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Variational calculations, with a new wave function based on the Feynman-Cohen correlation
operator, are carried out for liquid He with a Lennard-Jones potential. The wave function con-
tains three-body correlations and momentum-dependent two-body correlations, in addition to
the Jastrow correlations commonly used in variational calculations. The Fermi hypernetted-

chain summation methods are generalized to calculate energy expectation values wiith this wave

function. The calculated equilibrium energy and density are —2. +0.1'K and 0.28+0.01cr 3, a

significant improvement over the —1.25'K and 0.22o obtained with the Jastrow wave func-

tion, and closer to the experimental —2.56 K and 0.280-

I. INTRODUCTION

The Jastrow wave function,

'Pj= pe, j'Jj
i&)

where fjs is a function of the interparticle distance

~ r&
—rj~ and 4 is the ideal Fermi-gas wave function, is

commonly used for calculating upper bounds to the
ground-state energy of liquid 'He. The energy expec-
tation value with 'PJ can either be calculated with
Monte Carlo integration, ' or with the hierarchy of
Fermi-hypernetted-chain integral equations. 2 Both
the Monte Carlo and integral equation methods give
identical results. For the Lennard-Jones (LJ)
deBoer-Michaels potential, the calculated equilibrium
energy and density Ep and pp are, respectively,
—1.25 'K and 0.22o-, where o- =2.S56 A is the
length scale in the LJ potential. These results are not
in satisfactory agreement with the experimental
values —2.56'K and 0.277a for Ep and pp. An ex-
act solution of the liquid 4He many-body Schrodinger
equation, with the same LJ potential, by the
Green's-function Monte Carlo' method yields
Ep=—6.85 K, pp=0. 37cr, against the experimental
values —7.15'K and 0.365o- ' for liquid He. Thus,
we expect the LJ potential to give a better description
of the helium liquids than that obtained with the Jas-
trow approximation.

The correlation-function flj(rs, ks) between two
particles in a Fermi fluid can depend upon the plane-

iki r& iki r
wave states e ' ' and e ' j, occupied by the parti-
cles. in its simples form this dependence comes from
the V' g, &j f& '7 4 terms in the kinetic energy. '
Variational calculations with a wave function contain-
ing state-dependent correlations are dificult.
Nevertheless, Pandharipande and Bethe4 (PB) found
that these could shift the calculated Ep and pp of

liquid He to ——1.9'K and 0.25o.
An important feature of the PB state-dependent

correlation function is that it contains the "Feynman-
Cohen backflow5n absent in the Jastrow wave func-
tion. In the limit

~
k,j~ 0 the PB correlation func-

tion reduces to an operator », '
Ss fj(fs) + ri(r~~) r'j 7s (1.2)

s ff&s=gfi. jj Q f3, jk II f4,0kl
i&j i&j i&j&k /&j&k&l

where fq, f3,f4 are respectively two-, three-,
four- particle correlations that do not contain
gradient operators. The g(r) is fortunately ((1,
and it appears reasonable to retain only the linear
term rt(rlj)rlj V;fz(rlk) in f3, and neglect f„4. In
liquid He the Jastrow wave function gives —S.9'K
and 0.34p for Ep and pp. The inclusion7 of this
three-body correlation f3 in the wave function, shifts
these to —6.7'K nd 0.38', which are in excellent
agreement with the supposedly exact Green's-
function Monte Carlo results.

The most obvious choice of a variational wave
function for Fermi fluids is

+=8 psst
i&j

The second term in the above W allows one to
describe the backflow of ~He atoms around an impur-
ity He atom in liquid 'He, and thus calculate the
enhancement of its eN'ective mass. 6

A variational wave function for Bose fluids may be
constructed from a symmetrized product of X Due
to the gradient operator in W it represents arbitrarily
many-body correlations, i.e.,
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This wave function has additional terms linear in q
from the 0& in F~ operation on the 4. In the
present work we report variational calculations with a
wave function of the form

+v=tI[fJ(»)+mr & ] II f'3, vk@ ~

l&J&k

where the V~ operates only on the 4; the

gsr& V,fi, terms are included in f3 as in the Bose
case. The calculated Ep (2. +0.1'K) and pp
(0.28 +0.02a ') with this wave function are quite
close to what we may expect from the LJ potential.

The calculation of +v and its variational parame-
ters are discussed in Sec. II. Sections III and IV,
respectively, discuss calculations of the distribution
function and calculations of the energy expectation
value with the FHNC technique. To some extent
these sections are the generalization of the formalism
developed in Ref. 7 to Fermi fluids. The results are
presented in Sec. V. A casual reader uninterested in
hypernetted-chain summations may wish to skip the
rather technical Secs. III and IV.

II. VARIATIONAL %AVE FUNCTION

The PB correlation-functions f(k, r, d) have a vari-
ational parameter d, and are obtained by minimizing
the two-body cluster energy with the constraint that
the f(k, r, d) go smoothly to unity at r -d. They
give the exact energy in the low-density limit. ' The
f(k, r, d) is obtained from the set of equations

and calculated only the two-body cluster energy with
the f(k, r).

The direct two-body cluster-energy [C&&(k)]J calcu-
lated with the fJ is independent of k and equals the
[CII(k 0)]p calculated with the correlation operator
&. The [Cll(k)],

k)]p = [Cli(k 0)]p + k

2
x Jl rl — [(fJ' + v/') 4» + g"r ] + up r dr

(2.7)

has an additional attractive term proportional to k'.
The [Cli(k)]p is very close to the CII(k), obtained
from f(k, r), up to k =n/d (Fig. 1); when k exceeds
vr/d, the nodes in jp(kr) create problems in the cal-
culation of f(k, r). The fact that the Cl&(k) with

f(k, r) is a little above the [Cll(k)] p is a reflection
of the external constraints in the variational problem.
The C&I(k) (Fig. 1) have both direct and exchange
contributions, and at least from a variational point of
view, the 5 seems to do well at the two-body level.
Its additional advantages are: it is simpler to calcu-
late MBCC with ; and it can be used to generate
many-body correiations f3,f4

Since q(r) and f'(r) are roughly proportional to
each other (Fig. 2) the many-body wave function
[Eq. (1.5)] is conveniently approximated by7

f(k, r, d) e'"' = V( k, r, d) (2.1)

'qr(k, r, d) = Xi'(2l+1)f(l k, rd) j~(kr)P~(cos8)

(2.2)

u~(k, r, d) =f(l, k, r, d)j ~(k, r) r

1

l(l +I)
u~ 2 u( + vu( = — k + A.((k) tl(

m r m
)

(2.3)

(2.4)

OJ

OJ
O

The Schrodinger equation (2.4) is valid for r & d, and
X~(k) is obtained from the boundary-condition
f'(l, k, r =d) =0.

In the limit k 0 the f(k, r, d) reduces to the sim-

ple operator r given by Eq. (1.2) withp

fq(r, d) =f(1=0,k O, r, d)

q(r, d) =f(I = l, k ~0,», d) fJ(r,d)—(2.5)

(2.6)

—IO
0

I

0.2
I

0.4
(k/kF)

I

0.6 0.8

1

It is very dificult to calculate the many-body cluster
contributions (MBCC) with the f(k, r, d); PB essen-
tially used the f(l =O, k O, r, d) to evaluate them,

FIG. 1. Two-body cluster energies for parallel and an-

tiparallel spin pairs with various correlation functions at
d =1.73rD and p=0.277cr .
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II fj("V) II (I + x X'Ja)
i &J i &J&k cyc

x II (1+ —q.. ., [k(') —k(j)]q))
i&J

II—fJ(rv) II f3,~ja IIfa, J@
i&J i&J&k i&J

(2.8)

(2.9)

(2.10)

(2.11)

l.2

0.8—

0.4—

0.6 0.8 1.0 I.2
r(g )

l.4 l.6

The P3 and Pa are two extra variational parameters
that, respectively, vary the magnitude of fi and fa.
The operator k(l) in Eq. (2.8) is defined such that
when it operates on a plane-wave state with momen-
tum k occupied by the ith particle, it'gives an eigen-
value k, for example

l(k ~ r&+k ~ r~+ ) (k r&+k„r~+ )
) ~ ' " J =k e (2.12)

It may be verified that Eq. (2.8) is antisymmetric
with this definition of k(l). The (—I)'~' in the qj

i~"~ rl
term of Eq. (2.8) comes from the '7;e ', and does
not imply that Eq. (2.8) is complex; by replacing the i

k(l) operators by the V;, we obtain the real 'I„
when 4 is real.

FIG. 2. Comparison of fear and ff' at d =1.73rD and

p=0.277cr 3.

III. CLUSTER EXPANSION

AND CHAIN SUMMATIONS

In the first part of this section we set Pa =0 and
thus treat the simpler wave function

(3.1)
l&J l&J&k l

~here 8 is the antisymmetrizing operator. A di-

agrammatic cluster expansion of the expectation
value of a symmetric two-body operator 0 (r),

„~ "II& "( ) IIf II f o.( .) II f IIj II@(«)d
l i&j i&J&k i&J&k i&J i

( )
1„~II~ "(;) IIf' Il f'II4, (,)d

i i&j i&J&k i

(3.2)

is obtained by replacing all the f', except f'„ in the
numerator, by 1+F; and the f3 is replaced by
1+X,„,X. The integrals in the numerator and the
denominator are then represented by diagrams in
which the points represent the particle coordinates,
F» is a dashed line joining i and j, and solid lines ij
and ik, with a marking on the angle i of the triangle
ijk, denote x»k. Exchanges are represented by direct-
ed lines. An exchange line labeled k; going from i to
j represents the contribution of a term in +„' in

which particle j occupies the state k;. We antisym-
metrize only the left-hand W'and thus particles
ij respectively occupy states k;, kj in the
right-hand O. All exchange lines k; originate from
points i.

This diagrammatic notation is identical to that used
in Ref. 7 and PB. All numerator diagrams must con-
tain the points m and n, and the f„„O „f„ is im-

plied. The expectation value is given by the sum of
all irreducible numerator diagrams. We generally
need to sum over all the particles i,j, . . . , m and n;

this summation yields, apart from trivial symmetry
factors, a density p for every point in the diagram
and a Sister function l(kFrs), i.e.,

l (x) = 3 ( sinx —x cosx) /x',
for every exchange line. Similarly the expectation
value of a three-body operator 0 „, is given by the
sum of all irreducible diagrams containing a triangle
mno with implicit

(3.3)

f „f,f„,l I+/X „, 0 „,
cyc

I

I+XX „, f „f,f„,
cyc

(3.4)

In the hypernetted-chain approximation all di-

agrams containing single or multiple chains connect-
ing two particles are summeed neglecting the cou-
pling between the chains. In the simple FHNC
(without the three-body correlation X'ja) there are
four types of hypernetted chains, whose contributions
are denoted by Gdd J, G&, », G„,J, and G„ij. The first
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two subscripts of G specify the exchanges at the two

ends of the chain. The dd, de, and ee respectively
represent direct-direct, direct-exchange, and
exchange-exchange, while cc is for an incomplete cir-
cular exchange. The following two subscripts of G
denote the end particles. Since the number of.ex-
change lines passing through a point can either be
zero or two, chains G~ & and Gyy Jk cannot be linked
at point j unless x'yequals dd, de, ed, or cc.

The present case, the X,tjk generate additional
chains formed with elements C tJ analogous to C2 7

of Ref. 7. Typical hypernetted-chains G ~ and ele-
ments C ~ are shown in Fi'gs. 3 and 4. Fantoni and
Rosati~ (FR) derived a set of coupled equations for
the G's which we generalize to include the Cs.
(Note that in the FR notation our subscripts dd, de,

ee, and cc become ss, sh, hh, and dd. ) We first gen-
eralize the Slater function I to include many-body cir-
cular exchanges

L =—I + s(G„+C„) (3.5)

where s is the spin degeneracy which equals two rn

liquid He, we define partial two-particle distr'ibution

functions g, i.e.,

gdd f' exp(Gdd + Cdd).

gde = gdd (Gde + Cde)

(3.6)

(3.7)

g« gad [—L /s ——+ G„+C«+ (Gd, + Cd, ) +D], (3.8)

gcc gddL /s (3.9)

The Din Eq. (3.8) represents fk contributions treated
later. The physical two-particle distribution function

g is given by

used to build the chains. The chain functions are
then obtained as

Gdd, ij y((gdd I ) iki~kj) (3.1g)

Gde y By(+dd lki+ee y) ey(+de iki+de kj) +e(gde iki Pkj) ~

(3.19)

Gee y By(~deik +dekj) ey(+ddiki+eekj) +8(gee ikipkj)

(3.2O)

Gccy,ey(+cc, ik vgcc, kj)

Ca„y ——I'„(1+2(Ca,+ Gd, ),k, 1kj)

(3.21)

(3.22)

C„,„-ry([ L'+2C—„+2G„+2(cd,+ Ga.)

+ Cd, + Gae] iki (Cd, + Gd, )„j)

C„y = —I'y(L,k, Lkj)

(3.24)

(3.25)

Consistent solutions of Eq. (3.5)—(3.25) can be easily
obtained by iterative schemes. The above equations
sum all hypernetted chain (HNC)-type diagrams ex-
cept those belonging to "group II" in the notation of
Ref. 7. It is shown in Ref. 7 that these should not be
summed without their HNC/4 counterparts.

C, y
= I'y([— L+C„+—G„+(C, + Ga,)'] kl kj)'

+ I'y((Cd, + Ga, )ik, (1+Cd, + Gd, )kj), (3.23)

(3.10)

+dd gdd ~ Gdd

+ee gee Gee

~de gde Gde

X„=g„+I/s —G„

(3.11)

(3.12)

(3.13)

(3.14)

We now define the following two functions which

link chains at point k:

Q y(x,k;ykj) = p &
d rk Xikjiiy

ry(xik', jikj) = p „«kgaaagadkj, ,
3

i

1 + X Xijk 1 Xikjkj
cyc

(3.15)

(3.16)

gdd + 2gde + gee

The contributions of non-nodal' diagrams of type dd,

ee, de, and cc are respectively given by X, i.e., m n

I

m n

Gdd m„diagrams

m n

Gde, mn diagrams

m

Gee mn diagrams

l
/

rn n

, ()

and the FR propagator

+Ij +daij + 2&deij +e,lj(+ddiki&ee, kj,) By(&ice,iki&de, kj)

(3.17)

m n

Gcc, mn diagrams

FIG. 3. Typical chain diagrams.
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0.2—

Cdd ~„diagrams 0.0—

-0.2—

-0.4—

Cd, ~n diagrams
-0.6—

-0.8-
I

04 08 l 2
I

l.6
r (o.)

I I

2.0 2.4 2.8

Cee, mn diagrams

m- n

Ccc,mn diagrams

FIG. 4. Typical C elements.

FIG. 6. C at d =1.73rD, pk =0.7, p3=2.4, and

p=0.277cr 3.

pairwise coupling between the G's and C's is calculat-
ed. FHNC/4 also includes circular-exchange di-

agrams of type 7.1—7.4 of Fig. 7. These cannot be
trivially interpreted as a coupling of two FHNC's. At
small r the FHNC/4 diagrams 7.1—7.4 are compar-
able to the FHNC diagrams 7.5—7.8 and thus it is not
obvious that they are negligible.

The calculated G's and C's are shown in Figs. 5

and 6; the G~~ is clearly the biggest contributor.
However, the large magnitude of Gdd does not imply
that HNC is a poor aapproximation (Ref. 1). The
validity of the FHNC approximation may be ascer-
tained by FHNC/4 calculation, 2 in which the effect of

7. I
7.2

l.6 7.3 7.4

l.2

0.8

0.4

0.0

~
7.5 7.6

-0.4

-0.8
l.2 2.0

r (o.)

IO

I

2.8 m 0
7.7 7.8

FIG. 5. G~ at d =1.73rD, Pk=0.7, P3=2.4, and

p =0.277(r 3.

.FIG. 7. Some FHNC/4 elementary diagrams and their

FHNC counter parts in limit r 0.
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We report FHNC/4 calculations in two approxima-
tions called FHNC/4B and FHNC/4C. In the
FHNC/48 the coupling between two G's is calculated
in the Boson approximation. The three point func-
tion

gddd»k
=—P JI'(g —1)i,(g —I)jt (g —1)k, d r,

(3.26)

is used to calculate the elementary-diagram Edd&, i.e.,

Edd» „fddd»k, (g 1)jkd rk (3.27)

The effect of paireise coupling between the G's is in-
cluded approximately in the FHNC equations by.
redefining gdd (Eq. 3.6) as

gdd f exp(Gdd++dd+Edd) (3.28)

To incorporate the effect of G-C coupling we redefine
I as

F»(XIk8'kj) P kgddikgddkj 1+X.~»k (1+fdddljk)Xikjkj
cyc

(3.29)

while the coupling between two C's is neglected. We
may expect the Boson approximation to FHNC/4 to
be valid when all but the Gdd chains give small contri-
butions.

The approximation FHNC/4C includes the Edd in
Boson approximation, and the four elementary di-

agrams 7.1—7.4. These may be easily evaluated with
the three-point function

(d, »k Pg (gdd ) lg-,jig, kid rl

(3.30)

The physical three-particle distribution function

g3 gk is given by

The fk generate diagrams having a new element —a
wiggly line, denoting qijr&. A single wiggly line con-
necting ij (Fig. 8.1) can come from the (fk,j —1) in
either 4 or %"'. Its contribution is

, iq»r» ~ —(k,—kj —k, +kj) (3.32)

where ki and k& are the states occupied by particles i
and j in 'I'. The k; and k& are given, in our di-
agrammatic notation, by the exchange lines that enter
points i and j. When i is not exchanged we have

g3, »k (I+5ddd, »k) 1+X~»k
cyc

~n l, iJ ~n2, ik &n3,jk
n 1,8 8. I 8.2

(3.31)

in the FHNC and FHNC/48 approximations. The
u„are sums of partial g functions given in Table I.
The products of u functions in Eq. (3.31) simply su-

perpose g, ensuring a correct exchange pattern.

TABLE I. The matrix u&.

i%'

l

/
/

/

Al

8.4

8.5

8.5

n~-=~ J

gdd+ gde+gee

gdd

gdd +gde

gdd

gde

gde +gee

2gde
—4g

gdd +gde

gdd +gde

gde +gee

gde +gee

gdd

gdd

gde

gcc

2gde +gee

gdd

gde

2gde +gee

gde

gde

gcc

I

/
/

/
c'

m

8.6

FIG. S. fk diagrams.

8.7

n(:+j
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ki =k;, thus a single wiggly line with neither end ex-
changed gives zero contribution.

A double wiggly line connecting i and j (Fig. 8.2)
depicts terms with (fq tI

—1) in both 4 and 4". Its
contribution is

+—qj [r J (k; —k;)] [r;, (k; —kj)] (3.33)

The summation over k can be easily carried out by
writing the k's as gradients. For example, the contri-
bution of the element shown in Fig. 8.3 is

X q&rt—l (k, k-„)e ' ' " "' = $ qij(—e " "'r~~ '7;e ' '"+e ' '" rs '7, e " "') = , p q—&r&tkl,„'cose;
i j,k i,j,k

(3.34)

where 8i is the internal angle of the triangle ijk.
The contribution of a wriggly line diagram that con-

tains an articulation point, at which the diagram can
be separated into two pieces is not necessarily factor-
izable. Let us Grst consider the simple case of a fac-
torizable diagram containing only dashed Fj lines, e.g. ,
diagram (8.4) in Fig. 8. The diagram (8.4) has been

discussed in PB. Its contribution is the product of
the two diagrams shown in Fig. (8.5). The di-

agram 8.4 is thus reducible; it is required to cancel
the denominator and gives no contribution to the ex-
pectation value of 0 „. The analogous wiggly line di-

agram (8.6) is however not factorizable, and its con-
tribution is

X p J d r d r„d r, d rj(fJ„„O „fJ „)F,Fe 2iq;„r;„(k;—k„kj+k)e-
n, ij

while that of the product of the two separated diagrams (8.7) is

(3.35)

X p J d r d r„d r;d rj(fq „0 „fj „)F;Feiq;„r;„(k;—k„)e
n, ij

(3.36)

A general cluster expansion which includes such
separable but not factorizable diagrams is discussed
by Wiringa and Pandharipande. " Their contribution
to the expectation value is the difference between
that of the unseparated diagram and the product of
the two separated diagrams. Thus the contribution of
diagram (8.6) in Fig. 8 is obtained by subtracting the
contribution of the product of diagrams (8.7) from
that of the unseparated diagram (8.6).

The wiggly line elements can be trivially linked by
the 8 only to the direct end of another element.
Hence, their contribution D is added to g„[Eq.
(3.8)]. It is possible to decompose D into its elemen-
tary clusters. For example, the dd chain 9.1 in Fig, 9
is made up of two dd links 12 and 34, and an elemen-
tary cluster D23(2, 1, I). The DJ(p, p', p") depicts an
elementary cluster in which i and j are connected by

wriggly lines or exchange links. The minimum
number of particles in the cluster is denoted by p;
since the cluster can have G«hypernets, the max-
imum number is arbitrary. The number of wiggly
lines in the smallest (p-body) cluster is p', while p" is
a serial number. The nonzero Dij having p +p' «4,
are shown in Fig. 10. The Dq(3, 1,p") may contain
any number of G«;k and G«jk chains which are not
shown in the figure. The contribution of separated
diagrams has to be subtracted from D~&(3, l,p" = 1,4).

I 2 3 4
9. ]

t
pl I

9.2

9.3 9.4

9.5 9.6

9.7

FIG. 9. Chains containing fk correlations.

Algebraic expressions for the Dij of Fig. 10 are given
in the Appendix.
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D;. (2, I, I)

D; (2,2, I )

o;;(2,2,2}

o„(3,I, I)

D;j (3, I, 2)

D;j (3, I, 3)

O;; (3, I, 4)

D;j (3, I(5)

i~j

i:Nj

Figure 11 shows the calculated D(2, 1), D(2, 2), and
D (3, 1). The D(2, 2) is much smaller than D.(2, 1)
in the region of interest because of the additional g
function, while the total D(3, I) is much smaller than
D(2, 1). We hope that the D(p,p') continue their ra-

pid decline as p +p' is increased and truncate the
sum in Eq. (3.37) at p+p'=4.

Simple examples of chains containing D~ summed

by a consistent solution of the FHNC (3.5—3.25) and

Drj (A. l —A.9) equations are shown in Fig. 9.1—9.4.
Contribution of chains 9.2 and 9.3 can respectively be
of order D(3, 1) and D(2, 1), while 9.4 having two

D(3, 1) and a D(2, 1) element should be much
smaller. Chains 9.5 and 9.6 are not summed by these
equations. They constitute the D(4, 1) and should be
much smaller than D (3, 1) due to the extra ex-
change. Chain 9.7 is an example of the omitted
D (3, 2); it should be of order Gq, &Drj(2, 2), which is

much less than D(2, 2).

O;; (3, I, 6)

FIG. 10. Skeletons of D&(p,p', p") diagrams.

The exact D~ is given by

D(( = XDs(p p')
P.P

(3.37)

IV. CALCULATION OF ENERGY

3 A'

TF = — kp.
5 2m

(4.1)

Since 4 is an eigenfunction of the kinetic energy
operator the contribution of terms in which the V2

operates on 4 is exactly given by the Fermi kinetic
energy TF

Ds(p, p') = XDs(p.p', p") .
~(

(3.38) In conjunction with the PB fq, it is convenient to
combine the contributions of terms in which the '7
and '72 operate on the fJ „with that of v „.The
sum, called Wis given by

0.2
W =2@pi(.0(k '0) dr r2g (r)

te oo

+ J~ dr r2g(r)u(r) (4.2)

O. I

where g (r) is the pair distribution function 3.9.
Terms having

0.0 and

+mfmno '
+mfmpq

( I ( I ( I

0.6 0.8 I.O l.2 I.4 I.6

FIG. 11. DI (p,p')-at d =1.73IO, pk =0.7, p3=2.4, and

p =0.277(r 3.

occur also in the Bose system and have been
classi6ed as Uand T& ~, 6 in Ref. 7. The terms T& 5

involve the three-particle distribution function g3 „0
of Eq. (3.31). Their sum is given by
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A

7" = p2 J
g3 m"' m'

g r & C +( v „——[(r(')mo(('r +2fjgr)m, Cm +2fjmo
/ —1.5 f3mno,

m

x (( r) mn(gr) „C C„2/Jo(, (r) no(me Co] d rmn d rmo

(4.3)

where the primes denote the derivatives with respect
to r, and

(4 4)

(4.s)

(4.6)

a de l
limno (gdd mogde on + gdd mo gee on + gde mo gde on)

g ed
l imno (ged mogdd on + gee mogdd on + ged mo ged on)

g ee
'limno (gedmogdeon +geemogdeon +gedmogeeon)

(4.9)

The C, C„, and C„are respectively the cosines of
the internal angles 8, 8„, and 8, of the triangle mno.

To calculate the T6 and Uwe have to subdivide the
functions cx „and y „ofRef. 7 according to the ex-
changes of particles m and n. We define the follow-
ing functions:

qdd l'Oc mno (gddmo gddo, n + gd, erne gddo, n + g,ddmo gedon), ,

(4.7)

Amno = (gcc, mogcc. on)

(4.10)

(4.11)

in which the superscripts specify the nature of the ex-
change at points m and n. Let Y „,be defined as

e eY„=f3 „,A„,

The n „and y „are given by'

a „=pJI Y „,[((r),(('r) „C +(gr)„,(g'r) „C„+(,((r) „](1+(ddd „,)d r,

y „=pJ1 I[Y „,(('r), ][((r) „C'+(gr)„, CC, ]

+Y""„,[2((r),( „C —(,((r)„,C„]}(1+(ddd „,) d r,

(4.13)

(4.14)

and

(4.1s)

The T6 in Fermi fluids is given by

7 p Jt [g [~dd(8dd + Pde + Zed + Zee) + +de(pdd + Ped) + . ed(add + 8de) + ee5dd 4 cc8cc]
201

[~dd(28dd + 8de+ 8ed) + (~de+ ed) sdd] +g dd8dd 4g ( cc8dd + dd8cc) ]4 2d (4.16)

which ensures a proper match of the exchange pat-
terns in g, n, and 8

The matching of exchange patterns in the calcula-
tion of Uis facilitated by defining

&ed fg + + god+ ~ddg (4.19)

(4.20)

~dd fg + '~ddg

fgde + & gdd + 0c gde

(4.17)

(4.18)

~cc fg + ddg y cCg (4.21)

The t& ~ 5J 1 3 given in Table II are linear combina-
tions of 7 and g, and the U is obtained as

g2
P g ~3,mno bddd, mno~ ~ Eil, mnti2, moti3, no Cm 6 fmn 6 fmo

i=1,5
(4.22)
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TABLE II. The matrix t&.

Tdd+2(Tde+ T d+ T )
Tdd+ 2Ted

2Tee+ 2Ted+ Tde

Ted

g Tee

Tdd

dd

de

de

gdd +gde

gde +gee

gde

gcc

In the Fermi fluid there are two more types of
kinetic energy contributions. In the first we include
the V fJ,„„V cp and V f3 „p

~ V cp, terms, while

g2
Wf ————

p~ I'fjg„d r
Nl

(4.23)

second is the kinetic energy associated with the fk.
The'7 fj „~i k terms give zero contribution on
the summation over k if particle m is not ex-
changed, The nonzero terms are divided into two
categories; WF contains those in which particle n oc-
cupies the state k in 4, while UF contains those in
which some other particle 0 & n occupies k in 4'.
The essential components of 8'~ and U~ diagrams are
shown in Fig. 12.1—12.3. In these diagrams a filled
arrow along the mn line represents '7„fd „, and the
chains are not shown for clarity. The summation
over k can be easily carried out; it gives a I „' in 8'F
diagrams and I,' in UF diagrams, i.e.,

A

UF =- P J (I + (ddd, mno) f3 mno ~mfmn Igcc.mn Kgdd 1)I ) mogcc no
fthm

+ (I gcc) mo (gdd mn (gdd + gde) no + gde mngdd no j }d rmn d. "mo (4.24)

The V f3 „, has many terms which are discussed in Ref. 7. Some of the V f3 „p V 4& terms in which m is
exchanged with a particle 0 W n or p form type II diagrams (Ref. 1) that cannot be calculated in the FHNC ap-
proximation. The rest are calculated by defining a 8"as follows:

em'„=p„(&"„pgdd „+V „pg„,„)((g'r) p[(gr) „C'+(gr)„pCpC 1+2(j'r) pg „C

&& (gr)„pC„j(1+fdddmnp) d rp (4.25)

and by replacing the fdg in Eqs. (4.23) and (4.24) by the r The s.um of V fj „V @and V f3 „p V cp

is given by 8'~+ UF, i.e.,
g2

Wr =— p
' (r"+8")I'd r

m
(4.26)

Ur P J f3 mno(1 + (dddmno) Cm (rmn ((gdd I) I j mogcc no + (I gcc) mo (rdd mn(gdd +gde) no + rde mngdd moj ) d rmn d "mo

(4.27)

The kinetic energy terms associated with fk are
denoted by S. In general they have

+mfk, mn ~ &mfk, mn
' 7m@

+mfk, mn
' +mfjmo +mfk, mn

' +f3,mop

or

Al

l 2. I
l2.2

l2.5

FIG. 1". Skeletons of WF and Uz diagrams.

+mf». mn
' +mf», mo

Some of the T, U, Wr, and Ur terms having an fk
between interacting particles are not summed by the
expressions given above. These are also included in
S. By interacting we mean the particles whose corre-
lation or single particle-wave function is differen-
tiated. The following diagrammatic conventions are
adopted in the tabulation of kinetic energy terms as-
sociated with the f». Only the interacting particles
are shown in the S diagrams. An open arrowhead on
a wiggly line denotes '7f», while two open arrow-
heads on a wiggly line denote V'f». Hollow and



2514 K. E. SCHMIDT AND V. R. PANDHARIPANDE 19

filled arrowheads represent Vf3 ik and VfJ,ti The
(V4) is not explicitly shown; if a diagram has only
one arrowhead a (V4) is implicit.

Following the expansion of the elementary di-

agrams D (Eq. (3.37) and (3.38) we have:

2, I, I

2, l, 2 2, l, 3 2, I, 4

S= XS(p,p )
I

P.P

$(p p ) = XS(p,p', p")

(4.28)

(4.29) 2, l, 5 2, l, 6

where p" is a serial diagram number, p' is the
number of wiggly lines connecting interacting parti-
cles, and p is the minimum number of particles
linked by wiggly lines and exchanges.

The largest term in S is $(2, 1, 1) shown in Fig. 13.
Its contribution is given by

g2 k'
S(2, 1, 1) = p I (q'r+3q)gddd r (4.30)

2m 5

and is —0.73'K at the equilibrium point. All the
results quoted in this section are at the equilibrium
point: p =0.277o 3, d =1.73rD, p3=2.4, and

I3k =0.7. It is convenient to group the terms
S(2, 1,i =2, 6), shown in Fig. 13, together. Since
this combination of derivatives appears frequently we
denote it by an xx over the wiggly line. Define a
function s as

+~+ ~2, l,7, 2, (,8 2, l, 9
+ ~ +

2, l, lO 2, l, ll

2, 2, 1 222 223

The S(2, 1,6) should be very small and we have

g2

X S(2, l, i) =— p sLI'gddd r
25 . 2m

(4.34)

FIG. 13. Skeletons of S(p,p', p "}diagrams having p =2.

s =-(q"r+4q') +(q'r+q)(fd+n" +8 +a')

A

~mn P Jt AmnofJmof3, mnoCm (1 + (dddmno) d ro

8.""„=p Jl &.dd„. ((('r)..[(fr).„C.'+((r)„.C.C,]

+2((r).,(.„C. g..(gr) „,C„I—
" (I + 4dd, mn. ) d'r.

(4.31)

(4.32)

(4.33)

The (add+ 8d") and o. terms in the above respectively
sum diagrams of type $(2, 1,4) and $(2, 1, 5), The
sum (4.34) is found to be +0.44'K at the equilibri-
um point.

The combination of derivatives shown in Fig. 13,
S(2, l,i =7, 11) also occurs frequently and is denoted
by a single x over the wiggly line. The diagrams
S(2,1,8—11) are in fact Wr and Ur diagrams (Fig.
12) containing an additional wiggly line. However,
their contributions are not summed in Eqs. (4.26)
and (4.27). The S(2, 1, 11) is neglected, and the rest
are given by

s

1 3

I

$(2, 1,i =7, 10) =—(h' /2m) p —' [2qr(fj+nd +8""+(r)+q'r +q](LI"—I') +2q gddd3r
&-7, 10

I'

(4.35)

and their contribution is —0.23'K. There are no
more S(2, 1) diagrams; the total is S(2, 1) =—0.52'K.

The combinations denoted by S(2,2, 1—3) in Fig. 13
have contributions, i.e.,

t2 kF'
S(2, 2, 1) =— p J sqrgdd d r

2m 5
(4.36)

t2
S(2, 2, 2) =—

p
— sqr (L!"—I' )gdd d r, (4.37)

2m

3

2 I

S(2, 2, 3) =— p — ' (qr(fd+a d+8" +a) +q'r +qlqr(l"'L —3l"I') +2q3!"L—I'3 — gddd r
2m 4" I

3
(4.38)
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The S(2~ 2,i = 1, 3) are found to be 0.23, —0.02, and
+0.01'K respectively, giving S(2, 2) =0.22.

The convergence between S(2, 1) and S(2, 2) is

not very significant. It probably can never be at the
equilibrium point becauuse S(2, 1) represents the
bulk of energy terms linear in pk, while S(2, 2) is
most of the energy quadratic in pk. Thus, S(2, 2) is

always positive and roughly half in magnitude of the
negative S(2, 1).

There is a large number of S(3, 1) diagrams as
shown in Fig. 14. For the sake of simplicity and
compactness: (i) we have not shown any chains, and

fq, f3 correlations. Note that the third particle in di-

agrams (14.1—14.4) must have a correlation line link-

ing it; (ii) separable contributions must be subtract-
ed; (iii) the direction of exchange loop is not shown,
it can go both ways; (iv) only the f diagrams are
shown; some diagrams having Vf3 (such as diagram
14.19) are summed by simply replacing the f by

f + o.zz, others (such as diagram 14.20) are neglected.
The algebraic expressions giving S(3, 1) are some-
what messy though simple to calculate. The total
S(3, 1) is found to be —0.18'K which is significantly
smaller than S(2, 1). We hope that S(3,2) is also
much smaller than S(2, 2), and we truncate the sum
in Eq. (4.28) at p +p' =4. This truncation probably
gives the largest'error in the present work.

The S(3, 1) contribution is not included when the
variational parameters are determined by minimizing
the E(d, pi, pk). At the equilibrium density,
p=0.277o ', the energy including the S(3, 1) can be
easily minimized, and the minimum occurs at
d =1.73(1.73) ro, p3 =2.2(2.4), and p„=1.0(0.7).; the
values in parenthesis are those obtained by minimiz-

ing the energy without the S(3, 1) contribution. The
FHNC/4C E(d —= 1.73rD, pi =2.2,pk =1.) is —2.15'K,
which is slightly below the —2.08 K calculated at the
parenthetical values. However at large p, particularly
at p =0.337o. ', the variation including S(3, 1) leads
to large values of d and pk at which the convergence
of the cluster expansion becomes very doubtful. For
example, at these large values the S(2, 1) and S(2, 2)
cancel each other, and S becomes dominated by

S(3, 1). This will presumably not happen if the
S(3,2) is also included in the variation. For this rea-

son it is probably better to treat the S(3, 1) as a per-
turbation, and not include it in the variational calcu-
lation without S(3,2).

The FHNC calculations have (~~d and (d„set to
zero, while in the FHNC/48 only, the (d„ is set to
zero. The results of FHNC/4C calculation are practi-
cally identical to those of FHNC/4F indicating that
the diagrams of Fig. 7, and the FH,&C/4C corrections
to g3 are not very important in liquid 'He. With the
pure Jastrow wave function Zabolitzsky obtains
—1.38'K and —0.91 K in FHNC, and FHNC/4 ap-
proximations at p =0.277o- and d =2.4ro. The
FHNC/48 and FHNC/4C results for this case are

14.1 14.2 14.3 14.4

14.5 14.6 14.7 14.8

14.9 14.10 14.11 14.12

14.13 14.14 14.15 14.16

14.17 14.18 14.19 14.20

FIG. 14. Skeletons of some S(p =3,p'=1,p") diagrams.

—1.20 and —1.19'K respectively. The (q„,jk has two

g„ functions which are very small because L, the
generalized Slater function, is small at r & rr, while

gdd is small at r & a. The FHNC/4C is not very
good; it merely accounts for half of the difference
between FHNC and FHNC/4, but it should be a fair
measure of the error in the neglect of elementary di-
agrams.

Table III gives the calculated energies at the experi-
mental equilibrium density p =0.277cr 3. The varia-
tional parameters at this density are d =1.73rD,

p3 2.4, and pk =0.7; and the calculated energies
with either pk or p3 set to zero are also listed, . along
with those in the FHNC/4C approximation. The
f3 sk by itself can lower the energy by =0.3 K; it
essentially reduces the contribution of the
V fq „V fj, terms which account for most of
the repulsive U. The backflow correlation Ik by itself
can reduce the energy by =0.5'K. The main attrac-
tion comes from the '2 fk „.'7 4 term in S(2, 1).
Together the f3 and fk lower the energy by
-0.75 'K.

The small equilibrium value of d/ro is largely

responsible in making the difference
E(FHNC/4C) —E(FHNC) so small. At p =0.337a. 3

for example, the difference at the minimum
(d =1 &5ro, P3 =2..6, Pk =0.6) is only 0.1'K, indicat-

ing good convergence of the elementary diagram ex-
pansion. But at larger d this difference increases very
rapidly. At p=0.377o ', d =2.23rD, p3=2.2 and
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TABLE III. Breakdown of the energy.

E(p =0.277o- 3,1=1.73rp, p3, pk) FHNC/4C

p3

pk

TF

W

U

T
8'F

Up

S(2, 1)
S(2, 2)
S(3, 1)

E

0.0
0.0
3.00

—5.24

2.09
0.0

—2.14

0.93
0.0
0.0
0.0

—1.36

2.4
0.0
3.00

—5.23

0.96
0.93

—2.05

0.72

0.0
0.0
0.0

—1.66

0.0
0.7
3.00

—5.23

2.20

0.0
—2.15

0.93
—0.58

0.22
—0.25
—1.85

2.4

0.7
3.00

—5.23
0.91
1.01

—2.05

0.73
—0.52

0.22
—0.18
—2.11

2.4
0,7
3.00

—5.23
1.19
0.76

—2.07
0.78

—0.54

0.22
—0.18
—2.08

|3k =0.7 it is 0.6'K. As a matter of fact, at

p & 0.30- ' the FHNC calculations give only a local
minimum in E(d, P3, Pq) at d &2ro. The FHNC/4C
calculations confirm that this local minimum is the
true minimum.

At d & 2ro the difference between E(FHNC/4C)
and E(FHNC) is much smaller with the present "p

than with the Jastrow 'PJ. The change in U accounts
for most of E(FHNC/4) —E(FHNC) in Zabolitzky's
work, which implies that the FHNC/4 corrections to
the three-body distribution function have a significant
inAuence on the Jastrow energy. In the present case,
however, ,the energy if approximately minimized, by
varying P3, with respect to changes in g3, and thus it
is probably not too sensitive to FHNC/4 corrections
to g3. As a matter of fact, the change in U due to
the f is almost cancelled by that in T (Table III).

V. CONCLUSIONS

The calculated E(d, dt33, Pk) at p =0.277a. ', the ex-
perimental equilibrium density, with FHNC approxi-
mation, are given in Tables IV—VI. The E(Pk) at

p, = [(f'/2qr), „]'/2 =2.4, (5.1)

as estimated from Fig. 2. The E(d, P3, Pk) (Table
VI) at the equilibrium point hs a minimum at a rath-
er small value of d =1.73rp. This is very helpful for
the convergence of integral equation methods. 2 The
E(d P3 Pk 0), shown in Table VII, has a more
shallow minimum at d =2.6rp in the FHNC approxi-
mation. Unreasonable values of variational parame-
ters would have indicated that large contributions
were neglected. In this sense the calculated equili-
brum values are quite encouraging.

The EJ(p, b) calculated with the Jastrow correlation
function, i.e.,

f (it, ) e (b(r/r) /2— (5.2)

the equilibrium values of P3 and d, (Table IV) shows
a rather shallow minimum at Pk =0.7(1.0) when
S(3, I) is omitted (included) in the variational calcu-
lation. From the discussion in Sec. II 4e should ex-
pect the minimum to occur at Pk =1.0.

The E(P3) at equilibrium values of Pk and d (Table
V) shows a minimum at P3 =2.4; the Foperator aiso
suggests

TABLE IV. Variation of energy with Pk. TABLE V. Variation of energy with p3.

E('K)

F-(d = 1.73rp, p3 = 2.4, pk)

(E-s(3, 1))( K) E('K)

F. (d =1.73rp, p3, pk =0.7)

(E-S(3, 1))( K)

—2.025
-2.105
-2.140
-2.144
-2.110

—1.893
-1.932
-1.904
-1.856
—1.770

0.5
0.7
0.9
1.1
1.3

-2.116
-2.117
-2.109
-2

~ 105
—2.095

-1.914
-1.921
-1.930
-1.932
-1.928

2.1

2.2
2.3
2.4
2.5
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TABLE VI. Variation of energy with d. TABLE VIII. Variational parameters at di6'erent densities.

E( K)

—2.041
-2.105
-1.961

E{d,p3 =2.4, pk =0.7)

-1.900
-1.932
-1.748

d/ro

1.63
1.73

1.83

0.217
0.247

0.277

0.307

0.337

/rp

1.58

1.63
1.73
1.75

1.85

2.2
2.3
2.4
2.5
2.6

0.9
0.8
0.7
0.7
0.6

commonly used in Helium liquids, and EJ(p, d) with
the present fJ, are shown in Fig. 15. The EJ(p, b) is

calculated by the Monte Carlo method' and with
FHNC/4, ' while EJ(p, d) is the FHNC, ' FHNC/4, '
and FHNC/4C integral equations. These curves indi-
cate the following: (i) the Jastrow part of the present
5 is quite reasonable; (ii) FHNC/4 is very accurate;
and (iii) while FHNC/4C and FHNC are not very ac-
curate, their difference is indicative of the error. The
Es(p, d, P3, Pk) in FHNC and FHNC/4C approxima-
tions is also shown in Fig. 15 along with the experi-
mental data. " The E~(p) is much closer to experi-
ment than EJ(p), and the diff'erence between the

Es(p) and experiment could partly come from the
limitations of the Lennard-Jones (LJ) model. We re-
call here that with the Green's function Monte Carlo
method, the LJ model underestimates the binding
energy by =0.3'K, and overestimates the equilibri-
um density by =0.01o- in liquid He. The curva-
ture 8tE~(p)/8p' at the equilibrium density is much
smaller (=100) than that inferred from the experi-
mental data (=223). The values of parameters and
calculated energies are listed in Table VIII at various
densities.

TABLE IX. Pair distribution function.

r(units of o.)

0.764
0.882
1.000
1.117
1.235

g(r)
P3 Pk (equilibrium)

0.006
0.129
0.482
0.851
1.075

g (r)
p3=pk —0

0.006
0.134
0.493
0.859
1.073

1.352
1.470
1.588
1.705
1.823
1,940

1.157
1.151
1.104
1.044
1.003
0.980

1.145
1.135
1.090
1.038
1.004
0.986

The calculated g(r) and S(k) at p =0.277o' ' are
compared with the experimental data' in Figs. 16
and 17. As in liquid ~He the calculated g (r) in liquid
3He has a little less than observed structure. The fk
and f3 have little effect on the g(r) as can be seen
from Table IX, though it is in the right direction.

TABLE VII. Variation of the Jastrow energy with d.

E(d, p3 0 pk =0)

2.058
2.176
2.293
2.411
2.528

0.971
0.973
0.980
0.989
0.997

0.980
0.982
0.987
0.992
0.996

-1.414
-1.427
-1.442
-1.420

d/rp

2.2
2.4
2.6
2.8

2.646
2.764
2.881
2.999
3.116
3.234

1.000
1.003
1.003
1.002
1.001
1.000

0.998
0.999
1.000
1.000
1.000
1.000
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d d experimentallyn of calculated an eIG ]6 Comparison
r at =0.277determined g(i') a p= .
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