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The upper critical field for coupled filamentary superconductors is analyzed within the context
of a Ginzburg-Landau theory similar to the Lawrence-Doniach theory for coupled layered super-
conductors. Upward curvature in the critical field as the temperature is lowered results from the
decreased coupling of the filaments, and an ultimate divergence in the critical field at all angles
occurs below a decoupling temperature T'. Unusual anomalies are predicted to occur in the
0,2I~(T} curve, corresponding to a commensurate fitting of the vortices into the filament lattice.
The behavior of H, 2 for coupled filaments is contrasted with that of an isolated fiber of finite di-

ameter. The model is applied to (SN}„,to the transition-metal trichalcogenides NbSe3 and

TaSe3, and to mercury embedded in asbestos.

I. INTRODUCTION

The study of one-dimensional superconductors and
their properties has been of interest ever since
Little's original proposal' that such systems might ex-
hibit high-transition temperatures. The most recent
excitonic model 3 for such a high-T, superconductor
is also highly one dimensional. Independent of
whether such high- T, materials can ever be made,
the quasi-one-dimensional systems are still interest-
ing with regard to their highly anisotropic magnetic
field behavior.

Recently, Greene, Street, and Suter4 have found
that crystals of the pseudo-one-dimensional. sulphur-
nitrogen polymer (SN) „become superconducting
belo~ 0.3 'K. Azevedo et al. ' have since measured
the upper critical field for (SN)„and its angular
dependence. This prompts a theoretical investigation
of the upper critical field for such filamentary super-
conductors. In this paper we examine the results of a
simple Ginzburg-Landau theory for such systems,
analogous to the Lawrence-Doniach theory for lay-

ered superconductors. Manneville' has independent-
ly treated a few special cases of this model, and for
these special cases we are in essential agreement with
his results. We discuss in detail the application of
this model to (Sn)„.s More recently, Monceau
et al. ' have reported a transition under pressure to
the superconducting phase in the one-dimensional
crystals NbSe3. Sarnbongi et al. " have similarly re-

ported a transition to the superconducting phase in
TaSe3 at atmospheric pressure. These ~orkers'
have since measured the angular dependence of the
upper critical field for TaSe3. Unlike (SN)„, whose
fibers contain many microscopic polymer strands,
these transition-metal trichalcogenide crystals mani-
fest restricted dimensionality at the microscopic level,
and we discuss briefly the application of this model to
such systems. Finally we comment on the work of
Bogomolov and coworkers, who have successfully
manufactured isolated filaments of mercury, embed-
ding the filaments in a matrix of asbestos. ' ' Their
measurements of the critical fields for filaments of
various sizes' '7 are discussed within the context of
the proposed model.

The analogy of the coupled filamentary supercon-
ductors with the layered superconductors is om-
nipresent, and it is useful before embarking on de-
tails to compare the results of the phenomenological
theory for such systems.

For layered superconductors, when a magnetic field
is applied perpendicular to the layers, the Cooper
pairs form Landau levels within a given layer, and
hence, do not feel any interlayer phase difference;
thus, there is no Josephson coupling of the layers.
The vortex currents circulate freely within the layers
[Fig. 1(a)], and the normal vortex cores penetrate all
of the layers; the critical-field H, 2~ is essentially that
of a bulk superconductor. When, however, a mag-
netic field is applied parallel to the layers, there is a
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phase difference between the layers, and the system
behaves as a series of coupled Josephson junctions.
The vortex currents partially circulate within the
layers but partially tunnel from one layer to the next
as Josephson currents [Fig. 1(b)]. The normal vor-
tex cores fit between the layers, and at low tempera-
tures the critical-field H, 2[[ necessary to suppress the
superconductivity in the layers markedly exceeds that
of a bulk superconductor. As the temperature is re-
duced well below T„ the coherence length between
layers gj = (m/M)'~ g(T) decreases, and at a tem-
perature T"given by gq(T') s/2'~' (where s is the
layer separation) the layers decouple, and the critical
field becomes infinite in the Ginzburg-Landau
theory. ' This divergence of H, 2~~ merely reflects the
Ginzburg-Landau result' for H, 2~~ of a film with
thickness small compared to the penetration depth.

Analogously for filamentary superconductors, when
a magnetic field is applied perpendicular to the cou-
pled filaments, there is a phase difference between fi-
laments along one direction, and the system behaves
as a series of coupled Josephson junctions. The vor-
tex currents partially circulate along the filaments and
partially Josephson tunnel from one filament to the
next [Fig. 2(a)]. The normal core can fit between
the filaments, and the critical-field H, 2~ exhibits the
anomalous behavior characteristic of H, 2~I for the lay-

ered superconductors. In particular, below a tem-
perature T" the filaments decouple, and the upper
critical field diverges in the Ginzburg-Landau theory.
This decoupling temperature, at which the coherence
length between filaments becomes smaller than the
interfilament spacing, is a strong function of azimu-
thal angle. If the field is imposed along a lattice
direction, only the coherence length perpendicular to
this direction need become smaller than the lattice
spacing; in general, however, when the field is not
imposed along a lattice direction, the coherence
lengths along each lattice direction must decouple.
This leads to a lower decoupling temperature for the
general perpendicular field than for one applied along
a lattice direction. %'hen a magnetic field is applied
parallel to the coupled filaments, the vortex currents
are entirely Josephson-tunneling currents, the normal
vortex cores fitting interstitially in the filament lattice
[Fig. 2(b)l. With a parallel applied field, there is a

phase difference between filaments in both direc-
tions, and the system behaves as a lattice of coupled
Josephson junctions —a SQUID (superconducting
quantum-interference device) grid. As long as they
remain coupled, the filaments cannot discriminate
between integral quanta of flux through each SQUID,
which results in a periodicity of the critical field at
any temperature. As with the perpendicular field,
belo~ a certain temperature T' the filaments decou-
ple, and no critical field will suppress the supercon-
ductivity.

Having established the strong analogy between cou-
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FIG. 1(a), Perpendicular-field Hj applied to layered super-

conductors. The vortex currents circulate within the layers.
1(b). Parallel-field H][ applied to layered superconductors.
The vortex currents partially circulate within the layers

and partially Josephson tunnel from layer to layer.

pled filamentary and coupled layered superconducting
systems, we now examine in some detail the
magnetic-field consequences of a phenomenological
theory. In Sec. II of this paper we construct a
phenomenological Ginzburg-Landau theory for cou-
pled superconducting filaments which is essentially
that proposed by Lawrence and Doniach for the lay-
ered systems. 6 In Sec. III we discuss the azimuthal
dependence of H, 2&. In Sec. IV we discuss the polar
dependence of H, 2 as it is rotated from the perpen-
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dicular to an orientation parallel to the filament direc-
tion. For both H, 2j and H, 2~~ the low-field behavior
near T, is shown to follow an anisotropic mass law.
Also both H, 2~ and H, 2~~ are shown to diverge within
the model below a temperature T' at which the fila-
ments decouple. In Sec. V we examine the critical-
field behavior of decoupled and' hence isolated fila-
ments, taking into account the effect of their finite
size. Finally in Sec. VI we apply our model to
several physical systems, in some detail to (SN)„,
briefly to the transition-metal trichalcogenides NbSe3
and TaSe3, and finally to mercury embedded in as-
bestos.

II. PHENOMENOLOGICAL
GINZBURG-LANDAU MODEL

We consider a rectangular (a && b) la'ttice of super-
conducting filaments oriented in the z direction. We
ignore the finite diameter of the filaments. The su-
perconducting order parameter for the ith, jth fila-
ment in the (x,y) position on the lattice is denoted by
PJ(z). Following Klemm, Luther, and Beasley, "we
write the Ginzburg-Landau free energy in gauge-
invariant form,

1

pL
4F =„dz ab g n[ Q/(z) ) +

2 P ~
QJ'(z)

~
+ &,( r ) yJ(z)~'

C

p (i+1)a
+(„~yJ+'(z) exp

' '
J W„(r) dx —yJ(z) ~'

+1)b

+g )pJ+t(z) exp
' „A~(r) dy —QJ(z) ( + (H(r) —H, )

where

n= —t /2m) (T) = t /2m/ (0)(T—T,)/T,

is the usual Ginzburg-Landau parameter, and

( = t /2M„a $ = g /2Myb

are the interchain coupling parameters due to the

Josephson tunneling of electron pairs, which expres-
sions define the interchain masses M„and M~. The
local magnetic-field H(r ) is assumed constant and
equal to the constant applied magnetic-field

H, = H(sin8 sing, sin& cosQ, cos8)

since near H, 2 the small order parameter cannot ap-
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FIG. 2. (a) Perpendicular-field H& applied to filamentary superconductors. The vortex currents partially circulate along the fila-

ments and partially Josephson tunnel from filament to filament. (b) Parallel-field H~~ applied to filamentary superconductors.
The vortex currents are entirely Josephson tunneling currents.
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(1 —y)x cos8 —z sin8sin@, 0]

where the parameter y reflects the only remaining
gauge -freedom.

%e demand that the free energy be a minimum

(2)

preciably alter the local field from the applied field.
Utilizing the Coulomb gauge, the vector potential is

A = H [z sin& cos(t( —yy cos8.

with respect to functional variations in p("(z) ". Due
to the Josephson coupling of the filaments, the sys-
tem is actually three-dimensional above T, interfila-
ment phase fluctuations are assumed not to destroy
the long-range order generated by this minimization
of the free energy. Neglecting the term (8~(I(("~ (I((",

which will be small near the phase boundary, we ob-
tain the linearized Ginzburg-Landau equations

1 ('

n—,+2(„+2(» p((z) —g„exp z
a(zsin8cos(t( —ylbcos8) (i((

d k l2h

dz d

(

+exp a(zsin&cos(t( —ylbcosio (b(+'
d

(

exp b [(1—y) ka cos8 —z sin 8 sing] (t(( t
i2h k

1

+exp ' b[(1 —y)ka cos8 —z sin(t(] (1((k+, ——0, (3)
d2

t

where we have defined a (dimensionless) reduced
field b = eHd'/tc and the length

d = (a'cos (t(+ b sin'@) '('

This is a set of periodically coupled one-dimensional
Schrodinger equations. No value of y (i.e., no choice
of gauge) successfully decouples these equations for
e &0,—,~.1

To calculate H, 2 we set —0. equal to the lowest
eigenvalue of the system (3), thereby determining
the highest field for which a nontrivial order parame-
ter exists. Physically, the solutions of Eq. (3) can be

characterized as belonging to two-temperature re-
gimes. Near T, the correlation length (((T) is large
compared to the filament spacing, and the coupled fi-
lamentary system behaves as an anisotropic supercon-
ductor with the critical field given by an anisotropic
mass formula. Below the decoupling temperature T'
the correlation length gj (T) becomes smaller than
the filament spacing, and the system behaves as a
collection of decoupled filaments with the critical
field enhanced over its bulk value by the small size
of' the filaments. In our model we have neglected
any size to the filaments, and the critical field thus
diverges at T'.

III. AZIMUTHAL DEPENDENCE OF H, 2g

We impose the magnetic field perpendicular to the filament direction (8 =
z vr) and investigate the azimuthal

dependence of H, q((T, $), i.e.,

A d (](( k ('2h2

u(l(( — + $„2(I(( —exp az cos(t( (](( —exp az cos$ (]((k+'
—i2h

201 d

( 1

+j» 2(](( —exp z
bz sin@ P( ( —exp z

bzsin(b (i((+( =0
—i2h . k i2h

(4)

A11 dependence on the gauge parameter y has van-
ished. Furthermore the Ginzburg-Landau equations
decouple in the sense that the k and I dependence in
the exponentials has also vanished. Fourier
transforming with respect to the chain indices yields a
one-dimensional Schrodinger equation with two
periodic potentials,

, +2(„1—cos, azcos(b —Q„a
jiz d~(i( 2b

2m dz2 d2

+2/» 1 —cos z bz sing —Q»b
2h

(
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The lowest eigenvalue occurs for Q„=Q, =0.
Equation (5) is a two-term Hill equation and is typ-

ical of the eigenvalue problem encountered in band
theory. The tight-binding approximation (large
(„, f») corresponds in this situation to the small field
regime (H 0 near T,); the nearly-free-electron ap-
proximation (small g„(»3 corresponds in this situa-
tion to the large field regime (H ~ near T'). As
in band theory, to find the energy E as a general
function of the potential parameters is difficult, so in
this situation to generate the critical-field curve
H, (zT) for all temperatures and orientations is non-
trivial. Two special cases ($ =0 and @=

4
m for the

isotropic system) may be solved exactly, and this is

treated in Appendix A. We discuss in the remainder
of this section the high- and low-field approximations
for arbitrary azimuthal angle $.

For small magnetic-fields
H « (m/M„)'~z(C&, /ma )and
H « (m/M») ' z(40/mb'), (where Co = hc/2e is the
flux quantum) the cosines may be expanded to give a
simple-harmonic-oscillator equation

g' d'g —
+

t' 2h cos'@ + sin'$
2m dz2 2 d M» M»

(6)
Inverting the lowest eigenvalue yields the expected
anisotropic Ginzburg-Landau result

1

H2,3(T, P)= 3 [

'
~

cos @+ sin P2m(z 0 T, M„M»
t —1/2

Keeping higher-order terms in the expansion of the cosines, we may generate by perturbation theory. an expan-
sion for H, 23 in powers of ((T —T,)/T, (,

H, 2, (T, @)=, [

'
)

cos'qb+ sin'$
2~gz 0 T, M„M»

1(2 T —T .
N 0 C

(s)

ap=1

a1=
4 2

(cos'@ + sin'P)

3 4

For the case of isotropic coupling [$„=g»;

g3
= m/Mg (0)] we find these coefficients to be /=0

1$= 2m

2
mgz(0)
M„a2

4'(o)
My b2

m g'(0) m g'(0)
Ma2 Mb2

(10)

a2=
4(2 3[—"(cos~P + sin~&) ' (9)

——', (cos'$+ sin'Q)]

For the angles $ =0, , rr these coefficients —reduce

(to the order calculated) to the exact results given in
Appendix A. It should be noted that there is weak
azimuthal dependence to the critical field even for an
isotropic lattice. Since, to second order, all the coef-
ficients a„are positive, the critical field 0,2& is given
upward curvature as the temperature is lowered.
This curvature becomes significant only for
a/4&3 —1, i.e., for T —T". The upward curvature
results from the filaments decoupling as the tempera-
ture is lowered and is in marked contrast with the
result (46) for isolated filaments;

For large magnetic fields the cosine potentials oscil-
late wildly, and the Schrodinger wave function can
easily tunnel through the potential barriers. The

ik
eigenfunctions are plane waves e ', and the lowest
eigenvalue occurs for k, 0. This defines a tem-
perature T'at which 8,2~ becomes infinite, i.e.,

Since the temperature T'differs for $ =0 and

P = —r» from the other angles, we expect, without
1

further analysis, that there will be strong angular
dependence of 0,2~ near the lattice directions for
temperatures well below T,. The actual divergence of
H, z3 is the artifact (46) of our having set the fila-
ment size to zero and of our neglect of depairing ef-
fects.

At P =0 (or $ = —m with M„and a replaced by M»

and b, respectively), one of the cosine potentials
ceases to oscillate, and the Schrodinger equation be-
comes (with the change of variable x =zh/a),

d lofti 1 pyg a2 T —Tc
2 +

dx' h' M g'(0)

+ =-,—cos(2x) p =0 .2m 1

M„h2

This is just the Mathieu equation. The small parame-
ter (large h) expansion for the lowest eigenvalue is
we11 known' and may be inverted to give
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C'o mH„,(T, @=0)=
2 ma 2 M„

1 T —Tc 2m
X +—

which diverges at the temperature

T",
2

m g'(0)

' -1/2

, (12)

the Schrodinger equation takes the form of a two-
term Hill equation"

d2

&
+ o zP + 2 X(a „cos2n„x + o y cos2nyx) P =0

dx

where the eigenvalue is

crz = )).e = —X(2mdz/tz) (a +2(„+2 gy) (16)

a cos@ ~x

d
b sin@ ny

d N
(13)

for some integers n„, n~, N. Changing the indepen-
dent variable to x = hz/Nd and redefining the cou-
pling parameters

2md2
x—,(x 2md2

4 (14)

This result for the perpendicular critical field along a
lattice direction was obtained by Manneville. 7 How-
ever, as indicated by Eq. (10), the high-field behavior
is considerably more complex, as the general H, z($)
diverges at a lower T'.

To pursue the high-field expansion analytically for
arbitrary $, we assume without loss of generalityz'
that the arguments of the cosine potentials are com-
mensurate P(x) =e""ao+ a„e

l(p n +q n )x

k
(17)

where ~ is a complex number, and pk and qk are in-
tegers. Substituting the form (17) into the differen-
tial Eq. (15) yields a system of linear algebraic equa-
tions for the coefficients ak. This system will possess
a nontrivial solution provided that the secular deter-
minant vanishes. The secular determinantal equation
may be rearranged ' into the form

%e will attempt to construct a perturbation expansion
for the eigenvalue in powers of the small parameter
h. = N'/h'

Floquet theory23 z4 (which is just a manifestation of
Bloch's theorem) suggests we look for solutions of
the form"

2 J+1
al l''' al lal 1+" +

l1 j 1 J(r + X)).
)„) [(2K)+T) o ][(2K )+2K +zT) a ]' '[(2K~+2Kz+ +2KJ+r) —(r ]2 2 2 2

where the sum is over all KI = n„, n, subject to the
restrictions K1+ + K&

= +n„, +n~ and
K1 + ' ' ' + K ~ 0 for all i (j. This is a power series
in X —1/H' and hence, will serve as the desired
high-field expansion. The lowest eigenvalue occurs
for ~ =0, i.e., for a purely periodic wave function.

For @ sufficiently far from 0 and
z

n there are no

problems with vanishing denominators. Working to

lowest order, we have

2 2an„ anze+2z', " +2z', ' +O(d) =O . (19)
2n„2 —ge 4' —

A, 6

Absorbing the A. dependence in the denominators
into O(d) and inverting for I/h, —Hz we obtain

@o 1
Hc2l(T, Q) =

2md 2

r

md2 md2

M„a3 cos$ My b3 sing

m m

$2(0) T M az Mybz

. 1/2

(2o)

which diverges at the temperature

T"/T, =1 —2[m gz(0)/M„a2+ m g'(0)/M b ]

It also exhibits the anticipated singular behavior as @
approaches 0 and —2m. It should be noted that at

1

qh
=

~
~ for isotropic coupling, Eq. (20) underesti-

mates the exact results of Appendix A by a factor of
2' z, although Eq. (20) correctly identifies T'. As
discussed in Appendix C an infinite series again must
be summed for this special angle,

In Appendix B we examine the behavior of H, 2~ in

t

the vicinity of P =0. As we let g 0 (i.e., ny 0),
the high-field expansion (18) contains divergent
terms to all orders in X. The series of divergent
terms is summed in Appendix C, yielding a tractable
expression for H, 2~ near Q =0. The singularity at
$ =0 manifests itself in the change in order of the
resulting eigenvalue equation for the critical field,
which diverges at a spurious T' for this special angle.
The behavior of H, zz(T) for various azimuthal an-
gles is graphed in Fig. 3 for the special case of isotro-
pic coupling. The very strong azimuthal dependence
near Q 0 should be noted.
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The z dependence may be taken to be plane wave
ik z

e ', with the 1owest eigenvalue having k, =0. Set-
ting X = 2hgb/d2 and e= n +2/„+2)» the coupled
Schrodinger equations become a pure difference
equation,

[.—2~, cos(kx)l y" —~„(yk-'+ yk") =0 . (22)

I

-3 -2
Ma T-Tc

2

m(' (o) Tc

FIG. 3. Perpendicular critical-field H, 2q(T) for various az-

imuthal angles. There is pronounced azimuthal dependence
near the lattice direction (@=0').

This is a periodic finite difference system analo-
gous to the Mathieu differential equation. We ob-
serve immediately that ~ is periodic in the parameter
X, and hence the phase boundary between the normal
and superconducting states is periodic in the critical
field. By the difference equation analog of Floquet's
theorem, "this system admits solutions of the form

IV POLAR DEPENDENCE OF Hc

Qk =e""X g„cos(nk X)
It 0

(23)

We first impose the magnetic field parallel to the
filament direction (it =0) and investigate the tem-
perature dependence of Hc2[I. The Ginzburg-Landau
equations no longer decouple. By choice of gauge

y =0 we may eliminate the I dependence from the
exponentials, and the remaining I dependence in the
indices may be Fourier transformed away. The
lowest eigenvalue occurs for Q» =0,

d'
y

k
g (y k 1+y

k+1—)
m dz'

Substituting Eq. (23) into the Eq. (22) and equating
coefficients of cos(nrk X) yields

ego = (»g~ +2]„cosego

eg& = 2 $»go + (»g2 +2(„cosr cospg &

eg„= g»(g„~ —g„+~) +2( cosa cosn xg„n & 1

(24)

—2)»cos 2
bkg &ok=0 (21)

These relations may be combined into a continued
fraction equation for the eigenvalues,

t —2(z cos'7

& —2)„cosrCOSX—

2/2

5»

=0

e —2 $„cosr COS2 X

e —2(„cosrcos3X — ~

(25)

The lowest eigenvalue occurs for v =0.
This is a transcendental equation for the eigen-

values e, analogous to the well-known continued-
fraction equation for the Mathieu eigenvalues. It
must be solved in some approximation for e(X), i.e.,
for e(H) and then inverted to give H, 2~I as a function
of temperature. When this is done numericaIIy, we
obtain the temperature dependence of 0,2~~ shown in
Fig. 4. The low-field behavior of 0,2~~ is in agree-
ment with the numerical results of Manneville. 7

Since the continued fraction is a periodic function of

X (i.e., of H), the roots of the continued-fraction
equation (25) are also periodic in H. This is dramati-
cally reflected in the inverse-periodic behavior of
H, 2~~(T) as shown in Fig 4. Neith.er this strict in-
verse periodicity of H, 2I~(T) nor its origin was ex-
plored by Manneville. Physically, each repetition in
Fig. '4 corresponds to an additional flux quantum be-
ing put through each unit cell of the lattice of fila-
ments. Since for parallel fields the coupled filaments
act as a grid of Josephson junctions, they cannot
discriminate between different fields modulo a flux
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quantum. The additional structure in the H, z~~(T)

curve occurs as fractional flux quanta are put through
each unit cell of the lattice of filaments. This is
equivalent to integral flux quanta being put through
larger unit cells of the lattice of filaments. In other
~ords, the system "resonates" in the critical-field
curve whenever an integral number of flux quanta

are put through a SQUID of the lattice, where the
SQUID size may be any integral number of lattice
unit cells, but where the largest resonance occurs for
the unit-cell SQUID.

For small-fields H (( (m/M„)(40/waz), the cosine
of the angle X may be expanded, and the continued
fraction rearranged to

e —2f„—
2)»

=0

~ —2g„+I'(~„x')—

~ —2g„+2'(g„x')— (»'

2(~+3 ()~x )
(26)

This may be inverted to give the parallel critical field
near T, . For isotropic coupling (where a = b) we

have

4p
H, qadi(T) =

2vrgz 0
T —T, M

T, m

g M T —Tc

16 g(0) m T,
. (28)

There is again upward curvature in 0,2~~ as the tem-
perature is lowered, percentagewise identical to the
upward curvature Eq. (19) in H, zj for /=0 or

@= —,m. Again the tendency to decouple produces

which is just the continued-fraction equation for the
Mathieu eigenvalue —4(—2g„/(„x') with parameter
4g»/g„x'. Physically, in this low-field regime the vec-
tor potential does not vary appreciably from filament
to filament; the magnetic field is not sensitive to the
discrete nature of the filament system, and hence
mathematically the discrete difference system reduces
to the continuous differential equation. In the large
parameter limit the Mathieu eigenvalue is given by"

e —24 4i 4g 1—4 "=—2 '+2 ' ——+
(„x' („x' („x' 4

I

(27)

I

upward curvature and should be contrasted with the
downward curvature exhibited in Eq. (46) by an iso-
lated filament.

For the parallel critical field, the minimum extru-
sion of the phase boundary can be located on Fig. 4
as being given by

Tmll10 II c'
y4

m g'(0)
(29)

Below this temperature there is never a normal
phase, and hence only an infinite critical field will

suppress the superconductivity in the filaments. This
is not, however, the decoupling temperature T',
which can be obtained by taking the 0 ~ limit of
Eq. (3) for arbitrary angle, and which is found to be
given by Eq. (10). This divergence of H, q~~ again re-
flects the result of our having set the filament size to
zero [Eq. (46)].

We now examine the polar dependence of the criti-
cal magnetic field near T,. By choice of gauge y =0
we may eliminate the 1 dependence from the ex-
ponentials, and the remaining 1 dependence in the in-

dices may be Fourier transformed away. The lowest
eigenvalue occurs for Q =0. We consider azimuthal

1
angle P =

z
m where d = b (the analysis for g =0 is

identical with the alternate choice of gauge y =1,
where d =a). We have

2 2

, +2(„+2/» /ok —g„(po" '+/ok+') —2(»cos (ka cos8 —z sin8) Po"=0
2m dz2

t

(30)

For small fields the vector potential does not vary appreciably from filament to filament. The order parameter
thus varies only slightly from filament to filament and may be expanded (setting x =. ka),

I

Q(z, x+a) =Q(z,x) +a ~ ' + —a

(31)
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Substituting Eq. (31) into Eq. (30) yields

e2
2

e2
a — +2/» —g„az p(z, x) —2(» cos (x cos8 —z sin8) p(z, x) -0

2m gz2 ' "
gx2

' ' b (32)

Changing variables to

z =x sin8+ z cos8, x =x cos8 —z sin&, (33)

the differential equation becomes (dropping the bars),

1 T T

+2 )
i &z

sin'8 cos'8 0'
&, , 8 8

1 1 O'Q r &z cos 8 + sin'8 8'g

t2 2hx
z

cos &=0
2Mb b

(34)

Since the potential is now independent of z we may
ik a

assume plane-wave states in this variable, e ' . The
lowest eigenvalue occurs for k, =0, and we recover
the Mathieu equation. Since this is a low-field ex-
pansion, we may also expand the cosine potential to

obtain the simple-harmonic-oscillator equation

t '2t2 sin8+cosz8 8$+ t 2h
2m m M„bx2 2M» dz

(35)

Sar
3

Inverting the expression for the lowest eigenvalue
yields the expected anisotropic Ginzburg-Landau
result

Hz(T, 8, $=
z n) = ~'0

2~g'(0)
T —T, My

Tc m

C4
O

Ng Nr 0

5m
3

1

[sin'8+ (m/M„) cos'8]' '

(36)

This polar dependence is plotted in Fig. S for various
mass ratios m/M.

2w
3

H, 2 FOR DECOUPLED FILAMENTS

—1.50 —1.00 -0.50
Mg T- Tc

2

rnid (0) C
2

FIG. 4. Parallel critical-field H, 211(T). This is periodic in H
every time one flux quantum is put through the lattice of fi-
laments. The additional resonant bumps occur when a flux
quantum is put through a larger unit cell of the filament lat-
tice.

In this section we discuss the critical-field behavior
for decoupled and hence isolated filaments. The
divergence of the critical-field H, 2~ and 0,2~~ at T'in
the Lawrence-Doniach model reflects the propor-
tionality of H, z to 1/R where R is the filament radius.
This finite size was neglected in our earlier treatment
of the coupled filaments. Our discussion in this sec-
tion closely parallels that of Saint-James and Sarma
for thin films.

For an isolated filament of radius R the Ginzburg-
Landau free energy is given by
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L r R r'2rr

F = dz „rdr „dX n(Q( + z(8)Q~

2
2e- A—'7 ——A (i( +
c 8~

(

(37)

Choosing a different gauge than in Sec. II, we have

A = (&„,&„,&,) = Hr (0,—' cos8, sin8sin(X —@)) (38)

The boundary condition that there be no supercurrent across the filament surface reduces to

(39)

Since the system is really three dimensional due to the finite radius R of the filament, we may functionally vary

5$ "to arrive at the linearized Ginzburg-Landau equation. We have

+— +— + +, cos8 +2r sin&sing
2m" Brz r Br r Qq ilz m'c Br( Bz

+ 1 2eH r (—cos 8+sin t(sin'q)(i(= —(z&=E(I(, (40)2m' c 4

where the azimuthal angle is measured from the
direction defined by the external field, q = X —(t(.

This effective Schrodinger equation is rather com-

plicated, but we can look for the energy eigenvalues

using perturbation theory in the small field H near
transition. Our unperturbed problem is

(

tz 82$ — 1 8$+ 1 8/+8/ E(0&~
2m 9r r Br r Bq Bz

(t(, („=e ' e""J((x(„/R) (42)

~here x~„ is the nth zero of the first derivative of the
I th Bessel function, corresponding to the energies

1 1 2tk g x
Ekin

2 ~ +2 (43)

The lowest eigenvalue occurs for k, =0 and x00=0.
So to lowest order the order parameter is constant
across the filament.

We now treat the potentials,

which is just the Helmholtz equation in cylindrical

coordinates. The unperturbed eigenfunctions satisfy-

ing the boundary condition Eq. (39) are

The second-order energy may be inverted to give the
critical field

1/2
0 T —Tc

mR $(0) T,

21/2

(1+sin'8)' ' (46)

The angular dependence of this isolated thin fila-
ment is much more gradual than the cusp at H =0
given by the corresponding formula due to Tinkam
for thin films. In the thin-film case, the normal
vortex core can subsist within the film for a perpen-
dicularly applied film but gets progressively "squeezed
out" as the external field is made more parallel. This
results in a divergence of H, 2jl for a film of infini-
tesimal thickness. In the thin-filament case, the nor-
mal vortex core has been "squeezed out" for all
orientations of the external field. Thus, in the limit
R 0, critical fields for all angles are seen to
diverge. Finally the temperature dependence of K,2

is given by

H, 2(T)/H, z(0) =
( T —T,/T, ('(z

for all angles, and hence, exhibits downward curva-
ture as the temperature is lowered, a result identical
to the temperature dependence of K,2~~ for thin films.

Vi =, cosH +2r sinH sing-ie AH 9 . . 8
m c Q'g Qz

Vz= r (—cos'&+sin'Hsin'g)
(

(44)

(45)

as perturbations. To second order in H the only con-
tribution to the energy shift which survives is the di-

agonal matrix element of V2 yielding

~E(q 1 eHR 1 (1+ . zg)
2m' c 2

VI. PHYSICAL SYSTEMS

We briefly discuss in this section the application of
the above theory to several physical systems. We
first discuss the fibrous polymer (SN) „which pro-
vides an example of a coupled filamentary supercon-
ductor whose filaments tend to decouple as the tem-
perature is lowered. We then speculate on the
critical-field behavior of the transition-metal trical-
chogenides NbSe3 and TaSe3, which appear to be fila-
mentary on a microscopic scale, and which we also
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expect to behave as coupled filamentary systems. Fi-
nally we comme'nt on the critical-field measurements
of isolated mercury filaments embedded in asbestos.

We first consider the pseudo-one-dimensional su-
perconducting polymer (Sn)„.3' 3 A Meissner state
has been observed by Dee et al. 34 and although sam-
ple demagnetization effects preclude a definite iden-
tification of H, ~

these workers have located the transi-
tion temperature at 0.23'K for one of their samples.
This is lower than the midpoint of the resistive tran-
sition but is similar to that observed in ac measure-
ments. " Subsequent measurements ' on other sam-
ples yield a transition temperature closer to that ob-
served by the midpoint of the resistive transition. A
Meissner state having been observed, we feel safe in

applying our theory to this system.
The samples of (SN)„studied so far are highly fi-

brous with fiber diameters ranging from less than 100
0
A, each fiber containing on the order of 100 polymer
chains. We apply the Ginzburg-Landau theory not
to the individual chains of (SN)„, but rather we treat
the fibers as the filaments of the theory. The fibers
are packed together, separated by only a few A and
are thus highly coupled near T, . We will find a
decoupling temperature T"below which it will be-
come necessary to incorporate the effect of finite
fiber diameter. Clearly the theory should be im-

proved to incorporate this effect of finite fiber diame-
ter at all temperatures.

(SN)„has a physical transition temperature in the
neighborhood of 0.3'K (although as indicated above
the actual value of T, seems in dispute at present,
depending both on sample and the type of measure-
ment made), implying a Pauli paramagnetic limit37 38

of

Hp =18.4(kG/'K) T, =5.4 kG

This is exceeded by H, 2[[ for all temperatures below
0.18 K, and a microscopic theory must be invoked in
this regime. Qualitatively, the experimentally high
critical fields might be understood on the basis of the
decoupling of the filaments (due to a very large ef-
fective mass anisotropy), resulting in the divergence
of the critical field in the Ginzburg-Landau theory.
This divergence would be suppressed by taking into
account the finite size of the filaments and by intro-
ducing various pair-breaking mechanisms, in particu-
lar Pauli paramagnetism. A crude microscopic calcu-
lation for the dirty limit, neglecting crossed impurity
averaging diagrams, gives rise to the usual pair-
breaking equation; this exhibits Pauli. limiting, which
is violated in (SN)„. Unlike the layered transition-
metal dichalcogenide compounds, we do not expect
spin-orbit scattering to play a significant role in
(SN)„. Thus, the violation of the Pauli limit must be
attributed to another mechanism, such as the effect
of flat portions of the Fermi surface driving the sys-

tern "' into the partially depaired Fulde-Ferrell
state, 42 or perhaps this is an indication of triplet pair-
ing. 4'

Assuming azimuthal isotropy, as initially indicated
by Azevedo et al. ,

5 the ratio

dT r,

' 1/2

dT T m

implies an extremely large polar anisotropy. Using
the data in Azevedo et al. ' we deduce

and

dHc2[[ =7.29 x 104G/'K
,

dT T,

dH, 2g = 1.06 x 103G/ 'K
dT

dH, 2g = 3.38 x103G/'K
,

dT

unambiguously and

= 1.63 x 105G/'K
dT T

This yields a mass ratio of 48.4 at T, . The apparent

yielding a mass ratio (M/~) '~2 =68.9, where we have
taken T, =0.285'K. This mass ratio is precisely the
value e ' =H~~/Hq, cited in Azevedo et al. near T, .
This mass ratio is consistent with the anisotropic
mass polar dependence of H, 2 at T =0.255'K (Fig.
5). The apparent decrease in the mass ratio as the
temperature is lowered' might reflect some upward
curvature of H, 2& due to filament decoupling [Eq.
(8)] (but as we shall see this is small) and certainly
reflects the ultimate intervention of microscopic
mechanisms which suppress H, 2[[ at the lower tem-
peratures. With these critical-field slopes at T, we
compute, using Eq. (28) [or equivalently Eq. (7)] the
T =0 Ginzburg-Landau coherence lengths gj (0)
= (m/M) ' $(0) = 126 A and $)((0) = $(0) = 8680 A.

The perpendicular coherence length is in agreement
with Azevedo et al. ' but the parallel coherence
length is more than twice the value these authors
compute from the same data. Their independent esti-
mate' of the parallel coherence length from the 4'K
parallel resistivity yields a parallel coherence length of
3000 A, in decided disagreement with the value ob-
tained from taking the critical-field slopes at
T, =0.285'K. This value of T, is also in disagree-
ment wifh the ac measurements" and most impor-
tantly with the observation'4 of a Meissner effect at
0.23 'K.

Fixing T, =0.23'K'and using the data of Azevedo
et al. 5 we fit
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decrease in the mass ratio as the temperature is
lowered can then be ascribed solely to the Pauli limit-

ing of H, q~~ at these lower temperatures (Th.e new
Pauli limit of 4.2 kG is exceeded at all temperatures
below 0.2'K.) The apparent increase in the mass ra-
tio and indeed a presence at all of superconductivity
for T & 0.23 K must be interpreted as being due to
fluctuation conductivity. This ~ould be corroborated
by the conductivity measurements of Civiak et al. 44

in the absence of magnetic field, which they have fit
to the Azlamazov-Larkin theory for one-dimensional
fluctuation conductivity. (They obtain T, =0.255'K
for their samples. ) The presence of fluctuation con-
ductivity over such a large temperature region is
highly unusual, and that it is not suppressed by the
parallel magnetic fields ( of order kG) casts suspicion
as to whether this mechanism is the source of the
curvature in the H, q& curves. With these critical-field
slopes at T, =0.23 'K we compute the T =0
Ginzburg-Landau coherence lengths to be gq(0) =94
A and $(0) =4530 A. The parallel coherence length
now compares more favorably with the value 3300 A,
which we estimate from the O'K parallel resistivity.
(This estimate has changed since T, has been
changed. ) That T, varies with different measure-
ments and also seems to be sample dependent4'
makes (SN)„quite difficult to interpret theoretically.

The sudden increase of H, ~~~ near T, opens the
question of whether the filament coupling is so weak
as to move T'close to T, . We now examine whether
the filaments are still coupled at T =0. If they have

IOO—

I I I I I I I I i I I I I ! I I I I I I I IXI

o.i

T ('K)

I I I I ~l~l I

0.3

FIG. 6. Perpendicular upper critical-field H, ~~ for (Sn)„.
The theoretical curve taking T, =0.23 'K cannot explain the

significant superconductivity above 0.23 'K. The theoretical

curve taking T, =0.285' K. cannot explain the significant

upward curvature below 0.2'K.. The measured values are

taken from Azevedo et at. 5.

already decoupled, then the polar dependence of H, q

should be given by Eq. (46). Furthermore, using
H,» at T =0.05'K (which is not Pauli limited) gen-
erates a filament radius of 200 A, which is too
large. ' We conclude that the filaments must still be
coupled at T =0. (This conclusion is also reached
using the parameters obtained fixing T, =0.285'K.)
We take as an upper bound a fiber diameter of 100
A.' Since the fibers are observed to be packed
closely together, we may use the fiber diameter as
the fiber-fiber distance in Our idealized mode1 of in-
finitesimal filaments. Using Eq. (29) we compute the
minimum extrusion of the H, ~~~ phase boundary to
be TP'" = —0.06'K, and using Eq. (10) the decou-
pling temperature to be T' = —O.S8'K. Averaging
over azimuthal angles, Eqs. (8) and'(9) become

2
4 (} T Tg 3 a T T~ 167 g T T~.

2m gi(0) gii(0) 2; 64 g'(0) T 24576 i (0) T',
(47)
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0 0
Using a =100 A and gq2(0) =94 A we generate the
temperature dependence of H, 2j shown in Fig. 6.
Shown also are the experimental values of H, 2j taken
from Azevedo et a/. ' The upward curvature at T =0
is 5%. (Using T, =0.285'K we compute the
minimum extrusion of the H, 2~~ phase boundary to
be T~~

'" =0.35'K and the decoupling temperature to
be T'= —1.52'K. This predicts a T =0 value of H, 2~
of 315 6 which is unacceptably low. For comparison
the H, 2& curve generated with this value of 1, is also
shown in Fig. 6.)

In choosing T, =0.23'K there is substantial
disagreement of our model with the H, 2,~(T) curve of
Azevedo et al. ' disagreement which cannot plausibly
be attributed to fluctuation conductivity. (On the
other hand, when we choose T, =0.285'K our model
agrees with the measured H, 2~~(T) at T, but only
there, leaving unexplained the huge rise just below
T, .) With lattice spacing a =100 A we expect periodi-
city in the critical field every 40/a'=2 x 10' G. This
is significantly beyond the Pauli limit, but with inter-
calation, the increased lattice size would reduce this
periodicity scale. A possibility does exist, moreover,
to observe the resonant bumps in the phase boundary
due to fractional flux quanta being put through the
unit cell of the filament lattice, although we expect
that the periodic behavior in H, 2~~ will be smeared out
due to any distribution in fiber sizes and any imper-
fections in the lattice of fibers. There is so far no
evidence of any periodicity or quantized flux struc-
ture in the H, 2~~ data for (SN)„. In fact (SN)„has
been intercalated with bromine. ' The bromine
seems to increase the fiber-fiber coupling as seen in
an increase in the temperature which locates the mid-
point of the resistive transition. The low-field curva-
ture in H, 2j is also eliminated with intercalation,
and this supports the hypothesis that this curvature
in the pure (SN)„may not be intrinsic. The increase
in fiber-fiber coupling reduces the effective mass an-
isotropy, thereby suppressing the decoupling tem-
perature. This undoes any advantage gained in in-
creasing the lattice size, since the resonant bumps in
the H, 2~~ phase boundary recede to lower tempera-
tures as the decoupling temperature decreases. This
effect could be exploited, however, if instead of in-
tercalating with a material like bromine, which tends
to enhance the fiber-fiber coupling, an intercalate
which reduces the fiber-fiber coupling is introduced.

We now turn briefly to the transition-metal trichal-
cogenides. Monceau et a/. ' have reported a transi-
tion under pressure to the superconducting phase in
NbSe3. X-ray measurements ' indicate a crystallo-
graphic structure of chains of trigonal prisms with
chains relatively separated (Nb-Nb nearest-neighbor
distances between chains is 4.25 A). The anomalies
in the resistivity at 145 and 59'K have been inter-
preted as charge-density-wave transitions, ' and re-
cently have been observed as such, ' and this sup-

ports an expectation of highly-one-dimensional
characteristics in its superconducting properties.
Under pressure, both of the charge-density-wave
transitions occur at lower temperatures" indicating
increased three-dimensional coupling. This is corro-
borated by a similar increase in the superconducting
transition temperature under pressure. ' Sambongi
et al. "have similarly reported a transition to the su-
perconducting phase in TaSe3. The crystallographic
structure as determined from x-ray measure-
ments" "is similar to that of NbSe3 with a slightly
larger unit cell. There are no resistive anomalies,
and this together with the superconducting transition
occurring at atmospheric pressure would indicate that
TaSe3 has stronger interchain coupling than NbSe3.

Applying our model to these systems we expect the
following qualitative behavior. Since the filament
size is so small and the filament lattice is regular we
expect that our model of coupled infinitesimal fila-
ments will be more directly applicable to these sys-
tems than to (SN)„. Since the coupling between the
filaments is weak, we expect a very large anisotropic
mass ratio which for NbSe3 at least would be a strong
function of pressure. This would yield decoupling
temperatures which would also depend strongly on
pressure. The weak coupling and small filament size
will also make'fluctuation effects more important in
NbSe3 than in TaSe3. The intercalation of NbSe3
with lithium should allow an additional variation of
both lattice size and interchain coupling, and inter-
calated systems analogous to the layered supercon-
ductors intercalated with organic molecules can
presumably be made. Despite the regularity in the
lattice for these systems [unlike (SN)„], the small lat-
tice size will preclude any observation of periodicity
in the H, 2~~ phase boundary, but if the intercalated
systems can be manufactured with sufficient crystal
perfection, they might exhibit some of these H, 2I~

anomalies. Finally we should note the expected az-
imuthal anisotropy of the perpendicular critical field
for these systems. Measurements by Monceau of
the Shubnikov —de Haas oscillations in'NbSe3 yield a
ratio of 3 for the two cyclotron masses perpendicular
to the chain direction (b axis). This would imply dif-
ferent filament couplings in the two directions leading
to strong azimuthal dependence of H, 2~. This is borne-
out in the measuremi'. nts of Sambongi et al. ' for
H 2J of TaSe3 who find a cusp in the c direction im-
plying very strong interfilament coupling in this direc-
tion. However, the interpretation of this result that
TaSe3 is microscopically two dimensional has the fol-
lowing difficulties. Using the Tinkham thin-film for-

0
mula' ', yields a film thickness of 76 A which incor-
porates several unit cells. In addition, one expects a
similar cusp along the b axis where instead the aniso-
tropic mass law is found to hold' with a mass ratio
of (M/m)'~'-30 (see Fig. 5 ). A more complex
model such as platelets of coupled filaments may
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have to be invoked for these systems.
Finally, we comment briefly on the measurements

of Bogomolov and coworkers. They have succeeded
in manufacturing 20 A filaments of mercury embed-
ded in an asbestos matrix. ' Their measurements of
the critical field H, 2]] indicate that the Pauli limit is

exceeded by a factor of 3.'6 A microscopic theory
would have to take into account the very real effect
of spin-orbit scattering in this system. As the fila-
ments are separated by 200—300 A. there should be
no coupling between the filaments, and the treatment
of Sec. V should be applicable. There should not be
any upward curvature in the critical field, and indeed
there is evidence of downward curvature, although
the measurements as yet cannot establish the
square-root dependence at T, predicted by Eq. (46).
The angular behavior of the- critical field should be
given by Eq. (46), and while this polar dependence
has not been measured, the ratio Hj/H~~ is essentially
constant over the temperatures measured, consistent
with Eq. (46).
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For azimuthal angle $-0 (or $--, n) the eigen-

value equation (5) reduces to the Mathieu equation
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dx' h' g'(0) T,
+- &+2——cos2x p =0,

(Al)
where we have set x = hz/a and where

To "/T, =1 —2[m ('(0)/Ma']

Similarly for azimuthal angle @=
4

m the eigenvalue

equation (5) reduces to the Mathieu equation

1 2a T' —T 4m 1

dx2 h2 g2(0) T M h2
+— /+2 —cos2x /=0

(A2)

where we have set x = hz/a (2)' 2 and where

T'/T, =1 —4[m g'(0)/Ma']

Inverting the lowest Mathieu eigenvalue in the
large parameter expansion yields the critical-field
behavior near T,
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APPENDIX A: EXACT SOLUTIONS OF H, »(T) FOR

O, -m1

Two special cases of the eigenvalue equation (5),
which determines H, 2q(T); may be solved exactly,

Inverting the lowest-Mathieu eigenvalue in the small
parameter expansion' yields the divergent critical-
field behavior near To'(for /=0) and near T'(for
@=

4
4r). We have1
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1 a
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0 =- X These critical fields are graphed in Fig. 3 with an
interpolation between the high- and low-field expan-
sions. There is upward curvature to these critical
fields, but this only becomes significant in the vicini-
ty of To' (for Q =0) and T" (for rt =

4 rr); near T,
the critical-field curve is very linear.

(c} o = x

FIG. 7. Acceptable (a) and unacceptable (b) and (c) walks

for the one-term Hill (i.e., Mathieu) eigenvalue equation.
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APPENDIX B: H, 2g NEAR @~0

In this Appendix we examine the azimuthal depen-
dence of H, 2q near the "singular" angle rt =0 (and
similarly near @=

2
4r). As we let $ 0 (i.e.,

n~ 0), the high-field expansion (18) contains diver-
gent terms to all orders in A.. In Appendix C a di-
agrammatic representation for each term of Eq. (18)
is constructed, and this diagrammatic representation
facilitates a summation of the divergent terms, yield-
ing the well-known' continued-fraction equation for
the Mathieu eigenvalues

2X. =0

4n —o.2 —2

with eigenvalue

o- +2k. cr

4m

and parameter
r

3X a.
A. = h. o»/n 1—

8m4

3X omn21-
8m4

36n2 —cr

'

(A10)

(A9)

1 1/2

—2=1 1 a+2/ . 3—4sinrtr 1—
h h 8a4

=0 (Al 1)

where h = (m/M)'~'h. The singularity at rt =0 mani-
fests itself in the change in order of this eigenvalue
equation, and this leads to the strong azimuthal
dependence at low temperatures near rt =0. This is

graphically displayed in Fig. 3.

Utilizing the well-known large parameter expansion
for the Mathieu eigenvalues, and working only to
lowest order in ain't (since we are interested in the
behavior as rtr 0), we obtain for isotropic coupling
(with h = (m/M) '~ h),

APPENDIX C: DIAGRAMMATIC ANALYSIS OF
HILL EIGENVALUE EQUATIONS

In this Appendix we develop a diagrammatic
analysis of the eigenvalue equation for the Hi11 dif-
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ferential equation. A general (W-term) Hill equation will be of the form
N

2
+ o'Q+2A. X o„,cos(2nlx) p =0

dx' (,
This has eigenvalues determined from the equation '

(A12)

I~1l IK2l I K~I 1~1+. +~J I

(„) [(2~(+r) (r—] [(2K(+2K2+r) (r—] [(2K,+2K,+ 2KJ+r) —o. ]2 2 2 2
(A13)

where the sum is over all K =+ n( subject to the res-
trictions K1+ +~&=+n(and K1+ '-' ' wK AO
for alii (j.

To each term in the sum (A13) we may associate a
walk on an W-dimensional Cartesian lattice, starting
at the origin 0, thereafter avoiding the origin, and
ending one step away from the origin at Xwith only
unit steps permitted in the Cartesian directions. For
each step in the I direction we pick up a factor A. o-l„,l.

For each step ending at site Xl, slnl (with integer sl)

we pick up a factor

N 12

2 X sl n, + r - o'
( 1

Finally, for the end point of the walk, which will be
at some +n(, we associate a factor A. col„,l.

If some of the numbers n( are commensurate, then
some linear combination of the n( with integer coeffi-
cients will vanish, and hence these correspond to lat-

tice sites "equivalent" to the origin. These lattice sites
must also be avoided in any acceptable lattice walk.
The nearest neighbors of these equivalent origins are
equivalent end points, and are possible end points for
acceptable lattice walks.

For simplicity, we treat only the case ~ =0 in this
analysis.

d Q + o'/+2'(, cos2nx /=0
dx

(A14)

(1)
[(4n' —(r') (16n' —a')] (A15)

Each term of the sum in the eigenvalue equation
(A13) may be represented by a walk on a one-
dimensional lattice, starting at the origin, thereafter
avoiding the origin, and ending one step away from
the origin. As an example, Fig. 7(a) is an acceptable
walk corresponding to the term

) 8(4~2 2) —3(16n2 2) —3(36n2 2) —(

However Fig. 7(b) is not an acceptable walk since it
returns to the origin; neither is Fig. 7(c) an accept-
able walk since it does not end at a point one step
away from the origin.

%e now proceed to a summation of all classes of
such walks, thereby deriving the Mathieu eigenvalue
equation:

(i) All walks start with either a step to the left or
one to the right. . By overall multiplication by 2 we
can include all walks starting to the left. Each walk
will thus carry a factor 2l(.(4n2 —o2) ' which may be
pulled out as a multiplicative factor.

(ii) Summing all walks going only one step away
from the end point Xyields Xt'l/(1 —X('l), where we
have

1. Mathieu equation

In this subsection we treat the Mathieu equation
which is just the one-term Hill equation

This is depicted diagrammatically in Fig. 8.
All walks going at most one step away from the

end point X thus sum to 1/(1 —X ' ).
(iii) Summing all walks going only two steps away

from the end point Xwith only one traversal through
X yields $ with

(4n2 —o.2)(16n2 —a.2) (16n2 —o2)(36n —a )

1—
(16n' — ') (36' — ')

(A16)

This is depicted diagrammatically in Fig. 9.
(iv) Summing all walks going at most two steps away from the end point X with any number of traversals

through X yields

y + X(2) + X(2)
X(1) ]- X(1) y X(1)

i

X(2)

X(1) ) X( )
1

X(1) X(2)
(A17)
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To this order the eigenvalue equation is

2z' 1

4n —o 1 —X' —X

4n —o—2 2

2X =0

16n —o. —2 2

36n2 —o- (A18)

This is just the third convergent of the Mathieu
eigenvalue equation. As the walk summation is a
recursive procedure on the one-dimensional lattice it
should be clear that summation of third- and higher-
order walks will generate the higher-order conver-
gents of this continued-fraction equation.

2. Two-term Hill equation

In this subsection we treat the two-term Hill equa-

tion

starting at the origin, and ending one step away from
the origin, with care taken to avoid equivalent ori-

gins, although a walk may end at an equivalent end
point. We will label horizontal walks as n walks and
vertical. walks as m walks. As an example, the walk

in Fig. 10 is an acceptable walk corresponding to the
term

d(r cr (4n —cr') '[4(n +m) —iT )
'

&&[4(2n+m)' —o') '[4(2n)' —o'] '

d2ils- + a 2+2K(a cos2mx + a.„cos2nx) g =0
dx

(A19)

Each term of the eigenvalue equation (A13) may be
represented by a walk on a two-dimensional lattice,

With the advent of the second dimension, the task
of classifying and summing all walks is made consid-
erably more difficult. In two cases the topology
reduces to one dimension as it should. When n =0
all strictly horizontal points become equivalent origins
as in Fig. 11(a). All of the walks may be summed to
yield o-2+2ko-„as the Mathieu eigenvalue

(o' +23(r„)+. m =0

4 m' —((r'+ 2 g g-„)— A. o

16m2 —((r2+2gg „)+ (A20)

Similarly when n m all upper-left and lower-right strict diagonal sites become equivalent origins as in Fig.
11(b). All of the walks may be summed to yield o' as the Mathieu eigenvalue

2Z'(o. +o.„)' =0

4m —o-—. 2
(o. +(r„)'

16m —o-—2 2 (A21)

x = ~ + x = ~ +

1 —x =- ~

x = ~ = ~ + x =

X =- ~

+ ~ ~ ~

FIG. 8. Summatio~ of the one-step walks for the Mathieu

eigenvalue.

FIG. 9. Summation of the two-step walks with only one
traversal of the end point for the Mathieu eigenvalue.
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X X X

G G G G G

FIG. 10. An at:eeptable walk for the two-term Hill eigen-
value equation.

X X

3. Approximation of the two-term

Hill equation eigenvalue {a)

%e now approximatt: the eigenvalue for the two-
term Hill equation (A19) as the parameter n 0.
The treatment of the two-term Hill equation in Sec.
C 2 indicates one must sum an infinite class of walks.
In other words, an infinite number of terms in the
expression (A13) of the secular determinant have
vanishing demoninator. Clearly all walks which nev-
er stray from the horizontal will involve only n in the
denominators and hence will be singular; we must
sum all of these walks, and as n 0, this sum yields
the continued-fraction equation (A20). Working to
lowest nontrivial order, we sum all walks which stray
only one vertical step away from the horizontal.
These terms are nonsingular as n 0 and at least of
order A2. Including walks straying further from the
horizontal would keep terms of higher order in A. ,
even as n 0. Thus, to order A.2, the behavior of
the eigenvalue as n 0 is represented by all walks
within one step of the horizontal on the two-
dimensional lattice. Summing these walks yields the
continued-fraction equation

X

X

)

FIG. 11. Equivalent origins and equivalent end points {a) as
n 0 and (b) as n m.

2 2 2 2. 2 2 2 2 —1

+ 2z cr„cr —4n +2
2A am 2 2 2 2 m

0
4m 4(n+m)n 4(n —m) —4(2n) + ' )

(A22)

Since we are interested in the limit n 0 we may expand the denominators

(I + pg)-2 = m-2[1 +2~/~ +3(~l~) + .

This yields the continued fraction for the Mathieu eigenvalue
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=0

4n —cr2 —2

16g2 —g 2—

36n —a-2 —2 (A23)

where

2) cr02= 02+
4m2

t i

21-3
8m4

2 2'
X o

rr„/n. 1 —3
8m'

whioh is the result [Eq. (A9)] used in Appendix B.
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