquid when a field of flow is present. In a direct
sense it is an extension of certain work of Feyn-
man" and of Feenberg and Jackson, ' but results
found by a multitude of workers support it. Of
particular importance in this regard are extensive
ca1culations' ~' in CBF theory which account for
experimentally determined properties of liquid 4He

with at least moderate accuracy. In this treatment,
the existence of a Bose-Einstein condensate is ir-
relevant; without modification the theory can ac-
commodate conditions where a condensate is either
present or absent. That feature is noteworthy be-
cause recent neutron-scattering experiments in-
dicate that the condensate fraction in superQuid
He is no more than a few percent, ""and the ex-

periments have given no indisputable evidence that
there is any condensate at all." The CBF formal-
ism yields an elementary excitation model for the
liquid, which may be flowing.

In the literature, the most general forms of the
hydrodynamic equations of motion, associated with
the well-known two-Quid model, have been derived
at a phenomenological level by two distinct meth-
ods. Orie is Khalatnikov' s' extension of Landau's"
method based on Galilean invariance. The other is
Zilsel's"'" method based on a Lagrangian. Zil-
sel's method is easy to apply, and it has the ad-
vantage that it does not involve intricate verbal
arguments as the other one does. The results de-
rived in the two treatments largely parallel each
other, and they are valid for small as well as
large flow velocities. Khalatnikov has supported
the first approach with a microscopic theory based
on a Boltzmann equation for elementary excitations.
However, his theory does not take into account the
effect of interactions of excitations in shifting the
energy levels, and it seems likely that this will
seriously restrict the ranges of velocity and tem-
perature where the theory can be trusted. On the
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other hand, the microscopic theory in Sec. II of
this paper contains the first derivation of explicit
formulas for all thermodynamic and hydrodynamic
properties involved in Zilsel's treatment, and it
takes into account interactions of elementary ex-
citations in. such a way that it may be applicable
over the entire ranges of velocity and temperature
that are of most interest physically. The need for
a theory that is valid even at high velocities has
become more obvious since Schofield's" recent
work in which critical velocities for superfluid
Qow through micron-size orifices were observed
to be as high as 10 m sec ~. Of course, high-fluid
velocities are also associated with quantized vor-
tices and with rapidly moving ions in liquid 4He.

The theory provides a rigorous justification for
the use of temperature-dependent energy levels in
ordinary statistical-mechanical formulas for mod-
els in which the momentum and energy eigenvalue
spectra are characteristic of a set of interacting
excitations. Bendt, Cowan, and Yarnell" demon-
strated the usefulness of such a formalism many
years ago by introducing temperature-dependent

, energy levels extracted directly from neutron-scat-
tering experiments. However, the procedure has
not been completely justified before, although
thermal Green's-function formalism' and thermo-
dynamic perturbation theory" lend some theoreti-
cal support to the main idea. The statistical-me-
chanical formulas do not involve energy widths,
and so they are applicable in unaltered form even
at high temperatures, e.g. , above the X point, even
though standard Green's-function formalism may
assign large widths to the spectral function of the
excitations there. An explanation of this point is
given at the end of Sec. II. This result is important
because since the original work of Landau, "it
seems to have been generally believed that an ele-
mentary excitation model would be of no practical
use at temperatures as high as Tq. That belief
was presumably based on uncertainty principle
arguments originally, and it seemed to be rein-
forced by inferences drawn from thermal Green's-
function theory and from line broadening ob-
served" "in neutron scattering from liquid 'He in
a temperature range extending somewhat below T q.

If there exists an upper limit on the number of
excitations in the liquid, then an inequality con-
straint must be imposed in the statistical-mechani-
cal formalism. A method of dealing with this con-
dition is described near the end of Sec. II, and pos-
sible effects of such a constraint on thermodynamic
properties, especially the specific heat, are ex-
amined in the latter part of Sec. III.

Section III contains a study of the dependence of
thermodynamic and hydrodynamic properties of the
liquid On temperature and flow velocity. Results

are presented in-graphical form. Early in Sec. III,
attention is focused on the- peculiar behavior of the
Helmholtz free energy. Isotherms of this thermo-
dynamic potential plotted versus flow velocity un-
dergo a qualitative change at a certain temperature,
the temperature where normal fluid density equals
the total density when the superfluid and normal
fluid are stationary. . This provides a connection
with the condition that Landau associated with the
superfluid transition. The isotherms exhibit clear-
ly properties that Feynman described qualitatively
many years ago. The reason for the change in the
flow properties of the liquid at that particular tem-
perature is investigated by applying stability
criteria within the context of general thermo-
dynamic theory. Connections of this study of sta-
bility with work of Hohenberg and Martin" and
Feynman' are pointed out. In the last half of Sec.
III, the effects of interactions among elementary
excitations are examined for specific models. It
is found that those models are unable to account
for the logarithmic behavior of the specific heat if
the system remains stationary and homogeneous.
In part, this provides the motivation for studying,
in Sec. IV, the possibility that the liquid does not
remain stationary and that quantized vortices form
spontaneously in liquid 4He in soxne range of tem-
perature that starts below Tq. The peculiar be-
havior of the thermodynamic potential mentioned
earlier also suggests this possibility.

In Sec. IV the energy and size of cores of quan-
tized vortices are calculated approximately, and
the results are used in the calculation of the free
energy of certain vortex arrays. If vortex arrays
have lower free energy than the stationary liquid
when the walls of the container are at rest, then
vortices should be generated by thermal excitation
alone. Taken at face value, the calculations in-
dicate that the stationary liquid has lower free en-
ergy. However, it is pointed out that because cer-
tain approximations are made and because other
arrays ma.y have lower free energy than those ex-
amined, the results should not be regarded as
conclusive. When all uncertain factors are taken
into account, the calculated results are such that
it seems reasonable to speculate that vortices are
thermally excited in liquid 4He at temperatures
reaching below Tq. This points to the possibility
that the logarithmic behavior of the specific heat
may be associated with rearrangement of vortices.
It is conjectured that this is the mechanism which
links the change in the flow properties with the
specific-heat anomaly at Ty.

Viewed in perspective, perhaps the most dis-
tinctive feature of the theory here is that it trans-
lates the rather vague, qualitative concepts of an
adiabatic transformation of an isolated ground
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state, and a macroscopic quantum state" into an
operational prescription for calculating the prop-
erties of liquid He if one interprets the coordi-
nate space representative of the macroscopic quan-
tum state as the correlation function that includes
flow in the CBF theory. That correlation function
also provides a realization of the "background" in
an elementary excitation theory of the two-fluid
equations.

II. MICROSCOPIC BASIS OF THE TYCHO-FLUID EQUATIONS

Consider a system composed of N'He atoms,
each of mass m, contained in a volume V, and
suppose that periodic boundary conditions are
imposed. The results of several existing quantum-
mechanical calculations indicate that to good ap-
proximation the wave functions for elementary ex-
citat'ion states can be written in the product form

fining our attention to particular approximate re-
sults, it seems more useful to abstract certain
general properties from these calculations and to
rely partly on experiment for input to our theory.
Proceeding in that spirit, we shall usually take
e(k) from measurements made by inelastic neutron
scattering. " For our purposes here, it is not nec-
essary to assume specific approximate formulas
for g. But using them as guides, we shall assume
that each F contains no gradient operators, that it
is symmetrical in the particle coordinates, and
that it satisfies the specified boundary conditions.
We shall be concerned with a class of models for
which the momentum and energy cigenvalues, mea-
sured in the same reference frame as Eo and („
are of the form

P= n. p.

X go(r~, r, , . . . , r„),
where r,. gives the spatial position of the ith atom.
g is a model function, and is different for differ-
ent states of the system. The correlation function

go is a common factor in the entire set of wave
functions, which is assumed to be complete. We
shall be interested in the case where go is the true
ground-state wave function for the system at rest,
and belongs to.the energy eigenvalue ED A first
approximation for the function g associated with a
single excitation is

po=p-„=+exp(ik r )
l

and the corresponding energy formula, is e(k)
= k'k'/2mS(k), where. S(k) is the liquid-structure
function for T =O'K. More accurate forms for P
and the energy for a single excitation have been
found by applying variational and perturbation"
procedures. Feynman' pointed out that one could
find approximate forms of I' for multiply excited
states by using wave packets. Feenberg and Jack-
son solved that same problem by explicitly diag-
onalizing the dominant terms associated with low
excitation levels in the Hamiltonian matrix. ""
These calculations also yield explicit approximate
formulas for the multiple-excitation spectrum, of
course. The microscopic theory is still subject to
improvement; for example, the most accurate cal-
culated values" for e(k) do not coincide exactly
with results derived from neutron-scattering ex-
periments. " Also the microscopic calculations
for the multiple-excitation states and energies are
not as accurate as the best results for the single-
excitation properties. Therefore, rather than con-

E =Eo +Q n,.e, +Q f,;.n, n„

I
3~2 g

fiick

i i
i, i, &

1
+ ~3 g 'p) n njnpn) ~ (4)

f', i, n, l

In Eq. (4), the quantities f,, , f„~, and f,,»are-
assumed to be symmetrical functions of their in-
dices. Furthermore, only a set of representative
terms are shown explicitly. The analysis which
follows can be readily generalized to cover higher-
index terms. The problem of evaluating the f,
etc. , is discussed in Sec. III. The factors of N
have been chosen so that when the sums are ap-
proximated by integrals, by introducing density-
level formulas in the usual way, then each term
on the right-hand side of Eq. (4) will be extensive,
provided that the indexed f's are all intensive, as
we shall assume. It is natural to associate the
label "interacting excitation model" with the class
of systems described by Eqs. (3).and (4). An im-
portant point here is that only the momentum eigen-
values are required to have a simple structure, of
the type shown in Eq. (3), in order for the elemen-
tary excitation concept to be meaninfgul. When-
ever the total number of excitations is very much
less than the total number of particles in the sys-
tem, the interaction terms in Eq. (4) will be neg-
ligible, and the usual ideas about elementary ex-
citations are applicable. However, for highly ex-
cited states, such as are expected to be populated
at and above the A. point in liquid ~He, the energy
eigenvalue spectrum can be much different from
the simple step structure that is assumed in pro-
totype elementary excitation models.
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New states of the system can be described by
introducing a phase factor in Eq. (1), as indicated
below':

shall at first neglect the interactions among ex-
citations, and deal with the simple case where the
energy' eigenvalues are

I'i 1g' =P exp~ Nm—v, —g r, (5) &' =&0+3Nmv, 3+v, .g n, p,. +g. n,.e,

Nmv, is a c number that corresponds to additional
momentum in the system, and (1/N) P r, is the
center-of-mass coordinate. If one were to write
the phase factor to the left of P, it would probably
automatically be interpreted as placing the state g
in uniform translation with velocity v, . For heur-
istic reasons it has been written directly in front
of g3, to emphasize that it may be regarded as in-
ducing a uniform translation of go while the exci-
tations accounted for by P retain their identity.
We shall regard it as part of the correlation func-
tion. The assumption that P contains no gradient
operators implies that it commutes with the ex-
ponential factor in Eq. (5), so that the order of the
factors is inconsequential mathematically. Later
in this section we shall see that the translational
velocity of the ground state, viz. , v, , is the same
as the velocity of the superQuid component in the
two-fluid equations; hence the subscript s. Apply-
ing the total-momentum operator to P' and taking
Eq. (3} into account, one finds the eigenvalues to
be

The entropy of a set of independent bosons can be
found from elementary counting considerations,
and is given by'

r ~ r
i

—S —PE'+Pv„P' =0.
Bn) (Q

This gives

ln ' =P [e, +(v, -v„) p, ]
2

(12)

S =k g [(1+n,.) ln(1+n, ) -n,. ln n,-] . (10)

Let us suppose that the flow velocity is constrained
to have a fixed value v, . Then one can find con-
ditions of thermodynamic equilibrium by maximiz-
ing the entropy over the manifold of states having
fixed values of total energy and total momentum.
These latter two constraints may be taken into ac-
count by introducing Lagrange multipliers P and

v„, and requiring that for each value of l,

5 =Nmv, +g n,.p,
1

exp/[~, +p, ~ (v, -v„}]j-1 (13)

Now let us assume that the Hamiltonian operator
for the system is of the general form

where the potential operator t/' is symmetric in the
particle coordinates. Applying JI to P' of Eq. (5),
using the properties for the Laplacian operating on
a product of two functions, and taking into account
that the momentum and energy eigenvalues are
given by Eqs. (3) and (4), respectively, when 0, = 0,
one finds that the new energy eigenvalues are

W(v, , v„) =Z' —TS -v„.P'. (14)

By a standard argument, one can establish that
P = 1/kT, where T is the temperature and k is the
Boltzmann constant. Later, we shag see that the
Lagrange multiplier v„may be interpreted as the
velocity of the normal Quid in the two-fluid model.
One can see from Eq. (11) that the procedure we
have used is equivalent to minimizing the function
W(v, , v„) at constant v„v„, and T, where W is
defined by

E' E+3Nmv3+v, .g n& p,

Eo+3Nmv3+v, .g n,.p, +g n, e,

1 1
+ g f,, n,.n;+ g f1,„n;n, n3

1
+ 4N3 Q f (j3$ n;n&n„n,

(Sa)

(Sb)

The other variables on which' depends are T, V,
and N. Thermodynamic properties of the system
may be evaluated by substituting n, from Eq. (13)
into the formulas for E', 8, P', etc. By car-
rying out a simple rearrangement of Eq. (10) and
using Eq. (13), one finds that the thermodynamic
entropy may be written

TS =kT g ln(1+n, )

Next, let us apply the statistical-mechanical
formalism of the microcanonical ensemble to the
Qowing liquid described above. For clarity, we +Q n ~ [fg +p) ' (v3 —v„)] . (15)
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From Eqs. (6}, (9), and (13)-(15) it follows that

W(v„v„) =E,+ ', Nm—v2-Nmv, .v„

normal fluid density p„by the relation

p„(v„-v, ) = Q n, p, , (22)

-nT gin(1+n, .) . (16)

(gV
y', N, v„, v8

where S is given by Eq. (10), and that

(16)

(19)

where P' is given by Eq. (6). Equations (16}and

(17) shall be regarded as providing defining form-
ulas for the pressure p and the chemical potential
p, . In the present development of the theory, we
shall regard v, as a mechanical variable, rather
than as a thermodynamic one. Later, in Sec. III,
we will study the consequences of altering this
assumption. Now, the following Legendre trans-
form of W',

E' =W +TS+v„- P', (20)

provides a fundamental relation, viz. ,

E' =E'(v, ; P', V, S, N),

in which all of the independent thermodynamic
variables are extensive. Therefore, E' is the
internal energy; its differential at constant v, is

dE' = -pd V +TdS +v„dP' +p, dN. (21)

Furthermore, E' is given in integrated form by
Eq. (9) when the occupation numbers satisfy Eq.
(13).

Let us now turn to the question of how these
results are related to the two-fluid equations.
Part of the answer is well known, and we shall
deal with it summarily. First, let us define a

If the variational calculation begun in Eq. (11) were
carried to completion, then it would be necessary
to evaluate P and v„so that E' and P' have the fixed
values specified initially. We can avoid that diffi-
cult calculation by choosing to work with the func-
tion W, where T and v„are regarded as independ-
ent variables instead of E' and P'. A basic postu-
late of our theory is that W =W(v, ; v„, V, T, N) is
the thermodynamic potential for which the primary,
independent variables are those shown explicitly.
The special treatment of the variable v, will be
discussed shortly. Then the differential dfV must
be of the following form:

dW =-Pd V-SdT —P'. dv„+p, dN (1'I)

at constant v, . With the aid of Eq. (16) one can
easily verify that

where n, is given by Eq. (13). This is a natural
extension to arbitrary velocities of the definition
used by Landau" when the velocities are small.
Next we shaH define the superfluid density, p, , by
the relation

P =Pg+Pff ~ (23)

where p is the mass density, given by p =~/V,
with% =Nm. Referring to Eq. (6}, let us divide
by the volume V. Then the momentum per unit
volume, which is the same as the mass current
density, may be written

j =pv, +p„(v„-v,)

-p gvs+pnvn ~ (24)

I, =p [2xv'„+2(1-x)va e(p, s, x) -—yj, (25)

where e is the internal energy per gram, Q is the
potential energy of external force per gram, s is
the entropy per gram, and x=p„/p. The equations
found by Zilsel are valid for all values of v, and
v„. The quantity p, defined by Eqs. (22) and (23)
can be negative under certain conditions, as will
be seen in Sec. III. Therefore, the term in Eq.
(25) involving 1-x will be negative sometimes. , at
least in our microscopic theory. With this in
mind, we shall refer to the first two terms in Eq.
(25} as the apParent kinetic energy density, al-
though the qualifier was not used in the original
treatment. Zilsel did not have a formula for
e(p, s, x), but he deduced that its differential is

de =Tds+ ~ dp+ —(v„-v,)2dx. (26)

The first two differential coefficients follow from
the assumption that e is the internal energy per
gram. The third coefficient was found by Zilsel
after some analysis. Only the differential form
(26) was needed in Zilsel's derivation of the two-

Many years ago, Feynman gave essentially this
same discussion to show how two of the basic equa-
tions in the two-fluid model, Eqs. (23) and (24),
could be accounted for by a microscopic theory.
Next, we shall consider some further relations
which demonstrate more completely the compati-
bility of the two-Quid model with our microscopic
theory.

Zilsel"'" has shown that a Lagrangian density
of the following form can be used with Eckart's
variational principle to generate the dissipationless
equations of motion for superQuid and normal-fluid
components:
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Quid equations. However, we shall demonstrate
that the function e whose existence he postulated
can be given explicit representation by formulas
derived in the microscopic theory. Having done
this, we are assured that the microscopic theory
is consistent with the macroscopic two-Quid mod-
el. Let us now consider the representation of e.

In ordinary, one-fluid hydrodynamics, one deals
with an intrinsic internal energy function, which
does not include the kinetic energy. Paralleling
this, we shall subtract the apparent kinetic energy
—,'M, v,'+ —,'M„v'„ from 8' in Eq. (9). Here, M, and
M„are given by M, =p, V and M„=p„V. Taking
Eqs. (22) —(24) into account, one finds the intrinsic
internal energy function E to be

Z =Z, ——,M„(v„-v,)'+g n, e, (2Va)

Now let

e =E/M,
I

(2Vb)

e, =Z, /M.

Dividing Eq. (2Va) by M, we find

Z $ ~ ~ 2 1
0- ~ ff S=e =e~--,x(v —v ) + — n. e. .

(2Vc)

(28)

It is straightforward to verify that e in Eq. (28)
satisfies the differential equation in (26). To do

that, one may proceed as follows. First, note
that e is known explicitly in terms of v, , v„, and
T. There is also an implicit dependence on V, be-
cause the quantities eo and &,- may depend on p,
and the total mass M is held fixed. Now observe
that Eq. (26) will hold if and only if the function y
defined by

y =e —Ts --,'x(v„- v, )'

satisfies the differential equation

(29)

dy= 2dp-sdT-axd(v„-v, ) . (30)

If the function

y =e —Ts ——', x(v„-v,)'

satisfies Eq, (30) with the statistical-mechanical
expressions for p, s, and x inserted on the right-
hand side, then e will have the appropriate partial
derivatives, given by (26), for e to represent e.
To see that e does indeed have the required partial
derivatives, let us first combine Eqs. (15), (22),
(28), and (31), and get

With the aid of Eq. (32), one can then show that

(ssb)
k~P p (V -v)2 P

From our earlier discussion, the statistical-me-
chanical formulas for s and x are already known.

By using Eq. (32), one can readily compute the
other derivatives of y, and thereby show that dy
may indeed replace dy in Eq. (30). In dealing with
the microscopic theory, we have assumed that the
flow velocity v, is uniform throughout the liquid.
If the properties computed there are valid, at least
to good approximation, when the flow is only local-
ly uniform, then the energy function per unit mass
e will meet the necessary requirements for it to
represent e in Zilsel's Lagrangian density.

Let us now derive the formula for the chemical
potential, so that it will be available for future
reference. From Eqs. (16) and (1V), one finds

=(:-)„.-,. -„
ee 1, 1

=m~eo+p o+
2

v2 —v 'v„+ n

(34a)

By using the Euler form of the fundamental re-
lation, viz. ,

E' =-pV+TS+v P'+pN (s4b)

one can solve Eq. (34b) for p, , and substitute from
Eqs, (6), (9), (10), and (33a) to see that the last
expression in (34a) is indeed correct. It may be
worth mentioning that the chemical potential p, in
Eq. (34a) is not the same as that which usually
occurs in the literature. In the notation of Hohen-
berg and Martin, Eq. (3.11) of Ref. 35, the chemi-
cal potential in my theory corresponds to their
variable v rather than p. . Nothing fundamental is
involved here; it is simply a matter of definition.
Now let us introduce a Legendre transform, eall
it z, of the function y in Eqs. (31) and (32), as fol-
lows:

z =5+0/p ~

then

(34c)

anical expression for the pressure with the aid of
Eqs. (16) and (1V). The result maybe expressed
as

'+ Qn, — * + Qln(1+n, .). (33a)p Be, 1 Be,. QT
p' Bp M ' Bp Mp

y =e, — ln(1+n,.) .kT
(32) dz= —dp —sdT ——,xd(v -v )

1 I ~ ~ 2

p
S (34d)

It is a simple matter to find the statistical-mech- One can then- show that the exact equation for the
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acceleration of the superfluid, - Eq. (12) on p. 129
of Ref. 27, may be written

to the same auxiliary conditions stated earlier, is
still determined by Eq. (11). Now one finds

g) vS S g(+ +y)
Llt

(34e)
1+n, t' I

ln =P
i Ei +pi ' (vs —v„) + — f iiti;

l

where the left-hand side is the convective deriva-
tive along the trajectory of the superfluid. The
variable z in Eq. (34e) above is the quantity that
is usually regarded as the chemical potential.
With the aid of Eqs. (32), (33a), (34a), and (34c),
one can show that

1 2z —p/m =v, v„-kvs. (34f)

It can be shown that s =(BE/B~)3 v „by using the
thermodynamic potential X =E —TS —3 M„(v„-0,)'
and the properties of Legendre transforms.

Next let us turn to the problem involving inter-
acting excitation, where the energy eigenvalues
are given by Eq. (Bb) instead of Eq. (9). The mo-
mentum eigenvalues still have the form specified
by Eq. (6), and the excitations will still be treated
as independent bosons. Detailed analysis indicates
that under these conditions, the entropy of a homo-
geneous macroscopic system is still given by Eq.
(10), and the analysis suggests that Eq. (10) is ex-
act in the thermodynamic limit in this case. Only
slight changes in the usual textbook derivation" of
the entropy of a perfect gas are needed to arrive
at the formula indicated. It may be worth emphas-
izing strongly that in applying this formula for the
entropy to liquid ~He, there is no gross approxi-
mation involved analogous to that made in a mean-
field model of a magnetic system or a lattice gas.
The condition for thermodynamic equilibrium,
which may be regarded as either maximizing the
entropy or minimizing the free energy W subject

1
+ ~ f, i&n, n&.

+ ~ Z~ fii'kn n'n
;,~, k

and this implies

(
nl = exp c, +p, ~ v, -v„+ — l,.n,.

1

$3 J

+ ~ g f„fk~;fifiik
~

—1 . (36)
~, ~, a

For fixed values of P, v, , and v„, Eq. (36) rep-
resents a set of simultaneous equations to be
solved for the occupation numbers n, . It is clear
that those solutions will depend on the temperature
as well as on v, and v„. The occupation numbers
found in that way are responsible for a tempera-
ture dependence in the excitation energies that oc-
cur in the formula for the occupation numbers
themselves. When the solutions to Eq. (36) are
used to evaluate the quantities occurring in the
right-hand side of Eq. (14), W =W(v, ;v„,V, T, N)
is a fundamental relation expressed in terms of the
same thermodynamic variables as in the noninter-
acting case. The thermodynamic entropy, which is
given by Eq. (10) when the occupation numbers
satisfy Eq. (36), may be rewritten as follows with
the aid of Eqs. (10) and (35):

TS kT P ()n(1 vn, )+n, ln=I +nl

l n,

+kT(1)+n}+nn, (v, +P, ~ ( , - ) vvfv„n, . ~ f ;n,. n; nv, g . .f„, , & ).nnnn
l

S fl pf 0 3

(3V)

When (36) is combined with (6), (Sb), (3V), and
(14), one finds the following expression for W:

W(vs, v„) =Eo+3 Nmifk-Nmv, .v„—I3TQ In(1+n,.)

1 2g fif i f 3' gfifk i

to start with Eq. (38) and show that

BW

BT

Also from (38) and (6), one can show that

BW

BV„

(39)

(40)

3
~3 g f iki n' + ~ksl '' (38)

If one uses Eq. (3V), it is a straightforward matter

Therefore, when the excitations interact and oc-
cupation numbers depend on T, v, , and v„ in the
manner indicated by (36), the formal relations
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dependent. Later we shall find that there are rea-
sons to suppose that an upper bound may exist for
the total number of excitations, or possibly just
for the total number of rotons, that can be pres-
ent in the liquid. It is possible to impose such an
inequality constraint in the microcanonical form-
alism by a simple procedure, which we shall con-
sider now. For definiteness, suppose that the con-
straint is just on the rotons, and that it is given in
the form

t
K — n- +%0 (48)

where the prime is a reminder that the sum is just
over the rotons, and X, is a fixed number that is
assumed to be known for a system of N particles.
Equilibrium conditions can be found by maximizing
the entropy subject to constraints on energy and
momentum and on 97. Again we shall do this by the
equivalent procedure of minimizing an appropriate
free-energy function. A constraint on X may be
imposed by introducing an additional Lagrange
multiplier, which we shall take to be 0.. It is, in
effect, a chemical potential for the rotons. Equi-
librium conditions are then determined by the equa-
tion

W =Eo+ Nniv—', -Nmv, v„—kT g ln(1+n,.)

1 2
gfip i i 3' g fink i i k

3
4Ns Q f l jkinini nkni

It is a simple matter to start with Eq. (53) and
show that the only solution of

(53)

into (48). The occupation numbers then have a de-
pendence on M through their dependence on n.
Now, in order to impose the inequality constraint
given by (48), one must find that value of 3I which
produces the minimum value of

W =E' —TS -v . P' (52)

when this free-energy function is evaluated with a
set of occupation numbers given by (51), and sub-
ject to the condition in (48). Two possibilities ex-
ist. Either TV is a relative minimum for some val-
ue of M, or the minimum occurs at the end point
where K =%0. To investigate the possibility of a
relative minimum, we note from the earlier work
that led to Eq. (38) that W may be written

(E' —TS -v„P—nÃ) =0. (48)

For those excitations thai are not rotons, the oc-
cupation numbers satisfy Eqs. (35) and (36). How-
ever, for rotons, a chemical potential now occurs
in the formula for the occupation numbers. Ex-
plicitly,

1+n) 1
ln =P e, +p, ~ (v, -v„)+ f„.n,.

l i

1
li2 i

ipJ

1 f„, m,. m;n —a), (pp)
ikjkk

occurs when n =0. Equilibrium conditions there-
fore are given either by solutions of Eq. (51) with
n = 0, or by (51) when iM is fixed so that 3I =%0.
We shall use these results later, in Sec. III, in
connection with an explicit solution of Eq. (51) for
a mean-field form for roton interactions.

Now that it has been shown that the thermodyn-
amic properties can be evaluated exactly, within
the context of our theory, even when interactions
are present and for arbitrary temperatures and
velocities, let us show that at the same time the
spectral function for the excitations may have a
substantial width. Applying standard formulas of
temperature-dependent Green's-function theory'0
to the interacting excitation model, one has

1
exp e, +p, ~ v, -v„+ -- — rin, -

i

1
+ ~ gf„,n, n, . .

1 f i'pk '
i k

i, J'
~ k

(51)

For specified values of T, V, v, , and v„, the
Lagrange multiplier cv must be selected so that
K has the specified value when the self-consistent
values of nk determined from (51) are substituted

g(p, t) =(1/t)(r [a-, (t) a;(0)]),
Q (p, t) =(1/ )(ta (t()) a)p (0)),

0'(p, ra) =)fe 'G'(p, t)dt'

f(v) =1/(e' —1),

and the spectral function

+(PP(0)= 1 ( )G (PP&)P

(55a)

(55b)

(55c)

(55d)

(56)
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where

G'(p ~)

,-s~„.„~&';(O)l~)l'5(" -( "2|T l m, tl

(57)
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FIG. 2. Batio of the total number of excitations to
the total number of particles Dn;/N, as a function of V,
where V= ~v„—v~ ~.

' Each curve is an isotherm. No
direct interactions among excitatlons are present, and
n; is given by Eq. (13). The short vertical. line on each
isotherm marks the point for which p„=p.
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FIG. 3. Entropy per unit mass S as a function of V,
where V= ~v„—v~~. Each curve is an isotherm. No
direct interactions among excitations are present. The
entropy calculations were based on Eqs. (10) and (13).
V~ is the Landau critical velocity.

to discover what essential feature has so far been
either omitted or overlooked in the theory. An-
other primary objective is to explain why the Qow
characteristics of the liquid change at Tq. As a
first step toward those goals, let us examine the
free-energy function W(v, , v„) given by Eqs. (14)
and (16).

For the purposes of this analysis, we shall as-
sume that the flowing liquid is in thermodynamic
equilibrium with stationary walls, and that this
implies that e„=o. Under this condition, W re-
duces to the Helmholtz potential, as can be seen
in Eq. (14); then

W(v, , v„=0) =E(v,).
From Egs. (16) and (59a), we get

(59a)

E(v,) =E, + , Nmv', —kT P ln(1—+n,.) .

The free-energy per particle is shown in Fig. 5.
There one can see that at constant T, the free
energy tends to minus infinity at the Landau cri-
tical velocity. It seems likely that this divergence
is unphysical and that a limit on the number of
excitations of the same order as the number of
particles in the system may determine an upper

limit on the velocity range in which the curves are
valid. Short vertical lines illustrate where the
terminal points might be on each isotherm in Fig.
5 for an assumed value of the maximum number.
For a range of low temperatures, both a relative
maximum and a relative minimum are present
on an isotherm. If one uses Eg. (59) in computing
sE/e v, for T, V, and N held constant, and v„=0,
the result is

Bv
=Nmv, +v, g n, p,.

= V(p p.) v. . -
if e E/s v, = 0, then either v, = 0 or p =p„. With this
result at hand it is clear from Fig. 5 that the max-
imum must occur when p =p„whenever an isotherm
has two relative extrema. Feynman" described
these qualitative features of the free energy many
years ago. The calculated value of the tempera-
ture at which the maximum merges with the rela-
tive minimum is 2.415 'K. In his classic work on
superfluid 'He, Landau" suggested that the super-
Quid transition is associated with the condition
p„=p when the liquid is at rest, a condition which
is now seen to occur when a free-energy isotherm
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FIG. 4. Curves 1 and 2: The entropy per unit mass
S as a function of temperature, for V=

~
v„—v8 ~=0.

Curve 1 is for noninteracting excitations and curve 2 is
for a mean-field interaction with p = 0.2. The values of
S were computed with the aid of Eq. (10). Curves 3 and
4: The specific heat at constant volume Cz as a func-
tion of temperature, for V=

~
v„—v, ~

= 0. Curve 3 is for
noninteracting excitations and curve 4 is for a mean-
field interaction with y=0.2. V~ is the Landau critical
velocity. Cz was computed from curves 1 and 2 by using
finite differences.

undergoes a qualitative change in form. We shall
call the temperature there T~. There may be a
.causal connection between these phenomena, so
let us examine the situation more closely.

It is reasonable to ask first whether the formulas
for the free energy and the two-fluid equations
are meaningful under conditions where p„&p, or
said another way, when p, &0. From what was said
earlier, it is clear that p, &0 above Tq and for large
velocities beyond the maximum on each isotherm
below Tq. Perhaps these regions can be directly
excluded as physically attainable states in the the-
ory by imposing a constraint of the form p„~p in-

much the same way as the number of excitations
was constrained at the end of Sec. II. This pos-
-sibility has been studied. It is in fact possible
to incorporate such a constraint in the statistical-
mechanical formalism, but the structure of the
resulting theory is not acceptable. It is certain
that this is not a valid procedure. The reason is
connected with the fact that p„ is not a microscopic
variable defined quantum mechanically, but it is
only a statistical-mechanical variable. This dis-

FIG. 5. Free energy per particle as a function of
superQuid velocity v, when v„=0. Each curve is an
isotherm. No direct interactions among excitations are
present, and the calculated free energy is based on
Eq. (58b), but Eo has been subtracted out of that formula.
The, vertical line nearest e, = 0 marks the maximum on
each isotherm; the other vertical line marks the point
where Zn&/N=0. 5. V, is the Landau critical velocity

tinguishes it in an important qualitative way from
a variable such as the number of excitations. For
at least some physically allowed states of the sys-
tem, p,&0. An interesting sidelight of this ob-
servation is that it raises a serious question about
the validity of the phenomenological order-param-
eter theory of Ginsburg and Pitaevskii. " That
theory rests on a fundamental assumption that
p &0

We are driven to consider the statistical-mech-
anical formulas and the two-Quid equations as
valid both above and below Tq. Experi;ment shows
that when the liquid is slightly disturbed from a
state in which it is macroscopically at rest, the
motion of the liquid is characteristic of a mixture
of two fluids below Tq and one Quid above Tq.
What is responsible for this change in behaviors'

One possibility is that the nature of the solutions
of the two-fluid equations changes at Tq because
of the values taken on by the variables entering the
equations. To illustrate the point, let us suppose
that a small temperature disturbance is generated
at some site in the liquid, and that prior to the
perturbation, the system is in a homogeneous rest
state, i.e., throughout the liquid v, =v„=0. Now,

suppose that the two-Quid equations are valid at
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all temperatures. The formula for the velocity of
second sound in lowest order is"

Below T~, the formula yields a real number- for
C„. but above Tq, p, =—p -p„&0, and C, is purely
imaginary. Therefore, second sound would prop-
agate as a decaying exponential above the X point,
and would lose its identity as a wave motion. Ob-
viously, this argument is incomplete, but it sug-
'gests that some light might be shed on the problem
considered here by working out the implications
of the two-fluid equations above T q, even in the
approximation in which the ordinary dissipative
coefficients are neglected.

In an effort to find a more general explanation
for why the flow properties of the liquid change,
let us consider a thermodynamic argument. Sup-
pose that v, were treated as a thermodynamic
variable. The extensive variable conjugate to
v, , call it g, can be evaluated with the aid of
Eq. (16) or (53). If one computes BW/B v, = -Q,
the result is

Q=M, (v„-v,). (62)

B Y' Bv„BQ,
BQ; BQ) BQ, B v„ (65)

is negative, the system will be unstable. In Eq.
(65), the subscript i refers to the ith Cartesian
component of a vector. This criterion is closely
related to one discussed by Hohenberg and Martin
in Ref. 35. However, it seems that there is an
error in their work, because Eqs. (3.45) and (3.8)
are inconsistent with each other. The error is not

The internal energy, call it 0, would be related to
the thermodynamic potential E' considered in Sec.
II by

U=E'+Q v . (63a)

The differential form is

dU=-PdV+TdS+v„dP'+pdN+v, dQ. (63b)

Recall that in Sec. II, E' was regarded as the in-
ternal energy subject to the assumption that v, be-
a mechanical variable. Now we are dispensing
with this last assumption. Next, let us define a
Legendre transform of W, caQ it Y, in the follow-
ing way:

Y(V, T, N, v„,Q) =W+Q v, . (64a)

Then, using Eq. (17), one finds

dY=-PdV-SdT-P' dv„+pdN+v, dQ. (64b)

From the general theory of the stability of thermo-
dynamic systems, ' it is known that if a diagonal
second-order derivative of the type

trivial, because instead of their free energy W/8,
one must use a Legendre transform with respect
to v, to get the right-hand side of Eq. (3.45).
Nevertheless, the idea which they propose is sug-
gestive„and is the subject which we shall examine
here.

First, let us evaluate the derivatives in Eq. (65)
under the conditions that v, = v„=0, and let the
superscript zero denote these system points. Then
one fin-ds

B'Y

BQ;BQ;J M,' '

But we also have

&0 for T&Ty

~0 =0 for T= Tq

&0 for T&Tq .

(66)

Therefore, under the assumption that v, is a ther-
modynamic variable, the system at rest would be
unstable for T&Tq. To determine whether the sys-
tem at rest would actually be stable for T&Tq re-
quires further calculation, but at least the rela-
tions in (6V) would be consistent with that possibil-
ity. The element of uncertainty above Tq is con-
nected with the possibility that the state of the
system corresponds to a saddle point of the in-
ternal energy function in the space of the indepen-
dent thermodynamic variables. Note that as T
approaches Tq, the reciprocal of B v„./B Q,. ap-
proaches zero, and not Bv„/BQ, itself, as one
might surmise from Eq. (3.45) in Ref. 35. These
results suggest that characteristic two-fluid be-
havior may be associated with instability of the
liquid with respect to small fluctuations in Q. The
change in the sign of the superfluid mass here is
the signal for the change in the character of the
liquid, just as it was in the illustration involving
the velocity of second sound. One can use the data
in Fig. 1 to evaluate the derivative in Eq. (65) nu-
merically for all values of!v, -v„! and for any
temperature, and we shall do this in part in the
case where there are no direct interactions among
the excitations. Recall that in this approximation
Tq =2.415 'R. For illustrative purposes, let us
suppose v„=0 and that only the i = 1 Cartesian com-
ponent of v, is nonzero. Then one finds that at
T=2.20 'K, (BQ~/B v,~)„„0=0near v, =15 m sec ~,

and that it is negative for smaller velocities and
positive for higher. At T =2.40 K, just 0.015 K
below Tq, (B Q~/B v„)-, 0 vanishes near v, =5
m sec . By making a Taylor-series expansion of
E(v, ) in powers of v, [the desired result can be
found by taking y =0.0 in Eqs. (126)-(129) in Sec.
IV], one can show that the threshold velocity for
stability varies as (Tq - T)v2 when T approaches
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Tq from below F. or T&Tq and v„=0, 9q~/8 v,~&0
for all values of v, . In summary, one finds that
for T&Tq and v„=0, there is some range of vel-
ocities contiguous with v, =0 for which the system
would be unstable with respect to fluctuatjggs in
the components of Q; whereas for T&Tq and v„=0
the system might be stable in this respect for all
values of v, .

In the foregoing discussion, the velocity and
temperature ranges for stability and instability
of the liquid are almost exactly reversed from
those described by Feynman. 4 So let us consider
an alternative way of dealing with the microscopic
theory that would lead us to the same conclusions
regarding the stability of the system that Feynman
reached. The essential observation here. is that an
extensive variable 5, may be introduced into the
theory by the definition

Nmv, .— (68)

Then v, is not a thermodynamic variable itself,
but is just a convenient shorthand notation for
P, /Nm, and must be dealt with in that way in the
quantum-mechanical and statistical-mechanical
formulas in Sec. II. The proper form of Eq. (9)
for the energy eigenvalues would then be

E'=E, + ' + P, g n, p,.+gn, e, .p' 1 -.
2Nm Nm

(69)

The free energy W of Eq. (16) should be written

dynamic variable. In fact, it seems to lead to the
same results as were obtained in Sec. II and earl-
ier in this section, with two exceptions, which we
shall illustrate by considering the case of non-
interacting excitations. Instead of Eq. (34b), one
now finds that the chemical potential satisfies

ae, 1 ee,.=m ~e, +p '+ —gn,8 p 't/' 9 p

pn 2 pn-——v+ —v ——v ~ v
2 S p S p

n S (V3)

z — = —v +~v ~ v ——v.
m 2 s

p
n s p

(74)

It is easy to see that this same result holds when
interactions among the exeitations are present.
The second exception is in the stability properties
of the system. The general theory of stability"
now indicates that one should examine the diagonal
second-order derivatives of the type

BW Bu;
~ +oi ~+0~ +o~

At v„=&0=0, this yields

(75)

The pressure as well as other quantities calculated
as first partial derivatives of W while N is held
constant are the same as before. The analog of
Eq. (34f) is

W(P„v„)=E,+ ' -P, v„-kT gin(1+n, .),
2Nm

O'W ' M'
&BPO;BPO) M

(76)

= —'(v -v ).s n (71)

%"hen the thermal equilibrium values of n, are used
to evaluate E', given by Eq. (69), the resulting ex-
pression represents the internal energy, for

E' =E'(V, S, 5', Ã, Po)

is a fundamental relation expressed completely in
terms of extensive variables of the system; the
differential of the internal energy is

dE' = pdV+TdS+v„d-P'+p. dN+u dPO. (72)

It appears that this approach is just as satisfactory
as the one where v, itself was treated as a thermo-

(70)

where the n, are given by Eq. (13) when Eq. (68) is
taken into account. From Eq. (VO), one finds that
the variable conjugate to Po, let us call it u, is

BWu=
85,

Now, one reaches the opposite conclusions regard-
ing the stability of the homogeneous system at rest
from those deduced from Eq. (66). It is clear, in
fact, that the stability properties inferred from
Eqs. (71) and (75) for v„=0 and all values of Po
would be compatible with those described by Feyn-
man. Those results can be understood easily with
the aid of Fig. 5, provided that the abscissa be
interpreted in accordance with Eq. (68).

The theory based on the variable 50 seems to be
just as capable of accounting for the change of
flow properties at Tq in terms of a change in sta-
bility as the theory based on the variable v, . Which
is more appropriate in treating liquid 4He is still
not known. A study which provides a qualitative
analysis of the detailed mechanism by which ther-
modynamic stability affects flow properties is
needed to solve that problem, and the answer can-
not be given now.

Usually a system does not attain a state of equi-
librium that is unstable according to ordinary ther-
modynamic criteria because fluctuations are not
counteracted by a restoring force then. However,
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factors which have not been mentioned so far may
permit exceptiona1. behavior of liquid 4He in this
regard. For example, because the circulation of
v, is quantized, fluctuations of Po involving ex-
changes between neighboring regions might be in-
hibited by the necessity to supply simultaneously
ihe energy of a vortex core, at least in a simply
connected region. On the other hand, viscosity
as well as vortex-core requirements are factors
that might suppress fluctuations in Q, and con-
sequently suppress the usual effects of thermo-
dynamic instability.

It was demonstrated in Sec. II that interactions
among elementary excitations present no obstacle
in the theoretical formalism, at least if they are
in the class discussed there. It is conceivable that
they are essential in understanding the behavior of
the liquid, particularly near the temperature where
the superfluid transition occurs. Therefore we
shall now investigate effects of some simple inter-
actions.

The central problem here is to find explicit self-
consistent solutions of Eq. (51), which determines
the occupation numbers, and then to use them in
evaluating thermodynamic functions. First we
must deal with the question of how the coefficients
f,, , f,,„etc., are to be determined. In principle,
they could be calculated, at least approximately,
by using the CBP formalism. However, definitive
results would require treatment of high-excited
states with an accuracy that has not yet been
achieved by that method. That approach may be
the most reliable when CBF theory is developed
further, but it cannot solve our problem at this
time. An alternative approach is to follow the lead
of Bendt, Cowan, and Yarnell, "who extracted av-
erage values of f,Jfrom neutron. -scattering data
with the aid of certain simplifying assumptions.
One of their implicit assumptions is that the liquid
is always homogeneous and stationary. We shall
see in Sec. IV that there are. reasons to believe
that t;hese conditions do not exist in the liquid near
Ty, but that quantized vortices are present there.
If vortices were present, there would be a mantle
of high roton density near each core. If such
mantles were present but one neglected them in
extracting values off„from neutron-sc. attering
data, large errors would be made. Therefore, we
shall proceed in a different manner, and we shgl
set a rather modest goal for our analysis, viz. , to
see effects of interactions among excitations on ob-
servable properties of the liquid so'mewhat quali-
tatively. For simplicity, we shall limit the dis-
cussion to pair interactions, corresponding to
terms in the energy eigenvalues of the form
(I/2N)p f,;n,.n; There are. two choices of f,,
that have been studied in similar contexts in the"

'l

literature. ~'4' 44 At first we shaD deal with them
separately, and later we shall discuss the situ-
ation when they are present simultaneously.

The first case that we shaQ consider has a direct
analog in electromagnetic theory, and we shall
refer to it as the polarization interaction. It was
originally discussed by Feynman on p. 274 of Ref.
1. The plausibility of this model was reinforced
by the somewhat later work of Feynman and Co-

pj(r)= =pv, + Qn, p,

Feynman noted the mathematical parallel between
Eqs. (7V) and (78) and the equations for electrical
phenomena when the free charge density is zero:

V D=O

(V8)

(V9)

D = E + 4m(P . (80)

Here D is the electrical displacement, E is the
macroscopic electric field, and (P is the polari-
zation. In the electrical case, it is known from
a type of analysis originally due to Lorentz that
if the polarization is due to dipoles that are lo-
cated at random positions in space, then the local
electric field E, experienced by a typical dipole
is related to quantities appearing in (80) by

4Ei =E+ 3 7j(p (81)

Feynman suggested that in the case of the ~He

liquid, the local velocity w experienced by an ex-
citation would be made up of two parts, viz. , the
average superQuid velocity v, , analogous to the
macroscopic electric field E, and a part due sole-
ly to the dipolar field associated with other ex-
citations, (1/pV)g n, p, . Then the analog of Eq.
(81) would be

w=v~+ Q tl p ~, .
pV

(82)

where n = —,
' in the Lorentz-type analysis. Feynman

hen, ' who found that a dipolar velocity field, the
so-called backflow, was associated with a roton;
this suggests that rotons interact as if they were
dipoles and consequently influence each other
through a polarization interaction. From the con-
tinuity equation, which is implied by the Schrod-
inger equation for the many-body system, one in-
fers that when the liquid is in an energy eigen-
state, then

V ~ j (r) =0. (VV)

Here j (r) is the quantum-mechanical mass-current
density. When the. density p and flow velocity v,
are uniform throughout the system, j (r) is inde-
pendent of spatial position, and is given by,
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said that the excitation energy which determines
the occupation number n, should involve p, ~ w in-
stead of just p~ ~ v, . This would be a natural con-
sequence of the microcanonical formalism if we
took

1 1 Q
2N~ " ' ' 2Nm

in the expression for the energy eigenvalues, given i

in Eq. (Bb). Then imposing the condition that W in
Eq. (14) be stationary with respect to variations in
the occupation numbers, one finds the following
special case of Eq. (51):

1

exp(P[e)+p, ~ (w-v„)])-1 ' (84)

1 n
2Nm ~ ' ')'

and the internal energy is

(86a)

E =E, + ,Nmv,'+v, ~ g—n,p,. +P n, e, . .

(86b)

Feynman noted that a polarization interaction of
this type, with z = —,', would raise the temperature
Tq above that for a noninteracting system. It is
straightforward to verify this by making a Taylor-
series expansion of P in powers of v, . Of course,
his analysis was carried out before neutron-scat-
tering data were available for the dispersion curve;
therefore, it was not obvious that this type of in-
teraction, acting alone, would increase the dis-
crepancy between calculated and experimental
values of Tq by an appreciable amount. This ef-
fect could possibly be offset by other, interactions
not yet considered. However, there also seems
to be a problem at a more fundamental level with
part of Feynman's argument based on analogy with
electrostatics. The point in question is whether
it is reasonable to suppose that v, corresponds to
E, the macroscoPic electric field, as Feynman

where w is given by (82). When the self-consistent
values of n, , i.e., the solutions of (82) and (84),
are used to evaluate w, one can express Eq. (84)
in the following simple form with the aid of Eq.
(22):

1
exp(P[~;+p; (v, -v„)(1 ~p„&p)1) 1'-

(85)

The thermodynamic potential W then can be written

W =Eo+ ', Nmv,'-—N„v, ~ v„—0T g ln(1+n,).

/II&-x-li. Exing
D

waar. l A::

// // e c///////
FIG. 6. Schematic diagram of apparatus for a thought

experiment for analyzing the polarization interaction
among rotons. See text for details.

did. In electrostatics, that field is in general partly
due to sources external to the dielectric, but it is
partly due to aligned dipoles in the dielectric itself.
Now in the liquid case, as the theory is formulated
here, and as it seems to be in Feynman's treat-
ment, it is assumed that v, is fixed independently
of the elementary excitation states. Or, said an-
other way, for the dipole model, v, does not de-
pend on the state of polarization. Since this is true
at the quantum-mechanical level, i.e., for the
energy eigenvalues, it is also true in the statis-
tical-mechanical formulas. Clearly, this is not
consistent with v, being treated as the analog of
the macroscopic electric field. Therefore, a re-
examination of the analogy with electrostatics is
called for, and we shall deal with that next.

Let us consider a thought experiment as schem-
atized in Fig. 6. The pistons D and E move with
a common velocity v, and force superQuid to flow
through the region A that is bounded at its ends by
superleaks B and C, which are assumed to be per-
fect thermal insulators. The length X of the re-
-gion A is much less than the radius of the tube p.
The liquid in region A is the system of interest.
The remainder of the apparatus just provides a
method for fixing the velocity v,. in A while it is
otherwise isolated as far as energy transfer is
concerned. In our idealization, we shall suppose
that the density is constant throughout the liquid.
Now suppose that excitations, modeled as dipoles,
appear in region A, but nowhere else, while v,
remains constant. Then a Lorentz-type calcula-
tion of the locaE velocity field due to the dipoles
alone is mathematically equivalent to that for the
dipole contribution to the local electric field in
a dielectric slab. When the external field v, is
added in, one finds that the local field experienced
by any dipole is

2w=v — -- ~ N;p;.
p

This leads to the conclusion that one should take
a = ——,

' in Eq. (82) and the succeeding equations.
On the other hand, for rotons aligned parallel to
the large fIat faces in a thin liquid sample, one
finds z = —'„ the same value that Peynman used.
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In general the value of n depends on the shape of
the sample because of "depolarization" contribu-
tions to the velocity, which can be associated with
surface terms. A backflow field of either electric or
magnetic dipole type aligned with the axis in a long
narrow region also gives n = 3 . It may be noteworthy
that for n = -3, the calculated transition temperature
7.'q is 2.15'K at zero pressure, and 1.90'K at 25.3
atm. The corresponding experimental values are
2.1V a.nd 1.82 'K, respectively. The zero-pressure
calculation was based on the density and dispersion
curve described earlier. The high-pressure cal-
culation was based on the density N/V=0. 0259
atomA ', and on the neutron-scattering data of
Henshaw and Woods" for the dispersion curve at
1.1 'K. Despite this remarkable agreement be-
tween calculated and experimental values of Tq
as a function of pressure, it is clear that the po-
larization interaction alone cannot account for
other details of the behavior of liquid 4He. This
can be made evident by the following considera-
tions. Suppose the liquid is contained in a simply
connected region bounded by stationary walls, and

that the system remains homogeneous. Then v,
=v„=0, and the only solution of Eqs. (82) and (84)
consistent with Eq. (22) occurs when w=0. Then
the polarization interaction acting alone would not
produce a reduction in the effective roton energy
gap as the temperature increases toward Tq. On

the other hand, neutron-scattering experiments
show that the gap decreases. "" Furthermore,
the occupation numbers for the excitations would

not be affected by the polarization interaction un-
der these circumstances, and consequently the
entropy would not be affected by it either. It is
straightforward to show that the four forms of the
specific heat at constant volume still satisfy the
formula for noninteracting excitations given by Eq.
(58) when v, =v„=m =0. Therefore the polarization
interaction acting alone cannot produce the logari-
thmic singularity in the specific heat. One may
question the validity of our treatment on the
grounds that all of the excitations were regarded
as being associated with dipoles, whereas the cal-
culation of Feynman and Cohen just indicates that
this is true for rotons, and says nothing about the
situation for phonons. There is, in fact, no rea-
son to expect that a dipolar backflow will be ap-
preciable for phonons. It is therefore important
to note that above about 1.1'K, less than 4% of
the contribution to the normal fluid density is due
to phonons; and so in the temperature range where
interactions might be important for thermodyn-
amics, little error is introduced by treating all of
the excitations as if they were dipoles. If, as a
matter of principle, one wished to exclude the
phonons from the polarization interaction, the

general theory could easily be adapted to that case.
The qualitative conclusions reached regarding Tq,
the roton energy gap, and the entropy would re-
main the same.

Next, let us consider the second case, the mean-
field interaction, which involves a single dimen-
sionless coupling constant that we shall represent
by y. The pair contribution to the energy eigen-
values in this model may be represented as fol-
lows:

%yap t'1
2N ~f" '+&=-

2 l(PQ +;

2= —2 Xylo f (88)

1
exp(P [e,. + p., ~ (v, -v„) ye, f ]j)—1- (89a)

(89b)

The pfggggg occupation numbers are the same as in
the noninteracting case. When the n~ are solutions
of these equations, the thermodynamic potential 9'
is

W =8, +
2
¹zv,' —Nmv, ~ v„kT pin(1+n )-

+ —gP Cp (90)

and the internal energy is

The quantity eo appearing in Eq. (88) is the mini-
mum roton gap energy for low excited states. Neu-
tron-scattering data"'" on the temperature depen-
dence of the roton gap energy indicates that y
should be chosen positive. The prime on the sum
in the second term means that it is restricted to a
subset of the excitations, which we shall take,
somewhat arbitrarily, to be those having energy
greater than or equal to E'p in our example, and we
shall refer to those excitations as rotons. If all
excitations, including phonons, were included in
the sum, then some of the energy eigenvalues
would be less than E„ the assumed ground-state
energy, and the model would be unsatisfactory
from the standpoint of logic. What is perhaps less
obvious is that there must be an upper limit, call
it 2, on the number of excitations in the restricted
sum, for otherwise there would be multiexcitation
states having energy less than Zo. The quantity f
is just the ratio of the number of rotons to the total
number of particles in the system. For this form
of the pair interaction, the occupation numbers
for the ~otons are determined by the following
formulas when the system is in themodynamic
equilibrium:
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Z =So+ N—mv2+v, ~ g n, p, +g n, e,.

——Ny &~ — n, (9l} 60.0—

I I I I
)

I I I I
i

I I I I

To illustrate the effect of the mean-field interac-
tion, let us take y =0.2. This value of y is appreci-
ably smaller than that which one would find by us-
ing the pair interaction formula given by Bendt and
co-workers. ' For y =0.2, it turns out that there
are solutions of Eq. (89) for a range of temper-
atures 0&TS3.6'K, and there are no solutions
when T 23.6 'K. Furthermore, for any tempera-
ture T%8.8'K and for any velocity 7=v„-v, in the
range from V=0 up to some maximum value which
depends on the temperature, there are tmo solu-
tions of Eqs. (89a) and (89b). The solution of those
equations were first sought by an iteration pro-
cedure. When it was found that the results did not
converge for large values of V or T, a study was
made of the conditions for the threshold above
which solutions no longer exist. This was done,
for fixed values of V and T, by computing the
right-hand side of Eq. (89b) as a function of f, and
noting the value where (89b) was satisfied. Rep--
resentative plots of the two sides of Eq. '(89b), for
T =2.0 'K and three different values of V near the
threshold at that temperature, are shown in Fig.
V. The threshold velocity U, below which there

I.5

0,5

e)40.0—

E
50.0—

20.0—

I 0.0—

I.O 2.0 3.0
T ('K)

I

4.0

FIG. 8. Threshold velocity U, for solutions to Eqs.
(89a) and (89b), as a function qf temperature. A mean-
field interaction is assumed, with y=0.2.

are always solutions of Eq. (89) and above which
there are none is shown as a function of temper-
ature in Fig. 8. For a homogeneous system in
which 7 is the same everywhere, the occupation
numbers will contain a chemical potential for ro-
tons when T and V are such that no solution of Eq.
(89) exists. In fact, if a solution of Eq. (89) does
occur at a given T and V, but the calculated value
of the total number of rotons exceeds the upper
limit X, mentioned earlier, then a chemical poten.
tial for rotons also must occur in the occupation
numbers. If the system does not remain homo-
geneous, there is another way of dealing with the
conditions at large velocities, that does not involv~

a chemical potential for rotons. That case is dis-
cussed in Sec. IV, where the density of the liquid
is assumed to undergo a rapid variation in the
high-velocity region, and vortex cores are thereby .
formed.

Evaluation of W at v„=0 gives the Helmholtz
potential

1
P(v, ) =E, + —Nmv,'-kT gin(1 n,)+.

0.5 I.O

+
2 Nycto

— n (92)

FIG. 7. Right-hand side of Eq. (89b), represented by
Y, as a function off, where n; is given by Eq. {89a).
All curves are for conditions near threshold at T= 2.0 'K.
For V=

~ v„-v, ~, they correspond to the following vel-
ocities: curve 1, U= 44.0 m/sec; curve 2, V= 46.0 m/
sec; curve 3, V=48.0 m/sec. Solutions to Eq. (89b) oc-
cur at the intersections of the curves with the straight
line Y=f. A mean-field interaction is assumed, with
y =0.2.

Under the assumption that the chemical potential
for rotons is zero for v, &U, the isotherms of
E(v, ) are shown in Fig. 9 for y =0.2. They are
qualitatively the same as for the noninteracting case,
shown in Fig. 5, except for the fact that they
terminate at v, =U rather than at the Landau criti-
cal velocity. The solution of Eq. (89) corresponding
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FIG. 9. Free energy per particle as a functicn of
superfluid velocity ~, when v„=0. Each curve is an iso-
therm. The calculated free energy is based on Eq. (92)
with p= 0.2, but Eo has been subtracted out of the for-
mula. The vertical lines mark the maxima on the iso-
therms. V, is the Landau critical velocity. The iso-
therms terminate at v, = U, where U is given in Fig. 8.

to the smaller of the two values of f at each value
of T and v, was used in the evaluation of the free
energy. This choice was based on the idea that the
physical solution should tend continuously to that
of the noninteracting system as y tends to zero,
and it is consistent with the results of a computer
evaluation of the free energy for &0)A, solutions at
T= 2.0'K with g, =44.0 m sec '. The transition
temperature T~ is shifted downward by the inter-
action to about 2.365 'K from 2.415 K. All four
forms of the specific heat at constant volume,
evaluated at v, =v„=0, again have the same value,
and vary smoothly from T =0 to the threshold
temperature, T, =3.6'K, as indicated in Fig. 4.
The entropy is also shown there.

Figure 4 is useful in studying possible phase
transitions in the stationary, homogeneous liquid.
If the number of excitations reaches the constrain-
ing limit X at a temperature T„such that T„&T,,
the liquid will undergo a second-order phase tran-
sition there. One can understand why this is so in
the following way. The roton chemical potential
will be zero below T„, and will tend to zero as the
temperature approaches T„ from above. Hence,
the occupation numbers, and in turn the entropy,

4.0

5.0

I.O

0.0 I.O 2.0 5.0

FIG. 10. Right-hand side of Eq. (89b), represented by
7, plotted as a function of f for several different tem-
peratures near T&, and for V=

~ v„-v, ~
=0. Solutions of

Eq. (89b) occur at the intersections of the curves with
the straight line F=f.

will be continuous at T„. The partial derivative
of the roton chemical potential mill not be zero at
T„„however, and that is what produces the ano-
maly in the specific heat. On the other hand, if as
temperature increases, the threshold T, is reached
before T„, then the system will undergo a first-
order transition at T, . Again, the roton chemical
potential will be zero for T&T, , but it will jump
to some finite value at T„, so that the constraint
on Q'n, /N will . be satisfied as an equality there,
and that is what produces the discontinuity in the
occupation numbers and in the entropy as T passes
through T, . In this case, the specific heat C~
diverges as T approaches T, from below, C~
-(T, —T) +' for T-T, , but the transition is still
first order because of the discontinuity in the en-
tropy at T, . The stated temperature dependence
of C~ is derived later in this discussion. If T„and
T, should happen to coincide, a second-order tran-
sition would occur. Even though it would seem to
require a spectacular accident in nature for T„
=T, =T~, this case stH1 merits close examination
to determine whether it might account for the
logarithmic divergence in the specific heat ob-
served in liquid 4He. A detailed analysis is given
below.

First, let us note that in Fig. 4, the specific
heat appears to be diverging as T T, . A quali-
tative understanding of this behavior can be gained
with the aid of Fig. 10, where the right-hand side
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T, , we can solve the equation

which is equivalent to Eq. (89b), by using Eq. (95).
To express the equations in a more compact form,
let us introduce the following notation:

l.O—
1 I'e'r

1 (o2r ld= 2(, , ),
Then Eqs. (96) and (9V) give

Ff f- (9'f)

0.5— aI' —M t —ct+dt'=0, (98)

l.o 2.0
T ('K)

5.0

of Eq. (89b) is plotted as a function of f for severs
values of temperature, and for V=Iv, —v„I =0.
Solutions to Eq. (89b) occur at the intersection of
the curves with the diagonal line 1"=f; and, as
noted earlier, we shall suppose that the smaller
values of f give the physical solutions, which are
plotted as a function of temperature in Fig. 11. In
that figure, one can see that df /d T appears to be
diverging as T T, . We shall see shortly that
this behavior of df /d T induces a singularity in Cv.
To work out the mathematical description of these
phenomena, let us start by representing the right-
hand side of Eq. (89b) as

FIG. 11. Plot of f, corresponding to the physical solu-
tions of Eq. (89b), as a function of temperature when V
= Iv„-v, I

=o.
df 1 2[ 4« —2(b' —4ad)(T, —T)]
d T 2a [4ac(T, —T) +(b' —4ad)(T, —T)'] +' j

(100)

For T just slightly less thari T, , this reduces to

df 1 , ( 4ac
dT 2a»T» —T J

The entropy is given by Eq. (10), and we shall
write it as

yhom r ot (102)

which is a quadratic equation in the variable P.
The physical solution, i.e., the.one for which f
is the smallest, is given by

f (T) =fo+(1 /2 a)(b(T» —T) —[4ac(T, —T) +(b' —4ad)

x(T» —T)'] ~'j (99)

where the relations in (9V) have been used again.
From Eq. (99) it follows that

V(f)= g n, ,

where

(93)
The phonon part will vary smoothly as T passes
through T, , and so we shall focus on the roton
part. Then

n,. =1/(e'&'» - y'o» 1). (94)

Let f, represent the solution of F =f at T, . Then,
for f near fo and T near T, , we shall make a
double Taylor-series expansion of Y and keep only
terxns through second order; this gives

8$,~
'lj

v rot BT V

1+n»l~ sn,.
kg „ln

0

-n,.(n,. +1)(e» yeof)-
(95)

Note from Fig. 9 that (8 F/8 T)o =1. For any T near

1 yeo df I

I»T' ' ' kT dT)
(103)

The term involving df /d T induces the behavior
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Cv-(T, —T) ~". This temperature dependence of
C~ is in agreement with the result found by
Jackie, "who used Boltzmann statistics in treat-
ing the rotons.

Provided that the liquid remains stationary and
homogeneous, the behavior of the entropy and
specific heat at constant volume would be the
same in the presence of both the polarization and
mean-field interaction as that which occurs when
only the latter interaction is present. This is a
consequence of the fact that the polarization inter-
action does not affect the occupation numbers at
v, =v„=0. However, the temperature T~ would be
determined in part by the polarization interaction.
From the foregoing analysis one can conclude that
lf tI1B llquld remains homogeneous~ then no com-
bination of these two interactions can produce the
logarithmic specific-heat anomaly observed in
liquid 4He. Perhaps more important than the quan-
titative failure of such a theory is the fact that it
does not provide a causal link between the condi-
tion p„=p at v, =v„=O, where the flow properties
of the liquid change, and a specific-heat anomaly.
One can now draw much stronger conclusions re-
garding a basic inadequacy of these interactions
than was done by others who studied them in earli-
er work. 42'44 For here it is clear that the formal-
ism can deal with these interactions accurately,
and there is no reason to question the reliability
of the results because of widths associated with
the energy of excitations.

Obviously, we cannot rule out the possibility
that some other kind of interaction is responsible
for the A. transition in liquid 'He under the con-
dition that the liquid remains stationary and homo-
geneous, and that possibility is certainly worthy
of further study. However, there is another ap-
proach to a possible solution of this problem, and
we shaH consider that in Sec. XV.

IV. QUANTIZED VORTICES IN LIQUID 48e

Substantial experimental effort has been in-
vested in probing the structure of quantized vor-
tices in rotating liquid 4He systems for about the
last ten years. ~' " However, theoretical work in
this area""'" "has not been very extensive,
and the picture formed from it is still very in-
complete and parts of it still must be regarded
as quite tentative. In particular, the structure
of the vortex cores and the properties of the roton
mantle surrounding it at finite temperatures still
represent problems of considerable interest that
have not been solved completely. A major incen-
tive for studying such details is derived from the
fact that it is widely believed that creation of quan-
tized vortices is the main factor which determines

v, =b/~ (104)

there for an isolated straight vortex line bearing
one quantum of circulation. The quantization con-
dition gives b=5/m =159.0 msec ~A. The units
used here are particularly convenient for calcula-
tions. The cylindrical radius to the vortex center
is r. Later in the discussion we shall describe
a method for selecting the velocity at the boundary
of a core. If that velocity is known, then the radi-
us of a core can be calculated by Eq. (104). We
shall determine the energy of a core approximate-
ly for the liquid at O'K by a method that is vari.—

ational, at least in principle. This will be used
as an estimate of the core energy even at finite
temperatures. The remaining part of the free
energy of the liquid containing vortices will be
calculated by using the velocity consistent with Eq.
(104) and the free-energy values in Fig. 5 or 9.

Let us turn now to the calculation of properties
of a vortex core. Consider a sample of liquid 'He
at T =O'K in a cylindrical container of radius A,
aligned with the z axis. A rectilinear, quantized
vortex state can be defined by the condition that it
be an eigenstate of the z component of angular
momentum with eigenvalue different from zero.

critical velocities in flowing HBII, at least under
certain circumstances. In that connection, cal-
culation of the nucleation energy for vortices is
also a matter of great interest which is not yet
completely settled. Part of the work discussed in
this section bears on solutions to those problems.

However, the primary motivation for the analysis
given here is derived from the following ideas:
(i) the thermodynamic potential curves in Figs 5.
and 9 suggest that the state of lowest free energy,
particularly for a temperature range beginning
somewhat below Tq, may be one in which the
liquid is flowing; and (ii) there is a need to under-
stand how the change in the flow characteristics of
the liquid are linked causally with the specific-
heat anomaly observed at Tq. If the free energy
of the liquid containing vortices were less than that
of the stationary liquid, then, vortices should be
excited thermally even when the walls of the con-
tainer are at rest. That possibility together with
its connections with changes in the behavior of the
liquid at Tq is the problem that concerns us now.

In explicit calculations of the free energy of
vortex lines, we shall assume a simple model in
which the particle density is uniform everywhere
except in core regions. In a distance of a few
angstroms, the density decreases and it reaches
zero at the center of a core. We shaD assume
that the circulation of v, is quantized in the outer
region of constant density, as Onsager" and Feyn-
man2 have suggested, so that
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&=(pl~-~, lg)/(pig),
one finds the numerator to be

(PI~-~DIP)

(107)
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N"'I P(r, )I'd'r, ~ ~ d'r'.
1A~i=g

The number density of particles evaluated at r, is

N f I~l'd'',
n(r, =

fl(I'd'', d'r„ '

(108)

(109)

the liquid to undergo a rearrangement there, per-
We shaQ be interested in the case where the angu-
lar momentum per particle is I. An approximate
wave function for this state can be written in the
form

e*'*.P(p,.}q„ (105)

where (p, O, z} forms a system of cylindrical co-
ordinates. The structure of the wave function g
is compatible with certain ideas originally dis-
cussed by Feynman' and later formulated more
explicitly by Chester, Metz, and Reatto" (CMR).
In Eq. (105), go is the exact ground-state wave
function for the homogeneous system without a
vortex, and accounts for the same effects as the
correlation function does in ordinary CBF theory
without Qow. In the present case, it is an eigen-
state belonging to the eigenvalue L,,=0. The fac-
tors of the type P(p, ) allow for the variation of
the density in the radial direction. Applying the
operator I,, to P, one can easily verify that P be-
longs to the eigenvalue stated earlier.

If P(p=0) =0 and (dP/dp)~ +=0, one can use a
mell-known procedure involving integration by
parts to simplify the expectation value of the Ham-
iltonian with respect to the wave function g. The
above conditions guarantee that certain surface
terms vanish. The result can be expressed more
compactly if we write g in the form

Q(r, ) g . (108)
i=1

Then defining e by

and so Eq. (107) maybe reduced to

n(r, )n(r, )g(r„r,)

N(N-1}J l)I2d'r, ~ d'r„

f Ill'd'~. "d'~ (112)

and a three-particle distribution function g(r, , r, ,
rs) by

n(r~) n(r, )n(r, )g(r, , r, , r,)

N(N —l}(N-2)f Igl d'r, d'r~ „
f I(I2d'~, d'~„

In our further work, we shall approximate $0 by a
Jastrow function, and write

1& i&)& N

exp[-,'U(r, )] (114)

Applying the Bogoliubov -Born-Green-Kirkwood-
Yvon (BBGKY) method, one can generate another
useful equation for n(r~) by taking the derivative of
Eq. (109) with respect to p, . When Eqs. (105),
(112), and (114}are taken into account, one gets

inn(r, )
QP1

=2 lnP+ dsr, n(r, )g(r~, r, )
dp1 BP1

(115)

Applying V, to both sides of Eq. (112), taking ad-
vantage of the fact that n(r, ) actually depends only
on p, , and making the approximation that

g(r~, r, , r,)=g(r~, r, )g(r2, r, )g(r~, r~), (116)

one finds that the pair distribution function satis-
fies the following equation:

rx

If we let P'(p) =dP/dp, then Eq. (110) can be simp-
lified, and

P')' 1
n(r, ) I+, d'r, .

2m g ] P1

Paralleling the procedure in the classical theory
of a nonuniform system, "one can define a pair
distribution function g(r, , r, ) by

V~ing(r, , r, ) =V~V(r»)+no Jt[V~P(r»)]g(r~, rs)[g(r, , r, ) —1]d'~ s

+ nr3 So V1U F13 g r1yr3 g r2 r3 1 d g3.



2578 H. W. JACKSON . 19

In the case of a uniform liquid, the last integral in
Eq. (117) vanishes, and there is a solution of the
equation which depends only on r», then one has
g(r, , r, ) =g(r ~,). We shall make that approxima-
tion in what follows. Later, we shall see that the
results of interest here depend only weakly on

g(r, , r, ), and so it seems likely that only a smail
error will arise from this approximation. This
observation leads to a simplification in numerical
work, as we shall now demonstrate. First, multi-
ply both sides of Eq. (11V) by Ino/(N —1)]g(r,&),
take Eq. (116) into account, and then integrate over
d'~, . Then one finds that

V, J' d'r, g(r„)=0

=n dz gx~ V~Ux» .

„0U(r„)
8 pg

(119)

The integrand now involves a short-range factor,
and numerical methods can be applied easily in
solving the equation. In making estimates, I shall
assume

~(r) = -(s/r)', (120)

and a=2.965 A. That form of U has been used in
a large number of variational calculations'7 dealing
with the ground state of homogeneous liquid 4He;
the value of a given above was fixed by Francis,
Chester, and Reatto~' by a procedure of that type.
For that particular function U, Miller and Woo
solved Eq. (11V) in the version applicable to a
homogeneous liquid, ' and I have used their re-
sults for g(r) in the calculations reported here.
Also, I have assumed n, =0.0218 atomsA '. For
the trial functions that we shall work with, there
exists some radius Ro such that n(p) =no and &~(p)
= 1 for p&RO. Then integrating Eq. (119) from R,
to p gives

Noting that n(r) is a function only of p, one can re-
write Eq. (115) in the following form:

lap (p, ) = m(p, ) J d'r, [n(p ) m ] d(ri )
dp& spy

In making estimates, we shall assume that n(p)
has the foQowing form:

( nosin'(mp/2ro) for p( ro
~(p)=( „ (122)
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%e shall refer to xo as the vortex-core radius.
This form of n(p) was selected mainly because
it is mathematically convenient to use, and be-
cause it is associated with a function P(p) that
interpolates smoothly between the points where
the behavior is fixed by the boundary conditions,
including that at p =0. The condition that the wave
function, and in turn the density, should vanish at
the center of a vortex core has been discussed by
Feynman. ' In a more complete treatment, a more
general form of n(p) with adjustable parameters
could be assumed, and a variational procedure
applied. That would be a project of considerable
magnitude; so we shall content ourselves with the
formula in Eq. (122) in this preliminary study.

The function n(p) is plotted in Fig. 12 for the
case F0=4.0 A. This value of xo is given by Eq.
(104) when the velocity is 40 m sec i. That is the
velocity at which the free-energy isotherm termi-
nates for the mean-field model with y =0.2 and at
the temperature T~=2.365 'K, as indicated ig

I' (p) =[&(p)/&,1 e""',

where

Ro
X(p)= dp, fd'&, (&(p.) —m)g(&, )

P

„0V(r„)
8pg

(121a)

(121b)

I I I

1.0 2.0 3.0. 4.0 5.0 6.0
p(A)

FIG. 12. Vortex core functions vs p, the cylindrical
radius. Curve 1: Po(p) based on Eq. (121a) with X(p)
=0. Curve 2: P(p) based on Eqs. (121a) and (121b).
Curve 3: n( p)/no. For all curves, n{p) is given by Eq.
(122}, and ro 4.0 A. -—
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1 . , mp+ . 2 sin pgp .p2 2xp
(128)

After a simple change of variable of integration,
one can use the following formulas to evaluate e„:

J
m'/2

8 cos Zdz =
16 8

(124)

J

�sr/2

—sin'ader = 1.64V .
p rE

(125)

The value of ~„is 0.961 'KA ~, and it is indepen-
dent of 'vp It is shown as a horizontal line in Fig.
13, along with the result e„which is computed by
substituting P(p) from Eq. (121a) into Eq. (111)
when the upper limit on p, in ('111) is set equal to

The energy per unit lengt'i of vortex line as-
sociated with the liquid in a r ylindrical normali-
zation volume of radius 6.0 A has also been cal-
culated as a function of core radius. Results are
shown in Fig. 13 as curves labeled +gp and e~.

Calculations parallel to these have been made for
models in which y = 0, that is, for noninteracting
elementary excitations. Two cases were studied
with the temperature at T~=2.415'K. In one, the
velocity at the core boundary was assumed to be
the maximum velocity allowed by a constraint
gn,/¹a. Her. e Qn, is the total number of ex-

Figs. 8 and 9. We are now assuming that the size
of the core is determined by this velocity for
T = T ~. It is instructive to neglect the exponential
factor in Eq. (121a) now, and thereby obtain a
zeroth-order approximation for the solution to Eq.
(119); we shall call it P,(p). That function is also
plotted in Fig. 12, and one can see readily that if
~p&B, where 8 is the radius of the cylindrical con-
tainer, then Pc(p) satisfies the boundary conditions
that were imposed in deriving Eq. (108). In the
next approximation, with n( p) still given by Eq.
(122), the integral in Eq. (121b) was evaluated by
numerical methods, and the function, p(p) was
computed from Eq. (121a). The result is plotted
in Fig. 12, where it is evident that the correction
to P,(p) generated by the factor e is small, and
the boundary conditions are still satisfied.

The vortex core energy can be computed from
Eq. (111)by taking the limits of integration on p~
to be from 0 to xp. Substituting the zeroth-order
function, P,(p), into the equation, one gets inte-
grals that can be evaluated by elementary methods.
For unit length of vortex line, one finds the follow-
ing expression for the core energy e,p, expressed
in 'KA x

mh' "p m 'I', gp
scO +0 2 I

cos
mk p Xp ) p

l.04

l.05—

).02— —2.0

I.OI—

hC
I.OO—

0.99—

0.98—

0.97'— —I.O
~co

l.O 2.0 3.0 4;0 5.0 6.0

ro (A)

FIG. 13. Energy per unit length of a vortex line vs
core radius r&, for T=O'K. For ~, and ~, p, the nor-
malization volume is a cylinder of radius ~p, for e z and

ego the corresponding radius is 6.0 A. e, 0 and e so are
based on the function Pp(p) &

~
& and &g are based on P( p).

TABLE I. Contributions to the free energy of an
"antiferromagnetic" vortex array having a lattice
spacing of 18.0 A, .

V ~0@)
('K A-')

go g

0.0
0.0
0.2

3.0
3.6
4.0

1.02
1.03
1.03

-0.52
-0.38
—0.43

-0.30
—0.16
-0.14

-0.22
-0.22
-0.29

citations, and N is the number of particles, each
of these quantities being referred to unit volume.
From Fig. 2, one finds v, =44 msec ~; and then
using Eq. (104), one finds rc =3.6 A. In the second
case, it was assumed+ n,/¹1, and by a similar
procedure it was found that ~p 3 0 A. The energy
per unit length of vortex core for each of the three
cases is given in the third column of Table I.
. The next matter that we shall consider is the
calculation of the free energy associated with the
flowing liquid outside of the vortex cores for an
array of straight, parallel (or antiparallel) vortex
lines when the normal fluid velocity v„ is zero.
Let us recall that g in Eq. (105) serves as the cor-
relation function for excited states in which pho-
nons and rotons are present when there is only
one vortex line that is located on the z axis of the
coordinate system. The correlation function for a
state with many vortex lines can be built up from
that in Eq. (105) by including a set of factors of the

type shown for each line, provided that 0 and p
are measured with respect to appropriate origins.
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In the region we are interested in now, i.e., out-
side the cores, all factors P(p, )ar. e unity, and
the density is constant. Then the Quid velocity
computed from the quantum-mechanical current
density for g is the same as that computed from a
velocity potential which satisfies Laplace's equa-
tion. The potential is single valued, provided that
appropriate branch cuts are introduced. The vel-
ocity at any point is clearly the same as that found

by assuming the quantization of circulation, with
each vortex bearing one quantum unit, and by as-
suming the superposition principle for combining
the contributions from the different lines. It is
postulated that the velocity potential computed
from the correlation function in that way holds for
excited states, and for the system in thermodyn-
amic equilibrium. We shalI. suppose that the line
density is so low that only a minute fraction of the
volume of the system is occupied by the cores.

Let f (v,}be the free energy per particle mea-
sured relative to Z, /N, and expressed in 'K. It
is given by the formula

f(v.) =(I/N])[Z(v, ) -Z, ]. (126)

The function P(v, ) is the same as that in Eq. (92).
The general formula for the free energy associ-
ated with the outer region in a vortex array is

g~ =n, v r d'r. (127)

By making a Taylor-series expansion of E(v,) in
Eq. (92), one can show that the leading terms in

f(v, ) are as given below:

f (v, ) =A+Bv,'+Cv,'. (128)

Explicit expressions for the coefficients that take
into account a mean-field interaction are as fol-
lows:

A = — g ln(1+n, ), g. = Nm —P P n,.(1+n,)P2,
1 = 1

3pyc [Q(2m,. +1 n ()n; +1) '](Q.,'(2n, . +1)n;In;+1)p;, ]
)(P&., /N) g n, (n, +1). .

(129)

A&0, C&0,

&0 for T&Tg

B =0 for T =Tg

&0 for T&Tq.

(130)

It would be straightforward to evaluate the coef-

Here it is to be understood that the n,- are given by
Eqs. (89a) and (89b), but evaluated at v, = v„=0. It
is easy to show that the bracketed expression in
the formula for p is equivalent to the volume times
the low-velocity expression for the superfluid den-
sity in Landau's theory, "when y = 0.

Various expressions that others have used for
the free-energy density in treating vortices in a
rotating container can be derived from P(v, ) eval-
uated at T=0'K, ' ' or at finite temperatures as
Taylor-series expressions of E(v,},"or W(v, , v„),"
where W is the function appearing in Eq. (90). In
the last case, one assumes further that v„=z~r,
where co is the angular velocity of the container
wall, and r is the position vector of a, fluid ele-
ment from an origin on the axis of rotation.

In the range of values of temperature T and cou-
pling constant y with which we shall be concerned,
the coefficients in Eq. (128) have the following
properties:

ficients by using the results in Eq. (129); how-
ever, I have proceeded in a different way for two
reasons. The first is that by fitting the approxi-
mate form in Eq. (128) to the exact results for
f (v, ) at three points that are judicious1y chosen,
good estimates for the coefficients can be obtained,
and the computer results necessary for doing that
are already available. The second reason is that
in our further work we shall take advantage of the
fact that the approximate form in Eq. (128) gives
a good fit to the exact expression for f (v, ) over the
entire range of the values of e, that concerns us,
that is, up to about 40 m sec ', and that must be
demonstrated explicitly since it cannot be safely
inferred just from the properties of a series ex-
pansion. Numerical values for the coefficients
have been computed'only for T=T~, since that is
what is needed in our further work. For y =0.0,
the coefficients were evaluated for T = 2.40 'K,
which is just 0.015 'K below Tq, by requiring that
the values of f (v, ) determined by the formula in
(128) agree with exact values of f (v, ) at v, =0.0,
20.0, and 40.0 msec '. When f(v, ) is expressed
in 'K/atom and v, in m sec ~, the coefficients are
A = —0.3425, g = 1.807 x 10 ', and C = -0.9643x 10 '.
For y =0.2 the coefficients were evaluated for
2.35 'K, which again is just 0.015 'K below Tq for
that value of y. In this case, the exact match was
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p cosL9-8
(R'+p' —2Rp cos 8)~' (131)

It is then straightforward to derive the following

0.0

V, (m/sec)
l0.0 20.0 50.0 40.0 50.0

I I I

-0.5—

-I.O—

FIG. 14. Free energy per particle as a function of
superfluid velocity v, when v„=0. Exact functions are
evaluated using Eq. (92); reconstructed functions are
based on Eq. (128). For y= 0.0: curve 1, reconstructed;
curve 2, exact. For y=0.2: curve 3, reconstructed;
curve 4, exact.

made at v, =0.0, 18.0 and 36.0 m sec ~. The coef-
ficients were computed to be A =-0.3187, B=1.680
X10 ', and C =-1.270X10 '. The free-energy
curves reconstructed from the computed coef-
ficients are compared with the exact results in
Fig. 14. One can see there that over a large range
of v, , there is no discernible difference between
the original and reconstructed curves, at least on
the scale used in the figure, and that it is reason-
able to use the approximate functions to make es-
timates. To very good approximation, the values
of A and C at Tq are the same as those given
above. For the value of B at Tq, we shall use the
exact result, viz. , zero. The simple approximate
formula for f (v, ) at T q which follows from these
considerations has important consequences for our
analysis because it leads to integrals for the en-
ergy of a vortex array which can be evaluated easi-
ly, and because it enables us to understand some
qualitative features of the free energy of an array.
At the same time we are assured that only minor
errors are introduced by the truncation procedure.

In dealing with a vortex array, it is useful to
consider an elementary problem involving just two
straight, parallel vortex lines separated by a dis-
tance B, as in Fig. 15. Using the law of cosines,
one can easily show that the following relation
holds for the angles indicated in the figure:

FIG. 15. Pair of straight, parallel vortex lines.

formulas:

(132a)

Let us assume that each vortex line bears one
quantum of circulation. Then the velocity poten-
tial associated with the vortex at position 1 is 50;
the potenti, al for the vortex at position 2 is 50'.
The velocity fields derived from them are

vi =Vi 8=(b/p) 8, (133a)

v2 =V+ 8' = (h/p') 8'

gf g+Q p (133b)

Reversing the sense of rotation of a vortex implies
that its velocity potential changes sign.

For an array, one can calculate the total velocity
at any point in the outer region by using Eqs. (132)
and (133) and forming a vector sum with contribu-
tions from aI1 of the vortices. Because the coef-
ficient C in Eq. (128) is negative near Tq, it
seems intuitively than an array likely to produce
a large negative contribution to the free energy
will be close packed and "antiferromagnetic. " A
picture of such an array can be visualized as fol-
lows. Start with a set of circles of radius 2R
whose centers are separated by a distance B on
a horizontal line. All vortices on this line have
the same sense of rotation. Just above it place
another line of similar circles, displaced hori-
zontally so that each one just touches two circles
on the line below. The sense of rotation of any
vortex on the second line is opposite to that of the
vortices on the first line. Repeating this pre-
scription, one forms an infinite "antiferromag-
netic" array of vortices, and it has the spatial
structure of the base plane of a hexagonal-close-
packed lattice. Since nearly all of the area lies
inside of the circles, one can obtain a good esti-
mate of the free energy for the outer region by
integrating v4 for a single circle and then multi-
plying by an appropriate constant. If we focus on
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7.0 I

l0.0 20.0 50.0 40.0 50.0
R (A)

FIG. 16. I is the integral of v~4 over a plane annular
region with 5.0 A& p&&R, for an "antiferromagnetic"
array of straight vortex lines. Curves 1, 2, and 3 are
based on contributions from neighbors included in
successively higher hexagonal rings, together with the
contribution from the central vortex. v, was computed
with the aid of Kqs. (132) and (133).

a specific vortex, then the centers of its near est
neighbors lie on the vertices of a hexagon. The
second- and third-nearest neighbors form the next
smallest hexagonal ring. The fourth- and fifth-
nearest neighbors form the third-smallest hexa-
gonal ring. The integral of v4 over the portion of
the central circle with p&5.0A, taking into ac-
count contributions from the central vortex and
those from successive hexagonal rings as de-
scribed above, is shown in Fig. 16. The integral
appears to be converging in an oscillatory manner
as successive rings are added. It seems likely
that the value of the integral for an infinite number
of rings will lie between curves 2 and 3 in Fig. 16,
and that its peak will occur when R = 18 A. Then
the lowest value of the free energy associated with
the outer region will occur for this spacing. . In
making estimates, we shall work with curve 3 in
Fig. 16. Multiplying those values by noC, one ob-
tains part of the free energy per unit length of
vortex line, which we shall call P, .

If this "antiferromagnetic" array were infinite,
then at the center of each vortex the resultant vel-
ocity due to all other vortices would be zero. This
follows from a symmetry of the array associated
with reflection through an origin taken on any vor-
tex. Hence, under the assumption that the Helm-
holtz theorem holds, the array would be stationary.

The cores, however, become distorted from cir-
cular shapes because of the influence of the mem-
bers of the array on each other. For the case we
are considering, computer calculations indicate
that for a spacing of about 20 A and core radii of
about 3-4 A, the maximum distortions are of the
order of 0.5 A in the radii. Let us recall in this
connection that a core boundary is assumed to be
determined by the condition that a certain speci-
fied velocity is reached. A rather elaborate cal-
culation would be needed to treat the distortions
accurately. However, because of the manner in
which a core boundary is determined, one can ob-
tain a reasonable estimate of the contribution to
the free energy in the outer region between ~0 and
5.O A by supposing that the velocity is just that
due to the central vortex. The quantity P, is the
part of the free energy per unit length obtained by
multiplying the integral of v4 for this annular re-
gion by n, C. The free energy per unit length as-
sociated with the outer region of a vortex within a
circle of radius &R is E,=I', +I', . These quanti-
ties have been evaluated for noninteracting vor-
tices, where y =0.0, and for the mean-field case
where y =0.2. The results for a particular lattice
spacing are shown in Table I, along with the vor-
tex core energy taken from Fig. 13. No attempt
has been made to adjust the core energy to take
distortions into account. The term involving A.

in Eq. (128) has been neglected because its con-
tribution is not changed by the presence of vor-
tices. In the table, one can see that I', and e,
tend to cancel, and their magnitudes differ by
a factor of about 2 or 3, depending on the
specific parameters that were used. The sum/,
+ e, is found to be positive in every case we have
examined. So taken at face value, the results in-
dicate that the vest state is thermodynamically
preferred over states with vortices by virtue of
having lower free energy at the temperature T~.
However, opposing terms in the free energy are
close enough in magnitude that one should serious-
ly consider the possibility that a more accurate
calculation of the core energy and treatment of a
wider class of vortex arrays would lead to the op-
posite conclusion. " It is clear that if vortex states
are found to have the lower free energy at Tq,
then they will also have lower free energy for some
smaller temperatures because the coefficients in
Eq. (128) are continuous functions of temperature.

The possibility that vortex rings start to con-
dense in the liquid, perhaps as arrays, at a tem-
perature that is somewhat below T~ is a matter
that should be examined closely. It is interesting
to speculate that the change in the free-energy
function E(v, ) at Tq, associated with the change
in sign of & in Eq. (128), causes vortex rings in
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haps even coalescing into vortex lines. This ac-
tivity could then produce a specific-heat anomaly.
These ideas are compatible with conjectures made
long ago by Onsager" and Feynman. ' In Sec. III
we saw that the change in behavior of E(v, ) at Tq
may cause the transition to superfluidity. So the
simultaneous divergence of the specific heat and
the transition in hydrodynamic properties may be
due to the change in character of the Helmholtz
potential.
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