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In this paper a theory of superconductivity for metals in which there are localized spins is

presented. The spins interact with the conduction electrons via an exchange interaction and

with one another via a direct Heisenberg interaction, as well as indirectly via the conduction

electrons. The spins are treated as classical vectors in a mean-field approximation. The super-

conducting pair-breaking mechanism is treated in the approximation of Abrikosov and Gor kov.
Complete interplay of magnetization and pair-breaking processes is taken into account. Phase

diagrams are presented. A treatment of alloys of two different magnetic ions is included in a

simple approximation. All results are in good qualitative agreement with the experiment.

I. INTRODUCTION

The considerable interest which has long existed
about systems which exhibit superconductivity and
magnetism' has been intensified recently by the
discovery in ternary compounds2 3 (ErRh484 and re-
lated alloys) of substances which are superconducting
in a given temperature range (8.7 K down to 0.9 K
for ErRh484) and which at lower temperatures lose
their superconductivity and form a magnetically or-
dered state. Th,is problem is an extension —or rath-
er a simplification —of the classical question of the
behavior of magnetic impurities in superconductors
which has been the subject of many experimental
and theoretical ' studies. Theories of ferromagnetic
superconductor have been formulated in various ap-
proximations by Gor'kov and Rusinov' (GR) and by
Bennemann. The questions to be understood center
about the role of the interaction between localized
spins and conduction electrons. This interaction has
several consequences: (a) it produces on the one
hand a Kondo-type scattering of the conduction elec-
trons which tends to destroy the Cooper pairing and
the superconductivitys; (b) it causes, on the other
hand, an indirect interaction between the spins'
which tends to form a magnetically ordered state; (c)
if the system orders ferromagnetically, there is a dis-
placement of spin-up band states with respect to the
spin-down band states, and a consequent change of
the structure of the superconducting Bardeen-
Cooper-Schrieffer (8CS) energy-gap equation"; (d)
finally, as a consequence of the ordering of the local-
ized spins, the Kondo-type spin-flip scattering be-
comes frozen out, and the ordinary depression in the
superconducting properties' is either partially or total-
ly quenched.

The purpose of this paper is to include in a
coherent and as-complete-as-possible way all the

II. GENERAL FORMULATION

Our system is described by the Hamiltonian,

Bcs +es + CM ~

where XBcs is the usual BCS Hamiltonian

HBcs X +k Ck(r Ck a

(2.1)

Q2—b, X(CktC kl+ C klCkt) +
k

(2.2)

Here 4 is the supcrconducting order parameter

5—=g X (C kJCkl), (2.3)

C„+ (C„) is the creation (destruction) operator for
an electron with momentum k and spin cr, g is the
electron-electron phonon-mediated coupling constant
and (" ) indicates thermodynamic averages. In Eq.
(2.I) x,s describes the interaction between the elec-

eA'ects mentioned above. They have all been dis-
cussed by previous authors, although not all in a
simultaneous and consistent way. It is our intention
to use this complete description to estimate the range
of physical parameters (temperature, interaction con-
stant, and density of electronic states) over which the
various behaviors in terms of ferromagnetic and su-
perconducting order are to be expected.

In Sec. II we present our model, the details of the
calculation, and the method of solution. In Sec. III
we include results for T = D and for finite tempera-
ture. Section IV consists of a brief discussion on alloy
systems and in Sec. V conclusions are given.
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where o =—(o.", cr", o') are the three Pauli matrices
and S& described the localized spins at site j, located
at Ag.

Finally, W~ is a magnetic Heisenberg Hamiltonian
which couples nearest-neighbor spins. We have

~»r = —Je X Sg Sy,
VJ'&

(2.5)

the exchange constant JH includes all interactions
which are not mediated by the conduction electrons,
including the dipole-dipole contribution.

In our theory we take the spins SJ to be classical
vectors, and we assume the magnetization to be
along the z direction

M = (S'): (2.6)

It is convenient to add to 3Cqqs a term of the form

trons and the localized spins of the rare-earth or
transition-metal ions as given by a contact interaction
of strength J. We have

I

X,s=
z
J $e [Sj (Ck+ o' C» )],

Jkk'

(2.4)

This procedure yields a system of coupled equations
in the components of G, G+,F, and F+ which, re-
placed in Eq. (2.3), yield gap equations' similar to
that of AG, with the difference that up and down
spins do not have now the same equation. Details
are given in the Appendix.

The thermodynamic average of the (classical) spins
is given by a Langevin equation

M=S coth8 ——',1,
8/'

where S is the magnitude of the spin,

8—= ( —
z JSM, +zJHSM)/kaT

here z is the coordination number and

Me $ ((Cklckt) (CkJC»t))

(2.14)

(2.15)

(2.16)

The parameter M, is the conduction electron magnet-
ization, and is directly related to the Green's function
G+. In the absence of superconductivity, a Curie
temperature is determined by the highest-tempera-
ture T& for which a nonvanishing solution for M ex-
ists. This yields

1 i (k —k') R~sc.= —,J M X e ~(C„+.~..Ck.),
Jkk'

ka Tk =
3 [zJHS +2po(JS} ], (2.17)

which in turn is subtracted from ~,s. This is
equivalent to changing, in Eq. (2.2),

1=~k+ —JM
and at the same time replacing in Eq. (2.4),

s, —sj —(sj) .

(2.8)

(2.9)

G (k) =—((Ck Ck+ )) .

F (k) —= ((Ck Ck )), (2.10)

and their Hermitian conjugates G+ and F+, with ele-
ments ((Ck+ Ck )) and ((Ck+ Ck+ )), respectively.
We evaluate these by writing down their equations of
motion' keeping terms up to second order in J, and
decoupling them by replacing the spin variables by
their thermodynamic averages. In particular we have

((Sj M) (SJ M)) = [ ((S')z) —M ] &JJ

((S"S"))= (SJ'SJ ) = ((S")') 5 f ~

(SJ"SJ) =o

(2.11)

(2.12)

(2.13)

In this way we have separated the effects of the
electron-spin coupling into two parts: a diagonal
term, which influences the spin dependent part of the
one-electron energies, and an off-diagonal part which
described the fluctuations and contributes to the
scattering of the electrons.

The electronic state of the system is described by
the usual Green's function matrices, 9

where po is the density of states of conduction elec-
trons per spin at the Fermi level.

In general two order parameters exist in the sys-
tem: 5, which governs the existence of superconduc-
tivity, and M, which describes the magnetization.
Thus we have
5 =M =0 describes a paramagnetic state P,
5 WO M =0 describes a superconducting state S,
5=0 M WO describes a ferromagnetic state F,
5 &0 M ~ 0 describes a state D in which supercon-
ductivity and ferromagnetism coexist.

III. PHASE DIAGRAM

(1/v) —= 2mpoIO

gives the strength of the spin-flip scattering and

(3.1)

In order t'o construct a phase diagram we take as
independent parameters the quantities Io=

2 JS, pro-

portional to the electron-spin coupling, JH, the spin-
spin direct coupling, po, the density of conduction
states at the Fermi level, and k~T, the temperature.
The quantity 10, as seen in Eq. (2.8) gives the max-
imum relative displacement that the up-spin band can
have with respect to the down-spin band; it is a
measure of the "ferromagnetic driving force. " On the
other hand, po is the density of conduction states per
spin and the quantity
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therefore the strength of the pair-breaking mechan-
ism of the AG theory;

We first consider the J~=O, T=0 case. In this
case Eq. (2.14) yields two solutions, M = S and
M =0. In either case all other equations of Sec. II
take very simple forms.

For M=S, we obtain

shown' to yield only the solution 5 =0, i.e., an F state.
The M =0 case reduces in our approach exactly to

the AG theory' and a pure S state. In order to deter-
mine which of the three states, F,S, or P, is the most
stable one, it is necessary to calculate the total energy
of the system as a function of the parameter Ip. We
obtain

((S")2) = ((S')2 —M) =0 . EF —Ep = —2ppIp (3.2)

The problem is now reduced to a simple BCS system
but with two displaced bands, as seen in Eq. (A13).
The displacement of these bands is the maximum al-
lowed value Ip. The resulting equation has been

Since the right-hand side of this equation is negative
definite, the I' state is never stable at T =0.

The energy of the S state, calculated from the com-
plete BCS theory, is given by'

1 2 1 1 2 1 1
Eg —Ep = ——pph 1 —— +—,for

2 2 Tb, 3 vb,

1= ——ppA 1—2

2
sin '(rh) + (1 —[1 —(rA)']'~') —— [1 —[1 —(rh)'j'~'j, for & 1 .

(3.3)

1
Ipc = ~pp = kBTco1.14

(3.5)

or, equivalently

(1/r, ) =4.83po(ks T,0)' . (3.6)

For Ip & Ip the stable state at T =0 is S;.for Ip ) Ip,
the stable state is F.

For the sake of comparison, the AG theory
predicts a complete destruction of superconductivity
at T =0 due to the pair-breaking mechanism for a
value of (1/r) given by

(1/rAG) =
2 Aoo = kBT„,I 1 (3.7)

which for typical values of T„(—10 K) and po yields
a ratio

(r~o/r, ) —S x10-' .
f

In other words, at T =0 the S state becomes meta-
stable against the formation of an F state at values of
the coupling constant Jwhich are between one and

For ordinary values of po (say 1 state /eV atom) Eqs.
(3.2) and (3.3) are such that, plotted as functions of
Io, in the range of meaningful variation of Eq. (3.2),
(E$ Ep) remain—s essentially a constant

ES Ep pod'oo = po(kB To/0 57) (3 4)1 - 2 1

I

where happ is the superconducting order parameter for
J =0, T =0, and T„ is the superconducting critical
temperature for J =0. Equations (3.2) and (3.4) now

yield a critical value of Ip,

two orders of magnitude smaller than the value re-
quired to destroy the superconductivity via a pair-
breaking mechanism.

At T ~ 0, the analysis of the phase stability should
be carried out by examining the behavior of the free
energy function & (hM;Io, JH, po, kaT) and by deter-
mining its absolute minimum with respect to
8 and M. We consider again the J~=0 case. This
analysis is much more complicated than the previous
one for T = 0, and it can only be accomplished by
numerical and approximate methods. We define the
following temperatures: Tg~ is the temperature
where &$ =&+, T, is the (Curie) temperature where
Sp develops a negative curvature with respect to a
small variation in M; T, is the (superconducting criti-
cal) temperature where &p develops a negative curva-
ture with respect to a small variation in b, ; Tqg is the
temperature (T$o ( T,) at which the superconducting
minimum in 5 develops a negative curvature with
respect to a small variation in I; T~~ is the tempera-
ture (TFc ( T,) at which the ferromagnetic minimum
in 7 develops a negative curvature with re'spect to a
small variation in A.

These temperatures, if the absolute minimum falls
in the correct region of parameter space, correspond
to the following phase transitions: Tq~, first-order
transition F S; T&, second-order transition F P;
T„second-order transition S P; I~&, second-order
transition S D; and Tqc, second-order transition
F D. These do not cover all possibilities, since
other first-order transitions are possible, e.g. ,
S D, F D, and Di D2.

The temperatures defined above can be calculated
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(3.8)Tsp T=e ~its(Tse)/ihip(Te) j ~

1

where Xs(T) and Xp(T) are the conduction-electron

by different methods. In particular T, is calculated
following the AG theory5 and Te is given by Eq.
(2.17), Tsp can be obtained from linearization of Eqs.
(2.14)—(2.16), keeping in mind that M, is a function
of 5 in this case. This yields

susceptibilities for the S and P states, respectively, at
temperature T. These susceptibilities were first calcu-
lated in GR with a different approximation which
however yields identical results to ours up to terms
linear in M.

The temperature T~c is obtained by linearizing the

gap Eq. (A13) in 5, keeping in mind that M A Q.

This yields

ln
~FC

CO

pp + (i/r) ((S,z) —M')/S' i o)

z
+i

OJ+ —0) 2mkg T
pp++ (i /r) ((S,z) —M') /S' i co+

i +i +Q—
0)+ —

Cd 27Kkg T

(3.9)

where we have

(S, )co+ = ———1— +
7

'
1/2

Ip
M' I I (S,z)

S 4 g S2
(3.10)

tures, T & T, and T & T&, a coexistence D state will

be stable.
If J &0, J~ WO the five temperatures defined

above, T~~ T&, T„T~&, and T~c have different ex-
pressions' . T, is still given by the AG theory5 and T~

by Eq. (2.17). The new expression for Ts, is

Tse= i zjeS + i pp(JS) ~~~s(Tse)/imp(Te)]; (3.11)

and P(z) indicates the digamma function. ' Finally
T&~ is calculated numerically.

For the specific value of Ip such that T, = T~, all
five temperatures defined above are equal. This
point is indicated by a star in Fig. 1, and the
corresponding values of the quantities are denoted
T, Ip, (I/T ), etc. For Ip & Ip", &s is never an ab-
solute minimum; its value is always larger than either
&~ or Fp. In addition there is no solution for T~c.
These two facts together strongly suggest that for
Ip ) Ip there is no superconductivity of any kind, ei-
ther in the pure form S or in coexistence with fer-
romagnetism D; the stable solution is always 4 =0.

For I/r, & I/r & I/r", where ~, is given by Eq.
(3.6), we find, as shown in Fig. 1(b),

Tg g & Tsp & Tpc

which indicates a first-order transition F S as the
temperature increases; no coexistence D state appears
since the second-order instabilities never take place in
the region of the absolute minimum.

For I/r & 1/7, the F state is not stable at any tem-
perature. As shown in the insert of Fig. 1(b), Ts,
takes extremely small values, smaller than 4X10 K
for the example under consideration. For T & T~&

the S state is stable; a coexistence D state exists for
0 & T & T~& and as T 0 the stable state is S once
again.

We can estimate now the. effect of the direct in-
teraction between the localized spins JH ~ 0. It is
evident from the formulation that if J =0 and
JH ~0, the two order parameters 4 and Mare in-
dependent of each other, and at low enough tempera-

Tpc is still given by Eq. (3.9) and (3.10) but (S, )
and M should now be calculated taking the direct ex-
change J~ into account; T~~ is once again calculated
numerically by comparing S~ with s~.

In Fig. 2 we show results for an example with JH
such that zJHS /3ka = I K, T„=10K, and

pp =5 X10 states /K atom. Using the same
definition of I/r given by Eq. (3.1) we find five re-
gions: (i) For I/r & I/r" there is no superconduc-
tivity, and as T increases there is a second-order tran-
sition F P at Tp. (ii) For 1/73 & I/r & I/r" the
results are similar to our previous case JH =0. As T
increases we have a first-order transition F S at T&&

and a second-order transition S P at T,. The value
of (I/r3) corresponds to the point where Tpc= Tsp.
(iii) For I/ri & I/7 & I/r3, the ground state is F.
There is a second-order transition F D at T~c, a
first-order transition D S at an intermediate tem-
perature and another second-order transition S P at
T, The value (I/rq) . is that for which the tempera-
ture of the first-order D S equals Ts, (iv) In the.
region I/r & I/ri the ground state of the system is a
D state. The value I/ri corresponds to Tpc =0. (v)
In the region I/r & I/ri as well as in I/r & I/rz
there may be seve:ral D phases with possible first-
order transitions between them, as well as either first-
or second-order transitions between D and S and
second-order transitions F D.

The richness of the structure in the small Ip low T
regime in this case depends very sensitively on the
numerical details of the calculation. %e have not
carried out this calculation to its conclusion.
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FIG. 1. (a) Phase diagram for JH =0, T„=10K, and po =5&10~ states/ Katom. The temperatures are given as a function

of (1/v), defined by Eq. (3.1), and normalized to the AG value given by Eq. (3.7). Full lines are first-order transitions; dotted

lines are second-order transitions. (b) Details of the diagram in the low-temperature regions.
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FIG. 2. Phase diagram for J~S /3k~=1 K, T„=10K, and p0=5X10~ states/ K atom.

IV. ALLOYS

J~S' —=x' JHgg Sj+ 2x (I x) JHgsSg Ss-
+ (I x) JHBBSB

~p —=
2

[xJ~ S~ + (1—x)JsSs],

(I/r) =—
2 happ(x)[x(JqSq') +(1—x)(JsSs) ] .

(4.1)

(4.2)

(4.3)

In Eq. (4.3), pp(x) is the density of conduction elec-
tron states at the Fermi level for the alloy of concen-
tration x. It should be noted that our approximation
is a reasonable one, since we are dealing with very
wide conduction bands where better alloy models,
like the coherent potential approximation, ' yield
results very similar to the virtual crystal approxima-
tion.

The experiments' performed on Er„Ho~ „Rh4B4
have been our motivation to extend our model calcu-
lations of the last sections to alloys. The problem is
considerably more complex now, since it involves all
the complications inherent in alloy theory. ' Only a
simple qualitative discussion is presented here.

The presence of two elements A and 8 with con-
centrations x and (1—x) and spins S& and Ss brings
several new interaction constants to our model: two
spin-conduction electron coupling constants J~ and

J~, and three direct exchange constants JH~~, J~&~,
and J~gg.

In the simplest approximation, the virtual crystal
approximation, our equations of Sec. II and III
remain unchanged if we write

The interesting behavior in the alloys appears when
J~ and J~ have opposite signs, i.e., when the coupling
of the spins to the conduction electrons is ferromag-
netic for one element and antiferromagnetic for the
other. In this case there is a concentration xo such
that Ip(xp) =0 and for that alloy, in the virtual crystal
approximation, the equation for the magnetization
(2.14) is independent of the conduction electrons.
As a consequence, for concentrations close to xo the
D state of coexistence of superconductivity and fer-
romagnetism is more favorable.

For the alloys in our model there are two possible
behaviors. If sgn J& = sgn J~, as shown schematically
in Fig. 3(a), there is a monotonic change in transition
temperatures as a function of x. If sgn J& = —sgn J~,
as displayed in Fig. 3(b), the line of F S transitions
has a dip in the neighborhood of xo, with a region of
coexistence bound to occur in that region.

If we take a better model for the alloy, Eq. (4.2)
will not be valid and consequently there will be no
concentration for which ID=0. The transition tem-
perature does not drop to zero at xo in that case.
Ho~ever the qualitative features of the diagram must
remain valid, with a dip in the phase diagram and a
region of coexistence.

V. DISCUSSION

Our theory, as presented in the last sections, treats
ferromagnetic superconductors and ferromagnetic su-
perconducting alloys in a generalized mean-field ap-
proximation, with the spin being considered classical
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(b)

0 1 0 Xp
X X

FIG. 3. Schematic phase diagrams (temperature vs concentration) for alloys. (a) Jz and J& are of the same sign; (b)
Jz and Jz are of opposite signs.

vectors, the pair-breaking mechanisms being treated
in AG fashion, ' with the magnetization being fully
taken into account in the pair-breaking process, and
with the alloy properties treated in the virtual crystal
approximation. Our study differs from that of GR in
the fact that GR assume constant pair-breaking
scattering time, independent of the magnetization.
This tends to favor coexistence states. Our model on
the other hand is very similar to that of Bennemann,
with the difference that he treated the spins as quan-
tum vectors, but as a consequence of the numerical
complexity, he stopped short of a full analysis of the
phase diagram, focusing his attention mostly on the
problem of dilute ferromagnetic impurities in a bulk
nonmagnetic superconductor.

The results of our theory are best described by the
three figures. In summary, we have: (i) In the ab-
sence of a direct spin-spin interaction, J~ =0, there is
no coexistence of superconductivity and ferromagne-
tism at T =0. (ii) For T WO and JH =0 the phase
diagram shows once again almost exclusively pure
states, F,S, or P, with a possible region of weak coex-
istence D at unphysically low temperatures. . (iii)
When there is direct coupling between the spins,
JH & 0, the diagrams become rich in structure, with
many structures, F,S,D, and P, and a variety of first-
and second-order phase transitions which depend on
the detailed values of the parameters. (iv) Our sim-
ple treatment of the alloys, as shown in Fig. 3, repro-
duces some of the characteristics of the experimental
data; the important features arise from the interplay
between the two spin-conduction electron-coupling
constants which, under some conditions, may inter-
fere destructively and thus favor the existence of D
states at lower temperatures.
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APPENDIX

The procedure described in Sec. II yields a system
of coupled equations which can be written

where

I = —JM1

2

0—5~=~0
and

(A2)

(A3)

X = 27rJ'[(($')') —M'] $G (k')
k'

—~J2((s")') X [~ G'(k') ~~],
k'

Xo
———,

'
m J'[((S*)')—M'] x G (k')

k'

—mJ2((S")2) X [rr"G~(k') (r"],
k'

X = —,
' ~J'[((S*)')-M'] XP(k')

k'

+ ~J2((s")') X [aP(k') a],
k'

(A4)

(AS)

(ay —ei, —cr'I —X ) —(6+X ) G F
Jl A (Al)(5 + X)) (o) + e„+o'I —Xo) F G
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J' ((S")'& X [ «F~(k') o«] .
k'

(A7)
(A9)

The functions Gp, G~, F and F~ are the Green's
functions evaluated to zero order in J. In the usual

way, ' they are replaced bv 6, 6+, F, and F+, respec-
tively.

This procedure is equivalent to evaluating the self--

energy in a self-consistent way and for M =0 the
AG solution is obtained.

It can be shown8 that the following relations are
satisfied:

where

and

U+ = op+/6+,

Io=(2 JS) ~

1/v=2pp(2 JS)2.

(A 10)

(A11)

(A12)

In terms of these variables the gap equation (2.3) can

be written

((Sx)zg

(1 —U4)'~2
(Ag)

It is convenient to define a new set of variables

1 [((S*)')-m'] U+

S r S (1 —U4)'

f( ) X'lm
k

-2 2 2
Ci9+

2 -2
OJ —5 —6k

where f (oo) is the Fermi function.

(A13)
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