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A vectorial generalization of the Blume-Emery-Gri5ths model is proposed to describe

superfluidity in films of He- He mixtures, and is solved by an approximate renormalization
scheme due to Migdal. In contrast to bulk mixtures, the line of superfluid transitions is con-
nected to the phase-separation curve by a critical end point. The universal jump of the superfluid

density, present in the pure He system, is preserved vrith increasing He concentrations x until

the critical end point occurs at x 0.12. At smaller x, phase separation causes a kink in the

superfluid density versus temperature curve. No tricritical point occurs for any value of the

model parameters, although an effectively tricritical phase diagram is obtained in a certain limit.

Lines of constant superfluid density bunch up near the effective tricritical point, as predicted by

tricritical scaling theory. This treatment also describes superfluidity in pure 4He films in the

presence of two-dimensional liquid-gas phase separation. In addition ee calculate the specific

heat of the pure 4He system, using the recursion relations of Kosterlitz. This specific heat has a

broad maximu~a above. the superfluid transition temperature, corresponding to a gradual dissoci-

ation of vortex pairs with increasing temperature.

I. INTRODUCTION AND MODEL HAMILTONIAN

In 1971, Blume, Emery, and GriSths' introduced
a spin-1 Ising model to simulate the thermodynamics
of 3He-~He mixtures along the A. line and at the tri-
critical point (Fig. l). Mean-field treatments' of
this model display many features of bulk 'He-'He
mixtures, despite the neglect of the continuous rota-
tional symmetry of the degrees of freedom associated
with superfluidity. Subsequent work by Riedel and
Wegner4 sho~ed that mean-Geld theory is in fact
correct for tricritical points in all dimensions greater
than three. In three dimensions, moreover, the only
dependence on the symmetry of the superfluid de-
grees of freedom is in weak logarithmic corrections to
the mean-Geld predictions. ' Thus, the success of the
Blume-Emery-Grifiths (BEG) model, at least near
the tricritical point, is not surprising. Series expan-
sions seem to conGrm this general picture.

The BEG model is, however, less appropriate for
Glms of He- He mixtures. Rigorous mathematics
rules out conventional superfluidity, namely, a
nonzero order parameter, in two-dimensional sys-
tems. The "superfluid order parameter" of the BEG
model'is nevertheless expected to be nonzero even in
two dimensions, because of the discrete Ising sym-
metry. Indeed, Monte Carlo' and renormalization-
group " studies of the two-dimensional BEG model
yield conventional ordering, although with
nonmean-Geld tricritical exponents.
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FIG. 1. Tricritical phase diagram of bulk 3He-4He mixtures,
from Ref. 32b. The zero-temperature miscibility (coex-
istence region starts at x =0.06 instead of x =0) is a
quantum-mechanical effect.

In this paper, we consider a simple generalization
of the BEG model, designed to take into account the
continuous rotational symmetry of the superfluid de-
grees of freedom, and to provide insight into the
behavior of Glms of 'He-4He mixures. BEG used the
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=J Xs s +K X/s /'fs /'

(IJ)

(1.2a)

where s& is a two-component vector of length unity or
zero, i.e.,

sI = (t, cos8;, t, sin8;) (1.2b)

with tI =0, 1 and 0 ~ 8; ( 2m. Again s& =0
represents occupation by a 'He atom. When site i is
occupied by a He atom, s; = (cos8„sin8I) reflects the
superfluid degrees of freedom, with the appropriate
continuous rotational symmetry, Our partition func-
tion is

I

d 8, sptks r-Z= e
i -p"

(1.3)

The interpretation of the parameters in (1.2a) is as in

the BEG model. ' The bilinear coupling k&TJ is a po-
tential promoting superfluid ordering. It is related"
to a bare, areal superfluid density pp(T) by

(1.4)

where m is the mass of a 4He atom. The biquadratic

coupling k~ TE derives from an isotope effect,

K =@33+EC44 —2@34

when each nearest-neighbor He-~He pair is taken to
have a classical potential energy k~ TE p. The on-site
interaction A TE is essentially the difference between
the chemical potentials p,3 and p,4 of He and He,
i.e.,

ks T/S (p3 —tt4) + Qks T(Ks3 —K44)

where q is the number of nearest neighbors of a
given lattice site. The above is also a model for su-
perfluidity in pure 4He films in the presence of two-
dimensional liquid-gas phase separation. ' Thus,
although the remainder of this article employs the

model Hamiltonian

BEG

=JXslst+K Xs& sj AXSI
AT (y)

~here the spin sI is located at the site i of some regu-
lar lattice, and assumes the discrete values of 0, +1.
The first two sums are over nearest-neighbor pairs

(ij), ks and T are the Boltzmann constant and the
absolute temperature, and the factor I/—ks T has
been absorbed into the coupling constants J, EC, and
h. This can be regarded as a lattice-gas model for
mixtures, where the state s& =0 represents the occu-
pation of site i by a He atom, and the states s&

= +1
give the superfluid degrees of freedom when site i is
occupied by a He atom. The generalization of Eq.
(1.1) which we have studied in two dimensions is

terminology of 'He- He mixtures, the simple rein-
terpretation as "vacant sites" of "3He occupied sites"
immediately yields a description of superfluidity and
condensation in the pure He films. The quantity
(Stz) can then be interpreted as a no'rmalized density
of 4He atoms.

In the very negative 5 limit (5 —~), the states
with any sI =0 become negligible in the partition
function (1.3), and the planar or XYmodel is ob-
tained. This can be regarded as a model for
superfluidity in pure He films, with 8I representing
the phase of the superfluid order parameter. Fluctua-
tions in the magnitude of this order parameter are
not taken into account.

Studies of the two-dimensional XY model have a
controversial history. Wegner'4 found from a spin-
wave calculation that, at low temperatures, correla-
tions decay algebraically rather than exponentially.
High-temperature series expansions by Stanley'
pointed to the existence of a phase transition at finite
temperature, notwithstanding Mermin and Wagner's
rigorous proof" of the absence of long-range order.
A variety of theoretical ideas were subsequently ad-
vanced by Berezinskii, "Kosterlitz and Thouless, '8

Zittartz, ' and Luther and Scalapino.
It has become increasingly clear that a simple pic-

ture of superfluidity in pure He films, due to Koster-
litz and Thouless' and to Berezinskii, " is substan-
tially correct. One imagines a superfluid state in
which long-wavelength phase fluctuations coexist
with a dilute gas of bound vortex-antivortex pairs.
Although the phase fluctuations prevent true long-
range order, correlations decay algebraically, in con-
trast to the exponential decay in the normal fluid. A
transition out of this superfluid state is driven by the
dissociation of a finite fraction of the vortex pairs.
Kosterlitz, ' and subsequently Jose et al. , have car-
ried out calculations on the two-dimensional planar
model which confirm this picture. One striking
consequence of these theories is that, at the transi-
tion temperature T„ the superfluid density p, (T) in a
pure 4He film jumps discontinuously to zero in a
universal way. 2' Specifically, it is found that one has

p(T) 2m'ks, g
cm2 T

S

(1 .7)

regardless of the film thickness, substrate, etc. This
prediction has been confirmed experimentally in
third-sound measurements by Rudnick and collabora-
tors, 24 and in Andronikoshvilli type measurements by
Bishop and Reppy.

Here, we study how a systematic dilution with He
atoms affects the results sketched above. We use
an approximate renormalization scheme due to Mig-

dal, which comes remarkably close to the correct
result for the pure system. The types of phase di-
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agrams of the dilute system can be anticipated as
syntheses of two phenomena: (i) In the pure system,
the vortex-unbinding superfluid transition oc-
curs" 2'" at a temperature J ' = J, '(x = 0),

J '(x =0) =1

1.5

He rich

1.2—

Normal fluid

He rich

(a)

where

x = I —(sP) (1.9)

is the 'He concentration. Dilution weakens the
effective coupling between the superfluid degrees of
freedom, so the transition should occur at lower tem-
perature, i.e., J, '(x) decreases as x is increased from
0. (ii) As the 'He concentration x is increased, one
expects a phase separation (into two phases, one rich
in 'He, the other in 4He) at temperatures below a
critical temperature

(J+K), ' —I (1.10)

Clearly, the temperature-concentration phase di-
agrams of our model will strongly depend on K/J.

For K/J )) I, the phase separation curve towers
over the superfluid transition at x =0. The only
readily conceivable phase diagram is shown in Fig. 2.
The superfluid transition temperature decreases with
increasing x, until it joins the coexistence curve at a
critical end point. No multicritical phenomena (such
as new exponents) occur at an end point, which is
just the point where a higher-order transition gets
pre-empted by a first-order line. Such behavior could
be expected in, for example, 4He-Ne mixtures, since
the "isotope effect" should be rather large in that case.

For K/J « 1, on the other hand, another possi-
bility is shown in Fig. 1. The line of superfluid tran-
sitions drops down to join the coexistence curve at its
tip. This tip is then a tricritical point, which has its
own distinctive set of exponents, as evidenced, for
example, by the different shapes of the coexistence
curves in Figs. 1 and 2. This is the case for bulk
3He-4He mixtures (to which Fig. I applies), which
shows that the isotope effect is weak compared with
the superfluid coupling.

Both types' of phase diagrams have been found in
the mean-field" and renormalization-group investi-
gations of the BEG model. The Migdal renormaliza-
tion scheme which we use has, in fact, yielded both
types of phase diagrams for another two-dimensional
system. '0

In a given physical situation, as temperature is in-
creased, the Hamiltonian parameters J and Ir' de-
crease, because an inverse temperature was absorbed
into them [Eq. (1.2a)]. But their ratio K/J is mainly
unchanged, and determined by film thickness, sub-
strate, etc. This ratio may vary significantly with film
thickness. As the thickness is reduced from large
values to one or two layers, fluctuations should be
more effective in reducing the pure superfluid transi-
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FIG. 2. End-point phase diagram of the vectorialized BEG
model at Ir:/J =1. The dark, full lines indicate higher-order
superfluid phase transitions. In (b), constant p, (T)/k& T
curves are drawn with light, full lines.'Curve n corresponds
to p, (T)/k~T=. 16m /nn f



19 SUPERFLUIDITY AND PHASE SEPARATION IN HELIUM FILMS 2491

tion temperature than in diminishing the Ising phase
separation T, . Since these characteristic temperatures
are determined by Eqs. (I.S) and (1.10) in our
model, K/J should increase with decreasing film
thickness. It would be rather large for thin films.

The results of our renormalization-group treatment
of the vectorialized BEG model (1.2) in two dimen-
sions (on a triangular lattice, which is the close-
packing lattice of two dimensions) are summarized
as follows. In the space of J ', K/J, and 5, a first-
order surface of concentration discontinuities
separates He-rich and He-rich phases. This surface
terminates in a line of Ising-type critical points. The
4He-rich portion of the phase diagram is further di-
vided into superfluid and normal fluid phases by a
surface of superfluid phase transitions. The universal
jump in the superfluid density, present in the pure
system, is preserved at. this surface. Our renormali-
zation procedure yields the correlation-length critical
exponent v = ~ for these superfluid transitions, in
agreement with previous theory. ' The surface of
superfluid transitions terminates in a-line of critical
end points on the first-order surface.

Our temperature-concentration phase diagrams, for
large K/J, are distinctly of the end-point type, as
shown in Fig. 2 for K/J =1. As K/J is decreased,
the end point slides up the coexistence curve, but
never actually reaches the phase-separation. critical
point at the tip. Thus, there is never a tricritical point.
The shape of the coexistence curve is always deter-
mined by the Ising critical" exponent P = —,, rather

than by some new tricritical phase-separation ex-
ponent. As T approaches the phase-separation critical
temperature T, from below, the coexisting He con-
centrations x+(T) merge as
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This very fat behavior should be contrasted with that
observed in bulk mixtures, where x+(T) approach
each other linearly'2 in T. As K/J tends to zero,
however, the end point comes very close to the
phase-separation critical point. For example, Fig. 3
shows K/J =0, the Blume-Capel2 limit. The end
point occurs at J ' =0.6581, ~hereas the phase-
separation critical point is at J ' =0.6615. The
overall phase diagram in Fig. 3 does resemble a tri-

critical phase diagram. In this case, lines of constant

p, (T)/ks T bunch up as they approach the "effective
tricritical point" (formed by the closely situated end
point and critical point), as predicted by tricritical
scaling theory (Sec. II B).

For any given fixed K/J, we find that the line of
superfluid phase transitions of the type encountered
in pure sHe films, namely, the transition line T, (x)
stretching from x -0, is rather short. The first-order

FIG. 3. Efkctively tricritical phase diagram of the vectorial-

ized BEG model at the Blume-Capel plane (K =0). The
dark, full lines indicate higher-order superfluid phase transi-

tions. In (b), constant p, (T)/k&T curves are drawn with

light, full lines: Curve n corresponds to p, (T)/ks T
=16 m2/nn IP .

transition pre-. empts it at 12% of He or less, at the
critical end point. The 3He concentration at the end
point is the maximum amount of 'He which can be
included into a superfluid domain. This limit concen-
tration decreases with increasing K/J, being equal to
0.12 for K/J =0, and equal to 0.02 for K/J = l.
These values are quite different from the limit con-
centration x -0.67 of bulk mixtures, which is that
of the tricritical point. This difference can be under-
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FIG. 4. Superfluid density fraction p, /po as a function of
temperature (J ') at various He concentrations x, for
K/J =0. The four types of curve (Sec. III) are represented.
Dark dashes indicate that phase separation has occurred.
This introduces the kink at point P. Discontinuities at the
superfluid transition are shown with light dashes. The locus
of minimum superfluidity consists of the universally sloped
line segment UOUE the vertical segment at the end-point

temperature Js, and the p, /ps 0 axis between JE and

zero temperature.

stood qualitatively, by noting that a lesser amount of
impurity is needed to drastically weaken the connec-
tivity of interacting superfluid degrees of freedom,
when these are arrayed in a lower-dimensional space.

For higher 3He concentrations, the onset of
superfluidity in films becomes nonuniversat, because
of phase separation. As this concentration x is in-
creased from its end-point value, the transition
discontinuity in p, (T)/ks T decreases, but is still
finite. This happens in the density interval
(0.12 & x & 0.27 for SC/J =0) where phase separa-
tion occurs at temperatures higher than the end-point
temperature, so that phase separation is initially into
a 3He-rich phase and a He-rich normal fluid. The
latter undergoes the superfluid transition when the
system is further cooled to the end-point tempera-
ture. At higher 'He concentrations, the phase-
separation temperature is below the end-point tem-
perature, so that the 4He-rich phase is always
superfluid. In this range, p, (T)/ksTincreases linear-
ly from zero as superfluidity appears at phase separa-
tion. Representative superfluid density versus tem-
perature curves are given in Fig. 4. At low 3He con-
centrations, where the film undergoes the universal'
superfluid transition, phase separation occurs at a
lower temperature. This causes a kink in the
superfluid density curve (point P in Fig. 4).
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FIG. 5. Vortex contribution to the specific heat of a pure

XY model in two demensions. The coupling J is the ratio of
the nearest-neighbor interaction energy to —kz T. The circle

marks the phase transition temperature, where vortex un-

binding first occurs. The specific heat has an unobservable

essential singularity at this point.

Specific-heat measurements at fixed concentration
would reveal any phase separation by a steplike
discontinuity. However, such measurements are not
a good probe for superfluidity in films. Indeed, one
expects ' only an unobservably weak essential singu-
larity in the specific heat across the superfluid transi-
tion. This question is further explored in the Appen-
dix, where the vortex part of the specific heat of the
pure XY model is determined. As seen in Fig. 5, this
specific heat rises to a maximum at a temperature
higher than the superfluid transition temperature T„
with no detectable singularity at T, . The maximum is
caused by the gradual dissociation of vortex pairs, be-
ginning at T,. Pairs separated by shorter and shorter
distances become unbound with increasing tempera-
tures, until the average separation of bound pairs be-
comes of the order of magnitude of the vortex core
size. The precise shape, height, and position of the
maximum is nonuniversal.

Our present model is applicable to films with
several atomic layers, provided one deals with quanti-
ties averaged over the film thickness. This averaging
is especially simple when tile correlation length
exceeds the film thickness. However, calculations re-
ported here do not take into account any possibly im-
portant effect of a concentration gradient (or even
phase separation) perpendicular to the film. 33 The
Van der Waals attraction to the substrate is the same
for 3He and 4He atoms, but the smaller mass and
larger zero-point motion of the 'He atoms should
cause them to move preferentially to the surface of a
thick film. If experiments show that this is of conse-
quence, our model could be further developed by
considering 2 two-dimensional lattices stacked on top
of each other, with different chemical potentials (i.e.,
different on-site interactions h) at each layer. " In
thin-film expel'iments, it is believed' that before any
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II. RENORMALIZATION PROCEDURE
AND

HAMILTONIAN FLOWS

A remarkably simple and powerful method for ob-
taining recursion relations for complicated systems in
low dimensions has been devised, by Migdal. "In this
section we apply Migdal's method, in a form due to
Kadanoff '

A. Recursion relations

Consider a slightly more general form of the Ham-
iltonian (1.2a), namely,

tttJ v(8t ej)
AT

+K $ t)tj —I $ t) (2.1)

where V(e) is a periodic function with period 2m.

Although upon setting

V(e) = Jcose (2.2)

we recover Eq. (1.2a), the specific form (2.2) is not
conserved by the renormalization procedure. There-
fore, we have to construct recursion relations for the
more general form (2.1). Equation (2.2) is used as
initial condition, from which originate the Hamiltoni-
an flows induced by renormalization, in the larger
parameter space of Eq. (2.1). (Similarly, if one were
solely interested in a system with no biquadratic cou-
pling, K 0, the renormalization procedure would
generate nonzero K, which would then have to be in-
cluded into the analysis. )

superfluidity appears, about one layer of atoms
"solidifies" on the substrate. Superfluidity is attribut-
ed to subsequent layers. Thus, we can reasonably
hope that, in any case, our present calculation is ap-
plicable when about one layer is added beyond the
solidification layer. It is hard to imagine important
vertical differentiation in an effectively single atomic-
layer fluid.

The remainder of this paper is organized in the fol-
lowing way: In Sec. II, the renormalization procedure
is given. It is argued that p, ( T) /ks T is invariant
under this renormalization. Then, starting with the
special limits of the pure XY model, the asymptotic
first-order region, and the spin-

2
Ising model, the

global Hamiltonian flows are described. In Sec. III,
the resulting phase diagrams and, at fixed 'He con-
centrations, the temperature dependence of the
superfluid density are discussed. The details of the
specific-heat calculations are relegated to the Appen-
dix.

FIG. 6. Migdal transformation for the triangular lattice

(Sec. II A).

Any renormalization procedure is based on the el-
imination of a subset of the degrees of freedom in-
side the partition sum. With our partition sum (1.3),
this could be quite a problem. Progress is made,
however, by first moving some of the interaction
bonds as shown in Fig. 6. One then integrates
without difficulty over the isolated one-dimensional
degrees of freedom, obtaining effective interactions
between the remaining degrees of freedom. The
justification of the bond-moving approximation was
discussed by Kadanoff". We recall here that this ap-
proximation obeys a lower-bound variational principle
for the free energy. ' It is known to be fairly accu-
rate at lower critical dimensionalities, which is the
case for the XY degrees of freedom in Eq. (2.1). Fig-
ure 6 shows the adaptation of bond moving to the tri-
angular lattice, previously used in the study of epitax-
ial ordering in physisorbed films.

The bond-moving prescription is completed by con-
sidering the treatment of the on-site interactions.
One has to decide what fraction of these gets moved
with the nearby bonds. For this, a scheme intro-
duced by Emery and Swendsen36 is employed. The
Hamiltonian (2.1) is rewritten

= X t, t, [ v(e, e,) —v(0) —[ ——,
' [K + v(0)]

ks T
&y)

x g(t, -t,)'-(a- —,'q[K+ v(0)1) Xt, .
I

(2.3)

The first two terms are regarded as bonds, to be
moved in their entirety. The last term is regarded as
truly on-site, and is not moved. The effect of bond
moving should be small at high temperatures, be-
cause the moved entities go to zero with V(e),
K —I/ktt T ~0. At low temperatures, the effect of
this bond moving should again be small, this time be-
cause the configurations with t, = tj, 8; = 8J dominate,
and the local operators inside the moved entities van-
ish for these configurations. Finally, note that
when we have V(e) K =0, nothing is moved. This
means that, along the„entire 4 axis, the partition
function is'evaluated exactly. This axis acts as an
"anchor" to the approximate evaluations in full J, K,
and d space. These aspects of the Emery-Swendsen
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u'(e) =

p 277'

w'z + ' u'((b) u'(e —y)
(2.5a)

W Z+d44

(w'z+A )'
W

(wz + 1)(w5z +A4)

(wz+ I)'
z =wz

(w'z+A2)o

(2.sb)

(2.5c)

where

A„—= ) @ u"($)
2~

(2.5d)

It is computationally convenient to follow the recur-
sion of the Fourier components F of u(e), i.e.,

fa 27K dgF {u(e)}=f(s) =, —e"'u(e),

scheme are certainly expected to mitigate the approxi-
mation inherent in bond moving.

The procedure described above has been carried
out for a triangular lattice. Starting with a Hamiltoni-
an of the form (2.1), we obtain a new }Iamiltonian of
the same form, coupling the thinned-out degrees of
freedom. In terms of

u(e) &
v(e) —v(o) w &

—x —v(o) and z —= e~, (2.4)

the parameters of the new Hamiltonian (primed) are
given by the simple recursion relations

B. Invariance of the superfluid density

In 1966, Josephson" argued that the superfluid
density in bulk helium near the lambda point would
behave as

p, (T) —(T, —T)", (2.10)

(2—d (2.11)

where gr is the correlation length describing the de-

cay of correlations transverse to the order parameter.
If {E } denotes a set of Hamiltonian parameters on
which p, can depend, the restatement of the Joseph-
son relation in renormalization-group context is"

p ({X})= e(Z d)'p, ( {E (I)}) (2.12)

where e'= b is the Kadanoft' block size and {E (I)}
are the rescaled parameters. Although the derivation
of Eq. (2.12) relies on the existence of long-range
order, it does suggest that p, is invariant under a
renormalization transformation in precisely d =2.

To explore this question with the vectorialized
BEG model, let us introduce a superfluid velocity
Geld

where v =
3

is the correlation-length exponent. In d
2

dimensions, this result (which is a consequence of
the rotational invariance of the superfluid) reads"

v(j ——(g/ma) (e, —e~)X)~, (2.13)

u(e) = $ e '*'f(s) (2.6)

f'(s WO) =g'(s)/(w'z+A4) (2.7a)

Sums instead of integrals are to be evaluated when

where i and j are two nearest-neighbor sites, a is the
distance between them, and m is the mass of a 4He

atom. The velocity (2.13) points along the unit
bond-vector 50. A two-dimensional soperfluid densi-

ty can now be defined in terms of the correlations of
the velocity Geld,

g(s) =F{u'(e)}= X f(p)f(s p)-
p~ oo

(2.7b)
(2.14)

are used instead of Eq. (2.5a). The s =0 component
can be evaluated from the normalization condition

1 =u'(e=0) = $ f'(s) (2.g)

Also, f(—s) =f(s) is conserved, and Eq. (2.5d) is

evaluated as

Az=g(s =0), A, = X g'(s) (2.9)

For the present problem, it was sufticient to keep the
{s {

~ 10 components, setting to zero the higher ones
(which were of negligible magnitude) in order to
truncate the infinite sums. However, we did perform
spot checks with up to {s{ ~40 nonzero. vy ~6 vy (2.1s)

where each sum is over all nearest-neighbor bonds,

2 qN is the number of such bonds, and N is the

number of sites.
As discussed by Kadanoff, 2 ambiguities arise when

Migdal's decimation is used to evaluate correlations
such as Eq. (2.14). A heuristic argument can, how-
ever, be constructed for the invariance of p, /ks T
under the Migdal procedure in two dimensions. Con-
sider a transformation which first "moves" the bond
velocities in Eq. (2.14) together with the bond in-

teractions. For the generalization' of the transfor-
mation shown in Fig. 6 to block size b, one obtains
velocities in Eq. (2.14) which are b times the starting
Eq. (2.13), i.e.,
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bv~2+bv23=b (8~ —83)8]3=b v ]3 (2.16)
ma

where we recall that the transformed nearest-
neighbor distance is a' = ba. Dedecorating all the iso-
lated sites such as site 2, Eq. (2.14) becomes

kaT 2(ba)' (X, X, ),
p, q (b N) &IJ) (kl)

.(2.17)

The terms in each velocity sum of Eq. (2.14) are now

simply grouped into subsums b v&+b vjk+ +b vp,
along lines connecting two sites (i and r) which will

remain after the renormalization. These linear sub-
sums are immediately performed. For example, for
the sites labeled 1, 2, and 3 in Fig. 6, this proceeds as

1.25—

1.00-

I

hJ 0.75—
IX

CL
LIJ
CL

~~ 0.50-

4He rich normal fluid

Super f Iuid

CI
6
O
C

~here each sum is over all nearest-neighbor bonds of
the transformed system, and the thermal average is
evaluated using the transformed Hamiltonian. Since
we have a' = ba and N' = b 'N, the right-hand side of
Eq. (2.17) is just ks T'/p, '. Thus, the lattice analogue
of Eq. (2.12), for our generalized BEG model in two
dimerisions, is obtained. Writing p, /ksTas a func-
tional of V(8), K, and 6, we have

0.25—

0
0 2

CHEMICAL POTENTIAL ( D)

{V(8),K, 5}= *
{ '(8),K', g'} . (2 18)

B B

The superfluid density, normalized by absolute tem-
perature, is indeed left unchanged by the Migdal
transformation in two dimensions.

According to the above argument, renormaliza-
tion-group trajectories are also lines of constant
p, /k& T. This invariance property can be used to ob-
tain superfluid densities, provided that Hamiltoni-
ans eventually interate into regions where Eq. (2.14)
is easily evaluated. As discussed in Sec. II E, in the
present calculation, Hamiltonians of the superfluid
phase iterate onto the Villain model line of fixed
points. Equation (2.14) is then readily evaluated by
extending the angle integrations to +~, yielding

(p, /k T) = (m2/t2) J„ (2.19)

where J„parametrizes the Villain model as in Eq.
(2.25). This result, used in conjunction with Eq.
(2.18), produced the lines of constant p, /ks T in the
phase diagrams of Figs. 2, 3, 7, and S, and the
superfluid density curves of Fig. 4.

The invariance of p, /ks T would have interesting
consequences near a tricritical point, should one actu-
ally exist. In that case, p, /ks T would become a func-
tion of just two relevant thermodynamic fields, say
Kt and K2. The phenomenological43 and
renormalization-group formulations of tricritical scal-
ing would then assert that

FIG. 7. End-point phase diagram of the vectorialized BEG
model at K/J =1. The dark, full line and the line of open
circles (ooo) respectively indicate higher-order and 6rst-
order transitions. The dark circle (o) marks the isolated

critical point, and E labels the critical end point. Constant

pg(T)/k&T curves are drawn with light, full lines: Curve n

corresponds to p, (T)/ks T =16m2/nn S2

(Kt,K2) = '
(b 'Ki, b 2K2)

kB B
(2.20)

where K~ = K2 =0 corresponds to the tricritical point.
This implies that p, /k&T is a function of only K~/KP,
with Q = X2/Aj, i.e.,

(2.21)

We are led to the conclusion that the finite limiting
value of p, /ks T at the tricritical point is indeter-
minate, depending instead on the path of approach!
Lines of constant p, /ks T converge onto the tricritical
point. Although we found no tricritical fixed point in

our calculation, this convergence is exhibited at the
scale of Fig. 8(a). The constant p, /ks T curves la-

beled S through S apparently meet at point T„and
have p, /ks T values of 2m2/m t2 through

(3.2) m2/mt '.
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C. Pure XYlimit

For 5 —~, from Eq. (2.5a) we recover Migdal's
recursion re ation or1 t' 27 for the generalized XYHamiltoni-

= X [V(8,—8,) —V(O)),
kg T (Ol)

namely,

'( ) A ' ' ~ u'(@)u'(8 P)

(2.22)

(2.23)

or in terms of Fourier components

(2.25)

I

'(s) =24 ' X f(p)f(s —p) . (2.24)
p~ oo

This recursion relation was studied in somome detail by
Mi dal and by Jose et al. As discussed in detail
by the latter authors, a low temperature, b

ig a an
re but other-

wise arbitrary V(8) relaxes after a few iterations to a
Villain potentia14~ with Fourier components

—s2/2 J p2/2 Jf„'(s)=e " X e
p ~ —oo

t

Here again, the coupling constant J„should be
thought of as an inverse temperature.

At low temperatures, the Villain potential (2.25 is
very near y inv1 invariant under the renormalization pro-

2.25)cedure, as can be checked by substituting Eq. ( .
into Eq. (2.24), and approximating the sums by in-

1 I fact a "quasifixed line" of functions of thetegrals. n ac, a
form (2.25) is found numerically for J„
Unfortunately, a small drift toward high temperature
is always present, so that all finite-temperature initia
conditions eventually reach an infinite-temperature
fixed point at V(8) =0. However, for example, an
initial potential (2.25) with J„ vr) takes 11—

iterations to reach V(8) —10 ss, whereas over 12,000
iterations are necessary for an initial J„'= —,

For still lower temperatures, Eq. (2.25) is numerically
indistinguishable from a fixed point. Since more
rigorous treatmen s eents" "of the LYmodel do produce
genuine fixed-line behavior terminating at J„=—,m,

tofthe drift here must be regarded as a defect o
Migdal's renormalization procedure. In this wor, we
effectively ignore this small drift toward high tem-
perature, and consider
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f(s) =f„" (s), J„'~ ,
'

—4r, (2.26)
—~ limit. The recursion relation (2.5c) reduces

to

w'=Ati/A4 (2.27)

On the other hand, the coupling 6 has a crucial role:
its renormalization determines the stability of the

2--(Je))+K )
a

0

i E

to be a line segment of fixed points (SOSi in Fig. 9).
The initial coupling given in Eq. (2.2), namely,
V(8) =J cos8, maps onto this fixed line for
J-' «1.025.

Finally, in this 4 -~ limit, states with any t& 0
are negligible in the partition sum (1.3), and the bi-

quadratic coupling E becomes an additive constant in

the Hamiltonian. Concurrently, its recursion relation

(2.5b) is slaved to V(8), i.e.,

e~'=z'=~'zA '
2 (2.2g)

At the fixed line (2.26), we can substitute Eq. (2.27)
into Eq. (2.28) to obtain

z'/z =A,"A (2.29)

Evaluating A„ for the Villain potential (2.25), approx-
imating sums by integrals we have

z' 2 1 (2.30)
z m J„

Thus, the 6, —~ limit is stable at the fixed-line seg-
ment (2.26), which is therefore expected to be im-

portant in the global phase diagram of the dilute sys-

tem. From this calculation, we have 4' = 4 at exactly
J„'=

z m, so the chemical potential becomes a margi-

nal variable, and the pure XY limit reverses stability

at exactly the edge of the fixed-line segment (2.26).
At J„' & 2 m, 5 is renormalized to less negative

values. The above is also precisely the stability
behavior of the vortex-core energy ln y which arises
in analytic treatments of the pure XY model. "
Indeed, one would expect He atoms to cluster
around vortex cores, thus contributing to the core
energy.

D. First-order fixed line and Ising behavior

In the limit
2 qK —5 ~, the pure XYrecursion

relation (2.23) is again recovered, and the preceding
discussion applies. A new fixed-line segment (FOFi
in Fig. 9) is located at

-qE —lL —lnA4 =01

(2.3 la)

(2.31b)

(2.31c)

FIG. 9. Global Hamiltonian flows, schematically shown

(Sec. II E). Flows through higher-order superfluid transi-

tions, first-order transitions, and Ising-type critical points are

respectively indicated by dark full lines, lines of open circles

(ooo), and a line of dark circles (ooe). The flow drawn with

alternating dashes and open circles (o—o) is through critical

end points. The flow drawn with alternating dashes, open

and dark circles (o—o—o) is where the Ising-type critical

points and the end points come very close together to form

effective tricritical points. Fixed points and fixed lines are

indicated by (~). The paramagnetic Axed line is not shown.

where A4 is evaluated by substituting into Eq. (2.9)
the Villain potential (2.25), and is approximately
(84rJ„) '~2. This fixed-line segment has one stable
direction, 6,'=26, ~, and one unstable direction in-

volving Eq. (2.31c). For small deviations from zero
we have

2
qK' —5' —lnA4= b"(—qK —5 —lnA4), (2.32)

where b =2 is the length rescaling factor and d =2 is

the lattice dimensionality. Equation (2.32) is a neces-
sary condition for a fixed point whose domain of at-
traction is a locus of first-order phase transitions, as
noted by Nauenberg and Nienhuis. 44 Indeed, our
density calculations reveal in the present case a locus
of discontinuities in concentration.
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These first-order phase transitions can be located
also by noting, in the (2 q)K —h ~ limit, the

crossing of the energies of the two dominant
configurations, [s& =.sJ, s+ WO} and

(si SJ ~ sg =0}. This exercise would immedi-

ately yield the coeificient
2 q in Eq. (2.31c). The log-

arithmic correction ln A4 is a bit more subtle. It
derives from the fact that the former configuration
(aligned nonzero spins) actually has zero weight in
the partition sum, but occurs together with a continu-
um of spin-wave configurations with infinitesimal en-
ergy variations. This logarithmic term does not ap-
pear in the original BEG model, which has only
discrete excitations. For the present vectorialized
model, a renormalization procedure which equiparti-
tions the on-site interactions onto the bonds, in
contrast to the Emery-Swendsen scheme, ' gives the
same logarithmic term.

.As the coupling between the XY degrees of free-
dom, e.g. , J„ in Eq. (2.25) or Sin Eq. (2.2), is weak-
ened, the fixed-line segment (2.31) becomes unstable
to the isolated first-order fixed point (F in Fig. 9)

V(8) =0, i.e., f(s) =5,0

Q~OO

—qK —5 =0
2

(2.33a)

(2.33b)

(2.33c)

Equation (2.33b) is again stable, 5' =2k, and devia-
tions from Eq. (2.33c) again satisfy the Nauenberg-
Nienhuis condition. V(8) =0 is completely stable.
This fixed point occurs in the region V(8) =0 where
the BEG model reduces ' to a spin-

2
Ising model.

Defining a new variable45

o.] —=2t] —1

the V(8) =0 Hamiltonian (2.1) becomes

(2.34)

K=—X o, (rJ+ —,(—., qK —6) X(rl,1 1

k~ T 4 (,J

o) =+1 (2.35)

The line (—,q)K = 6 corresponds to zero magnetic

field in this Ising model, and is closed under our re-
normalization procedure. The large K (i.e., low tem-
perature) segment of this line is a first-order boun-
dary between (t,) )

z phases. Initial conditions on

this segment flow, under successive renormalizations,
to the fixed point (2.33). The small K (high tem-
perature) segment forms part of a smooth trend (no
phase transition) across (t;) = 2, and flows to a

high-temperature fixed point at V(8) = K = 6 =0.
The low- and high-temperature segments are separat-
ed by the critical fixed point (C in Fig. 9) at

V(8) =0, K, =1.2188, 5, =(2q)K,"
(2.36)

Within our approximate treatment, unstable
(relevant) deviations from this fixed point have the
eigenvalue exponents A.H =1.797 for the magnetic
field direction and A, T =0.747 for the thermal
direction. These numbers are to be compared with
the exact results "

K, =ln3 =1.0986, A,~ =—=1.875, and A. &=1

E. Global Hamiltonian flows

The global Hamiltonian flows, which connect the
special limits of Sec. II C and II D, are given
schematically in Fig. 9. In this figure, the axis
parameter

d' V(8)J..=--, , I.-. ,
d8

(2.37)

introduced in Ref. 22, measures the coupling
between the XYdegrees of freedom. It equals J for
the initial cosine potential (2.2), and it is approxi-
mately (sums replaced by integrals) J„ for the Villain
potential (2.25). The choice of the other axis param-
eter,

D = (5+InA4)/K (2.38)

is motivated by the asymptotic first-order conditions
(2.31c) and (2.33c).

In Fig. 9, the domain of attraction CpC of the
Ising-critical fixed-point C [Eq. (2.36)] terminates the
first-order domains of the fixed-line segment FpF~
[Eq. (2.31)] and of the fixed-point F [Eq. (2.33)].
Within these combined first-order domains, FOFi (F)
is the terminus of flows from regions of strong
(weak) XI'coupling J,ff.

The fixed-line segment SOSi [Eq. (2.26)] of the
pure XY model is the sink for the superfluid region
of the dilute system. This superfluid region is at
small J,ff, and to the left of the figure. It is bounded
by two surfaces: (i) Flows terminating along the
whole length of FpF~. These flows constitute a boun-
dary of first-order phase transitions. (ii) Flows ter-
minating at S~, the edge of the fixed-line segment.
Separating 5 —~ limits of opposite stability (Sec. II
C), these flows are a.renormalization-group separa-
trix. They constitute a boundary of higher-order
phase transitions, of the same type as in the pure XY
model. Since 5 is marginal [Eq. (2.30)] at Sj, the
correlation-length critical exponent is

OO (2.39)
The higher-order boundary mentioned above ter-

minates on the first-order domains in a line EF~ of
critical end points, between the domains of FpF~ and F.
Although for small K/J, ff the line EFi of end-points
comes very close to the Ising-critical line CpC, there
is always a strip in between them which flows to the
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Ising first-order fixed-point F. Unlike the
renor~alization-group treatments9 "of the discrete
BEG model, ' no tricritical fixed point occurs.

Finally, not shown in Fig. 9, a "paramagnetic" fixed
line at V(8) = K =0, 6 arbitrary, is the sink for the
normal-fluid regions.

III. PHASE DIAGRAMS AND SUPERFLUID DENSITY

Phase diagrams result from applying the renormali-
zation procedure to the initial vectorialized BEG
Hamiltonian (1.2a). The ratio K/J is associated with
fixed experimental conditions, such as film thickness
and substrate type. Thus, temperature (J ') and
chemical potential are to be scanned for fixed K/J.

Typical phase diagrams are given in Figs. 7 and 8
in the temperature-chemical potential variables, and,
correspondingly, in Figs. 2 and 3 in the temperature-
concentration variables. The chemical potential
variable D, which has spin-wave corrections to
asymptotic first-order behavior subtracted [Eqs.
(2.31c) and (2.38)), has been used. Thus, the phase
diagrams in thermodynamic field space (Figs. 7 and
8) are quite similar to the ones obtained for the
discrete BEG model. ' ~ " Operationally, the
temperature-chemical potential phase boundaries are
determined first. Evaluating concentrations at these
boundaries yields the temperature-concentration
phase diagram. The chain-rule method, ' rather than
the numerical differentiation of the free energy, was
used in calculating concentrations. Trajectories flow-

ing onto the superfluid sink (2.26) were in general
stopped after thirty iterations, unless more iterations
were needed for convergence.

Figures 2 and 7 show distinctly end-point9 phase
diagrams for K/J =1. First-order phase transitions
separate 4He-rich and 3He-rich fluids. The 4He-rich
Quid undergoes the superfluid transition. Inside the
superfluid phase, the numbered curves are lines of
constant p, /ksT (Sec. II B). Thus, the curve num-
bered n corresponds to p, /ks T =16 m2/n mh2 Curve.
n =8, p, /ks T =2 m2/n h2, is the superfluid transition
line. It terminates at the critical end-point E (Fig. 7)
on the first-order boundary, at a temperature J~' dis-
tinctly lower than the phase-separation critical tem-
perature J, '. No multicritical phenomena occur. In
the temperature-concentration diagram of Fig. 2(a),
the two-phase coexistence regions are inside the
dashed boundary. In these regions, the 4&e-rich
domains undergo the superfluid transition at the
end-point temperature JE '. Note the minute region
occupied by the single (nonseparated) superfluid
phase in this diagram. [This region is shown with
smaller concentration scale in Fig. 2(b).] For in-
creasing K/J values, C moves to higher J ', E4
moves closer to x =0, and. .phase separation masks

single superfluidity more and more.
Figures 3 and 8 are for K/J =0, the Biume-Capel'

plane. If the results for K/J =0 were viewed with a
fine enough resolution, the situation would be quali-
tatively identical to the case of K/J =1, discussed in
the preceding paragraph. However, Figs. 3(a) and
8(a) are drawn with the same scales as the corres-
ponding Figs. 2(a) and 7, and the quantitative
difference is obvious. Indeed, as K/J is decreased
from 1, the superfluidity end-point E and the phase-
separation critical point C approach each other, but
never actually meet. For K/J =0, these points occur
at temperatures J~ ' =0.6581 and J, ' =0.6615. The
corresponding concentrations are

x(E4) =0.12, x(C) =0.16, and x(E3) =0.27

The phase diagrams of Figs. 3(a) and 8(a), at these
scales, seemingly exhibit tricritical topolo-
gies. ' '6' "'o In Fig. 8(a), lines of constant p, /ks T
apparently converge onto an "effective" tricritical point
T„ in agreement with the prediction of tricritical scal-
ing theory (Sec. II 8). Curves 8 through 5 have

p, /ks T =2 m2/7r t' through (3.2) mi/mt'. However,
Fig. 8(b) details the region in which the higher- and
first-order boundaries come together. [In going from
Fig. 8(a) to 8(b), the horizontal and vertical scales
were blown up by factors of 333 and 125, respective-
ly. Thus, Fig. 8(b) actually covers less area than the
black point at T, in Fig. 8(a)l. The end-point struc-
ture is s:en in Fig. 8(b). Similarly, although the ap-
parent portioning of the K/J =0 phase diagram in

Fig. 3(a) evokes tricriticality, note the shape of the
phase-separation boundary. The same flatness exists,
at the top, as for K/J 1 in Fig. 2(a). In fact, the
neighborhood of point C in both cases originates
renormalization-group trajectories which are explicitly
traced to the Ising-critical fixed point (2.36). Accord-
ingly, as the critical temperature is approached from
below, the coexisting 'He concentrations should
merge with the Ising exponent P = —,, as in Eq.
(1.11). Finally, x(E4) =0.12 is the maximum
amount of He which can be included into a
superfluid domain. The difference from the upper-
limit x =0.67 of bulk systems is rationalized on di-

mensional grounds in Sec. I.
of experimental interest are the superfluid densi-

ties p, . (We refer to areal densities in the remainder
of this section. ) Equations (1.4) and (2.19) give

(3.1a)

within the superfluid phase. Here, po is the bare
superfluid density, which, for a given coverage, could
be approximated by p, (T =0, x =0). J„ is the Villain
interaction~2 on the superfluid sink (2.26) to which
the Hamiltonian (1.2a) is renormalized. Furthermore
we have
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p, J„x+—x
po J x+ —x

(3.lb)

(p, /pa);„= (2/n) J ' for 0 ~x ~ x (E4)

the vertical line at Js ' for x(E4) ~ x ~ x (E3), and
finally the no-jump situation

within the region of coexisting superfluid and normal
fluid. Here x+ are the coexisting 'He concentrations,
and J„ is the Villain interaction on the first-order
fixed line (2.31) to which Eq. (1.2a) is renormalized.
The crossover between the two fixed lines is such
that no discontinuity in the magnitude of p, /po oc-
curs at the boundary between Eqs. (3.1a) and (3.1b).
We note that in experiments probing superflow in
very thin films, Eq. (3.1b) may not be detected at
large x due to the complete isolation of superfluid
domains. ' This percolative "shorting" of the
superflow should not occur in thicker films or on uni-
form substrates.

Equations (3.1) were used to determine the
superfiuid density fraction p, /pa as a function of tem-
perature (J ') at fixed concentration. Four types of
curves are encountered, as displayed in Fig. 4 for
K/J =0.

(i) At zero 3He concentration x, p, /po jumps from
zero to (2/m) J ' as predicted by the universal
superfluid transition. " As temperature is lowered,
(p, /pp) p in Fig. 4 gradually goes to unity, much
like the experimental curves. "

(ii) The addition of any 'He brings about a new
feature: a kink (slope discontinuity) in the p, /po
curve, labeled P in Fig. 4. This marks the phase
separation at a temperature below the superfluid tran-
sition. The latter is still universal, with

(p, /pa);„= (2/n) J '. The kink in the p, /pa curve
moves from zero temperature to the superfluid tran-
sition temperature as x is changed from zero to
«(E4).

(iii) Between the end-point concentrations x(E4)
and x(E3), as the system is cooled, phase separation
occurs before superfluidity. Then, the 4He-rich
domains undergo the superfluid transition at the
end-point temperature J~ '. The transition discon-
tinuity in p, /po decreases linearly with x, from its
universal value (2/m) Js ' at x(E4) to zero at x(E3).

(iv) In the final regime, x )x(E3), superfiuidity
appears with phase separation, which is into a He-
rich superfluid and a 'He-rich normal fluid. The den-
sity fraction p, /pa rises from zero linearly in tempera-
ture. This superfluid transition driven by phase
separation occurs at a temperature which decreases
from Js ' to zero, as x is changed from x(E3) to uni-
ty.

As seen in Fig. 4, the locus of minimum
superfluidity is the universally sloped line

(p, /pa);„=0 for x(E3) ~ x ~ I

For E/J =0, the transition discontinuity of p, disap-
pears within the relatively small concentration inter-
val 0.12 & x & 0.27. In the case of a hypothetical tri-
critical point, this interval would have shrunk to zero,
yielding the indeterminacy of the superfluid density
predicted by tricritical scaling (Sec. II B).

Note added in proof: An n-component generalization
of the BEG model has been solved exactly for n

by V. J. Emery, Phys. Rev. B ll, 3397 (1975). In
this system, a critical end point occurs instead of a
tricritical point, in less than three dimensions. Thus,
there seems to be a line in n, d space marking the
disappearance of tricriticality. This is in agreement
with d =3 —e expansion work by M. J. Stephen and
J. L. McCauley, Jr. , Phys, Lett. A 44, 89 (1973), and
unpublished work by these aothors. This line passes
between d =2 and 3 at n =2 if our present result is
correct, and joins d =3 at n = ~. We thank V. J.
Emery and M. J. Stephen for bringing this point to
our attention.
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APPENDIX' VORTEX SPECIFIC HEAT

Here, we present an approximate evaluation of the
specific heat in the 4 —~ limit of the generalized
BEG model. According to Kosterlitz and Thou-
less, ' ' the partition function of a pure XYmodel
should factor approximately into a spin-wave part,
and a set of interacting vortices. This factorization is

, exact for the Villain model discussed in Sec. II. For
more general XYmodels we expect that such a fac-
torization holds approximately out to, say, twice the
transition temperature T,. We shall concentrate on
the vortex part of the specific heat, since the spin
waves make only a small constant contribution. This
background spin-wave specific heat is, in any case, in-
correct at low temperatures due to quantum effects.

Vortex excitations are controlled by the Coulomb
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Hamiltonian, '

V

~J X m(r)m(r')ln({ r —r'{)
AT

y(f)

—ln y $m'(r) (A.1)

where

= lnZ
AT

(A.2)

(A.3)

The prime restricts the summation to those complex-
ions of charges which satisfy X-, m(r) =0. The
specific heat can then be determined from

~here J and ln y are respectively the nearest-neighbor
interaction energy and the vortex-core energy, both
divided by —ks T, and m(r) =0, +1, +2, . . . , is the
vortex charge. The vortex excitations occur on, say,
a square lattice of sites with unit spacing, which we
also take as the core diameter. The core energy is
temperature independent at low temperatures, and
proportional ' to k& TJ. Our aim here is to evaluate
the reduced free energy

I

1/2»

FIG. 10. Hamiltonian flows for the two-dimensional XY
model without impurities. The low-temperature phase is the
domain of attraction of the Axed line at y(l) =0. The
dashed line is the locus of initial conditions, and the heavy

line is the locus g+ =
4

in the high-temperature phase. The

transition temperature is given by the intersection of the

dashed line and the incoming separatrix. At temperatures,
1

say, 10% or more above T„ the line (+= 4 should be given

to a good approximation by Eq. (A.9). The free energy can

be calculated above T, by integrating Hamiltonians until

they reach the line g+ = 4, and then using Debye-Huckel

theory.
d 2d-

dT dT
(A.4)

A direct evaluation of Eq. (A.3) can be diEcult,
especially near the transition point. The free energy
near T, is related, however, to this same quantity
evaluated at transformed couplings by
renormalization-group recursion relations. A renor-
malization transformation which scales up the core
diameter from 1 to e' leads to a Hamiltonian with
parameters J(i) and y(i) which satisfy

dJ-'(1) 4, ,«)
dl

(i) = [2 —n J(l)]y(l)
dI

(A.Sa)

(A.Sb)

These equations, correct to O(y2), must be supple-
mented by an equation for the way in which the free
energy transforms, namely, 46

I
{J(o), (0) ) =2 JI,

"' '(i') n'-
+e 'F'{J(l),y(i)I . (A.6)

& {J(0).y(0) I =2vr „I e "y'(i') di' (T ( T,)

(A.7)

Above T„y(l) eventually increases, and begins to
move outside the domain of validity of Eqs. (A.s).
Progress can be made, however, by stopping the
flows before y(i) becomes too large. One can then
determirie the free energy on the right-hand side of
Eq. (A.6) using Debye-Huckel theory, which should
be correct at suSciently high temperatures.

Debye-Huckel theory amounts to replacing the
sums over vortex charges in Eq. (A.3) by integrals.
Upon Fourier transformation, then becomes

J d k — +8+0(k) m(k)m( —k)
8~2

(A.Sa)

where
The familiar Hamiltonian flows induced by Eq.

(A.s) are shown schematically in Fig. 10. The locus
of initial conditions corresponding to ln y —-J is
shown as a dashed line. Below T, (i.e., to the left of
the incoming separatrix), y(i) is initially small and
tends to zero. Equation (A.6) can then be evaluated

and

m(k) - Xe'"'+in(r)

A 4rr'J, 8 -Se(ln y+wJc)

(A.sb)

(A.Sc)
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/I=8/A (A.9)

One expects this formula to hold only at tempera-
tures at least, say, 10% above T„where the physics
is dominated by Debye-Hiickel screening.

To determine the free energy above T„we
evaluated Eq. (A.6) with ln y =5.2 J. The propor-
tionality constant 5.2 was chosen to insure that 8 in

Eq. (A.gc) is positive for c = —m. Otherwise,

higher-order terms in k2 in Eq. (A.ga) would have to
be included to obtain sensible results. The recursion
relations were integrated numerically until we had
I = I'such that y+ was 4, as given by the Debye-

Hiickel approximation. The value (~= 4
was chosen

for convenience; any number of order unity would

The quantity c is a cutoff dependent constant which
is ' approximately equal to —,m for a square lattice.

We have used a sma11 k approximation for the
Fourier-transformed potential, and will, for conveni-
ence, restrict the k integrations to a circular Brillouin
zone of unit radius. Above T„correlations are ex-
pected to decay exponentially. It is straightforward to
check that Eqs. (A.S) do indeed lead to exponentially
decaying correlations, with correlation length

do. At this point, we estimated s'(J(l'),y(l') I using
Eq. (A.ga), i.e.,

(A. lO)

where A (I) and 8(l) are the I-dependent quantities
corresponding to Eq. (A.gc). Equation (A.7) was
evaluated numerically to obtain &below T,.

The specific heat derived from differentiating this
free energy is shown in Fig. 5. It rises exponentially
from zero, passes smoothly through T„and reaches
a maximum about 38% above the critical tempera-
ture. The maximum is caused by a dissociation of
vortices with smaller and smaller separation with in-
creasing temperatures. At suSciently high tempera-
tures, essentially all vortices are unbound, and the
specific heat drops.

'Fhe specific heat could also be computed directly
from Migdal's renormalization procedure, as has
been done by Kirkpatrick. 47 Figure 5 resembles
Kirkpatrick's curves, provided a constant spin-wave
contribution is added. The present result (Fig. 5)
derives from a theory with a genuine finite-
temperature phase transition.

'M. Blume, V. J, Emery, and R. B. GriSths, Phys. Rev. A
4, 1071 (1971).

-'Earlier treatments of Hamiltonian (1.1) with no biquadratic
interaction (E =0) are M. Blume, Phys. Rev. 141, 517
(1966); H. W. Capel, Physica (Utrecht) 32, 966 (1966);
33, 295 (1967); 37, 423 (1967).

3D. Mukamel and M. Blume, Phys. Rev. A 10, 610 (1974);
J. Lajzerowicz and J. Sivardiere, ibid. 11, 2079 (1975); J,
Sivardiere and J. Lajzerowics, ibid. 11, 2090 (1975); 11,
2101 (1975); D. Furman, S. Dattagupta, and R. B. Grif-
fiths, Phys. Rev. B 15, 441 (1977).

~E. K. Riedel and F. J. Wegner, 'Phys. Rev. Lett. 29, 349
(1972).

5F. J. Wegner and E. K. Riedel, Phys. Rev. B 7, 248 (1973).
6D. M. Saul, M. Wortis, and D. Stauffer, Phys. Rev. B 9,

4964 (1974). .

7P. C. Hohenberg, Phys. Rev. 158, 383 (1967); N. D. Mer-
min, J. Math. Phys. 8, 1061 (1967).

B. L. Arora and D. P. Landau, AIP Conf. Proc. 10, 870
(1973).

~A. N. Berker and M. %'ortis, Phys. Rev. B 14, 4946 (1976).
T. W. Burkhardt, Phys. Rev. B 14, 1196 (1976); T. W.
Burkhardt, H. J. F. Knops, and M. den Nijs, J. Phys. A 9,
L179 (1976).
J. Adler, A. Aharony, and J. Oitmaa, J. Phys. A 11, 963
(1978).
P. C. Hohenberg, in Proceedings of the Enrico Fermi Summer
School ofPhysics, edited by M. S. Green (Academic, New
York, 197l).
Superfluidity in the presence of phase separation has been
considered by J. G. Dash, Phys. Rev. Lett. 41, 1178
(1978).

' F. J. Wegner, Z. Phys. 206, 465 (1967).
H. E. Stanley, Phys. Rev. Lett. 20, 150 (1968); 20, 589
(1968). Also see M. A. Moore, ibid. 23, 861 (1969); W.
J. Camp and J. P. Van Dyke, J. Phys. C 8, 336 (1975).
N. D. Mermin and H. Wagner, Phys. Rev, . Lett. 17, 1133
(1966).

~7V. L. Berezinskii, Zh. Eksp. Teor. Fiz. 59, 907 (1970)
[Sov. Phys. JETP 32, 493 (1971)j.

J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181
(1973).

J. Zittartz, Z. Phys. B 23, 55 (1976); 23, 63 (1976),
A. Luther and D. J. Scalapino, Phys. Rev. B 16, 1153
(1977).

2~J. M. Kosterlitz, J. Phys. C 7, 1046 (1974). .

J. V. Jose, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nel-
son, Phys. Rev. B 16, 1217 (1977).
D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Lett. 39,
1201 (1977).

24I. Rudnick, Phys. Rev. Lett. 40, 1454 (1978).
D. J. Bishop and J. D. Reppy, Phys. Rev. Lett. 40, 1727
(1978).

Experimental results for-balms of He-"He mixtures are in
(a) B. Ratnam and J. Mochel, in Low Temperature Physics-
LT13, edited by K. D. Timmerhaus, W. J. Sullivan, and E.
F. Hammel (Plenum, New York, 1974), Vol. 1; (b) E.
Webster, G. Webster, and M. Chester (unpublished).

"A. A. Migdal, Zh. Eksp. Teor. Fiz. 69, 1457 (1975) fSov.
Phys. JETP 42, 743 (1976)l,
L. P. Kadanoff, Ann. Phys. (New York) 100, 359 (1976);
Rev. Mod. Phys. 49, 267 (1977).

Another type of phase diagram, intermediate to the two
discussed here, involves a tricritical point and a triple



19 SUPERFI UIDITY AND PHASE SEPARATION IN HELIUM FILMS 2503

point (Refs. 1, 3, and 9). In. still another possibility- [J. M.
Kincaid and E. G. D. Cohen, Phys. Lett. A 50, 317
(1974)], the transition line from the pure system stretches
over the tip of the coexistence curve and joins this curve
on the very diluted side.

3 A. N. Berker, S. Ostlund, and F. A. Putnam, Phys. Rev. B
17, 3650 (1978).
L. Onsager, Phys. Rev. 65, 117 (1944); C. N. Yang, ibid.

&5, 809 (1952);.R. M. F. Houtappel, Physica (Utrecht) 16,
425 (1950).
E. H. Graf, D. M, Lee, and J. D. Reppy, Phys. Rev. Lett.
19, 417 (1967). For general reviews, see (a) G. Ahlers, in

The Physics of Liquid and Solid Helium, Part I, edited by K.
H, Benneman and J. B. Ketterson (Wiley, New York,
1976); (b) C. Ebner and D. O. Edwards, Phys. Repts. C 2,
77 (1971).
M. A. Eggington and M. A. Moore, J, Low Temp. Phys.
15, 99 (1974).

34Stacked two-dimensional Ising models were studied by J.
Oitmaa and I. G. Enting, J. Phys. A 8, 1097 (1975); S. E.
Ashley and M. B. Green, J. Phys, A 9, L165 (1976); M. J.
De Oliveira and R. B. GriSths, Surf. Sci. 71, 687 (1978}.
The latter work also introduced the vertically varying

chemical potential.
L. P. Kadanoff, Phys. Rev. Lett. 34, 1005 (1975); L. P.
Kadanoff, A. Houghton, and M. C; Yalabik, J. Stat. Phys.
14, 171 (1976).

V. J. Emery and R. H. Swendsen, Phys. Lett. A 64, 325
(1977); Phys. Rev. Lett. 39, 1414 (1977).

37B. D. Josephson, Phys. Lett. 21, 608 (1966).
P. C. Hohenberg, A. Aharony, B. I. Halperin, and E. D.
Siggia, Phys. Rev. B 13, 2986 (1976).
J. Rudnick and D; Jasnow, Phys. Rev. B 16, 2032 (1977).
P. C. Hohenberg and P, C. Martin, Ann. Phys. (Paris) 34,
291 (1965).
B. I. Halperin and P. C. Hohenberg, Phys. Rev. 188, 898
(1969).

42J. Villain, J. Phys. (Paris) 36, 581 (1975).
43E. K. Riedel, Phys. Rev. Lett. 28, 675 (1972).
44M. Nauenberg and B. Nienhuis, Phys. Rev. Lett. 33, 1598

(1974); B. Nienhuis and M. Nauenberg, Phys. Rev. B 11,
4153 (1975).

45R. B. GriNths, Physica (Utrecht) 33, 689 (1967).
46J, M. Kosterlitz, J. Phys. C 10, 3753 (1977).
4~S. k.irkpatrick (private communication).


