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A theory of dislocation-mediated melting in two dimensions is described in detail, with an
emphasis on results for triangular lattices on both smooth and periodic substrates. The transi-

tion from solid to liquid on a smooth substrate takes place in two steps with increasing tempera-

tures. Dissociation of dislocation pairs first drives a transition out of a low-temperature solid

phase, with algebraic decay of translational order and long-range orientational order. This tran-

sition is into a "liquid-crystal" phase characterized by exponential decay of translational order,
but power-law decay of sixfold orientational order. Dissociation of disclination pairs at a higher

temperature then produces an isotropic fluid. The behavior of the specific heat, structure factor,
and various elastic constants near these transitions is worked out. We also discuss the applica-

bility of our results to melting on a periodic substrate. Dislocation unbinding should describe

melting of a "floating" (and, in general, incommensurate) adsorbate solid into a high-

temperature fluid phase. The orientation bias imposed by the substrate can alter or eliminate

the disclination-unbinding transition, however. Transitions from a floating solid into a low

temperature registered or partially registered phase can also be mapped onto the dislocation-

unbinding transition, but only at certain special values of the coverage. Substrate reciprocal-

lattice vectors play the role of Burger's vectors in this case.

I. INTRODUCTION

Building on ideas due to Kosterlitz and Thouless, '

it has been possible to construct a reasonably detailed
and complete theory of superfluidity on two dimen-
sions. ' One imagines a superfluid-state in which
phase fluctuations coexist with a dilute gas of bound
vortex-antivortex pairs. The transition out of this
state is assumed to be driven by the dissociation of a
small fraction of these vortices. Calculations by Jose
et al. suggest that predictions of Kosterlitz for a
speci6c model Hamiltonian are, in fact, universal pro-
perties of d =2 superfluids and of related magnetic
and liquid-crystal systems. A particularly striking
result is that the superfluid density in a 4He 61m
should exhibit a universal jump discontinuity4 at the
critical temperature. This prediction, together with a
theory of the dynamics of two-dimensional super-
fluidity at long wavelengths, ' should ultimately allow
detailed experimental tests of the theory.

Kosterlitz and Thouless have proposed that similar
ideas apply to two-dimensional melting. ' One now
considers a "crystal" without conventional long-range
order in which phonon excitations coexist with a di-
lute gas of bound dislocation pairs having equal and
opposite Burger's vectors. The crystal melts at
sufBciently high temperatures, driven by the dissocia-
tion of a small fraction of the pairs.

In a recent communication6 we explored these
ideas further and found that, in fact, a second
disclination-unbinding transition is necessary to com-

piete the transition from solid to liquid. We also dis-
cussed the applicability of the theory to melting on a
periodic substrate. In this paper we present the de-
tails of our investigation. The ideas behind the
theory, as well as the principal results, are summar-
ized in Sec. I A and B.

A. Melting on a smooth substrate

g(q ) X elq R (~/q [u(R) —u (0H) (1.1b)

We first discuss two-dimensional melting in the ab-
sence of a periodic substrate potential —melting on a
smooth substrate. Consider the properties of a solid
61m on such a substrate. By a solid we mean a sub-
stance whose equilibrium behavior is describable by
continuum elasticity theory' with nonzero long-
wavelength elastic constants. Such a solid displays
interesting properties notwithstanding arguments by
Peierls9 and Landau'0 (and a rigorous proof by Mer-
min") that true translational long-range order is im-

possible in such systems.
The absence of long-range order shows up clearly

in the structure function, de6ned by

(l.la)

where p(q) is the Fourier transform of the density.
In a solid phase, we can write
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C-(R) = (p-(R) p-"(0))

(R) —eio [R+u(R)]
PG

(1.2)

(1.3)

In two dimensions, however, it is known that the dis-
placements u(R) diverge logarithmically due to fluc-
tuations in the long-wavelength phonon modes, and
that Co(R) tends algebraically to zero at large R,s'2

where the summation is over the sites {R} of a tri-
angular lattice, and the position of an individual atom
in the solid is r = R + u ( R ). We shall focus most of
our attention on melting of triangular lattices for rea-
sons of simplicity (they can be described by an isotro-
pic elastic tensor7) and because these are the most
common regular structures in two dimensions.

In a three-dimensional solid the function S(q) has
a set of 5-function Bragg peaks, occurring at the
reciprocal-lattice vectors {6} corresponding to the
lattice of sites {R}. The 8-function character of the
Bragg peaks reflects the finiteness of the displace-
ments u (R), which assures that the Debye-Wailer
correlation function C o (R) tends to nonzero con-
stant at large R. Here, C G is defined by

lo 3 m, is simply related to the displacement field

u(r), i.e.,
1

Bur(r.)
2 Bx

Bu„(r )
By

(1.8)

-a/g+(T)Co(R) —e (1.9)

The orientational correlation function (({("(r) ({((0))
approaches a constant for large r in a two-
dimensional solid, as has been pointed out for a
slightly different correlation function by Mermin. "'
Thus, a solid film displays long-range orientational
order of the conventional sort. This may be contrast-
ed with the exponential decay of orientational corre-
lations we would expect in a liquid.

Kosterlitz and Thouless' argued that an unbinding
of dislocation pairs at a temperature T would cause
the solid described above to melt into a liquid. We
find that a transition of this kind does occur, but that
the new phase is actually a new type of liquid crysta1.
Above T a finite density of free dislocations nf(T)
leads to exponentially decaying translational order,

-n-(T)
Co(R) —R (1.4)

with a correlation length that diverges as T ap-
proaches T from above, according to

The exponent qo(T) is related to the Lame elastic
constants of the solid [which we denote p,s(T) and
l(s(T)] by

lQ( T) = ke T
I
G I'(3 p R + l(R)/47rp R (2ps + Xg)

(I.S)

There is no translational long-range order; the expec-
tation value of the translational order parameter
po(R) must vanish in an infinite sample. Neverthe-
less, the slow power-law decay of Co(R), given by

Eq. (1.4), is very different from the exponential de-
cay one would expect in a liquid. Inserting Eq. (1.4)
into Eq. (l.lb), we find that power-law singularities'2
replace the 8-function Bragg peaks at a set of
recirpocal-lattice vectors {6},

s(q) —
I
q-0

I

""""
. (1.6)

Since power-law behavior is usually associated with
critical points, '3 we can in some sense regard a solid
film as consisting of a phase of critical points with
temperature-dependent critical indices {go (T)}.
Note that there is in general a different critical index.
associated with each Bragg position G.

It is also convenient to consider an order parameter
for bond orientations, which for triangular lattices is

g+(T) —exp(const/(T —T )g

with"

(1.10a)

R =0.36963 (1.10b)

(An explicit expression for the number 0.36963" is
given in Sec. III.) We find, however, that orientation-
al order persists above T, in the sense that bond an-
gle correlations now decay algebraically to zero,

(({("(r)(i((0))—r "
A similar algebraic decay of orientational order is ex-
pected in a two-dimensional nematic liquid crystal' '
except that ({r(r), for the nematic, is equal to e2'~(~,

and 8(r), defined modulo 180', is the orientation of
the director field. In the present case of melting
from a triangular lattice the liquid crystal has sixfold
anisotropy, rather than the twofold anisotropy of the
nematic. We expect that a square lattice would melt
into a liquid crystal with fourfold anisotropy. We
propose that these new phases be called "hexatic" and
"tetratic" liquid crystals, respectively. -

We find that the energy of a long-wavelength
orientation fluctuation in this anisotropic fluid takes
the form

y(r) = e6(e&~r
sag = ,

'
EC„J d'r('Ve)', — (1.12)

where 8(r) is the orientation relative to some fixed
reference axis of the bond between two neighboring
atoms. [For a square lattice, the appropriate quantity
would be e ' (~]. In a solid film 8(r) defined modu- rC, (T) —g,'(T) . (1.13)

where the Frank constant E~ (T) diverges near T,
&.e.,
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The exponent q6(T) is related to It&(T) by

g6(T) =18ks T/rrK„(T) (1.14)

while the specific heat displays only an essential
singularity

Below T, all dislocations are bound and their only
effect on the properties of the solid film is to renor-
malize the Lame constants which appear in the elastic
energy. This energy takes the form, '

~0 ———
~

d r(2p, auj+h. nu;;)
1 (1.15a)

where u&(r) is the strain tensor

Bu, (r ) Bu~(r
u& r)=- +

2 Brl dF(
(1.15b)

pa(T) = pR(T )I 1+const(T —T)"I, (1.16)

with a similar expression for As(T). There is a
universal relationship involving p,R(T) and h.s(T) at
the melting temperature

and the elastic constants p, R(T) and XR(T) approach
Pnire limiting values as T T Just be.low T we find'

C (T) —
g '(T) (1.20)

Thus far, we have ignored the effect of disclina-
tions. Bound states of these angular singularities ex-
ist even in the solid phase —an isolated dislocation
can itself be regarded as a pair of disclinations a lat-
tice spacing apart. '9 [An elementary dislocation on a
triangular lattice and its construction out of a pair of
disclinations is illustrated in Fig. 1(a). The
corresponding construction for a square lattice, with
disclinations a half lattice spacing apart, is shown in
Fig. 1(b).] Although disclinations remain very tightly
bound (in pairs with equal and opposite disclinicity)
at all temperatures up to T, screening by a density
n&(T) = g+'(T) of free dislocations, produces a
weaker logarithmic binding of disclinations
for T)T.

We can now apply to the liquid-crystal phase the
analysis which Kosterlitz and Thouless'2 used for
two-dim|insional superfluids. Bound pairs of+ 60'

lim +1

r-r IR(T) -I „(T)+) „(T)
a02

4+kg T

(1.17)

where a0 is the lattice spacing. The entropy argu-

ment of Kosterlitz and Thouless also leads to a result
of this sort, which they suggested would hold as an

inequality. ' Power-law singularities in the structure
factor of the form (1.6) persist right up to the melt-

ing temperature. Comparing Eqs. (1.17) and (1.S),
we find that the values at T, of the exponents qo(T)
become universal functions of the two-dimensional
Poisson's ratio" a.s(T) —= Xs/(Xn+2p&), namely,

go" =—lim qo(T)
T T

(o)

62a02
lim [1+aR(T)][3—~s(T)]

7P 7~7m'

(1.18)

&(G) - 4 (T) (1.19)

(Note that the combination Gao is independent of the
lattice constant for a Bragg point of given order. )
Since an(T) cannot exceed unity, we obtain bounds
on the exponents qo'. The exponent qG "for the

0

first Bragg point of a triangular lattice, for example,
cannot exceed —,. Above T the structure factor is

finite at all Bragg positions and the Lame coefficients
vanish at long wavelengths. As T approaches T
from above, S(6 ) acquires a singular contribution

(b)

FIG. 1. (a) Elementary dislocation on a triangular lat-

tice. The Burger's vector is the amount by which the path

around the singularity fails to close. The path would be a

closed circuit on a perfect lattice. Note that the dislocation

can be viewed as seven- and five-coordinated disclinations

one lattice-spacing apart. This figure is from a molecular-

dynamics simulation by R. Morf. (b) Elementary dislocation
on a square lattice. This can be viewed as a lattice point
with five-fold symmetry and an interstitial point with three-
fold symmetry separated by about half-a-lattice constant.
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disclinations now play the role of bound vortex pairs.
Eventually the algebraic decay of orientational order
is converted to an exponential decrease by the disso-
ciation of these disclination pairs at a second transi-
tion temperature Tj & T . Precisely at T&, we find

P

vi6(~i) ~

1 (1.21)

The results Kosterlitz2 obtained for the superfluid can
be applied to the specific heat and orientational corre-

. lation length as well. Above T& both translational and
orientational order decay exponentially, and we have
a conventional isotropic fluid phase.

The sequence of transitions which follow from our
analysis of dislocation-mediated melting on a smooth
substrate is illustrated. in Fig. 2(a). Although the
theory that leads to these results is stable and self-
consistent, we cannot rule out the possibility of a
first-order melting transition. Such a transition might
be driven by a premature dissociation of disclination
pairs, before dislocations dissociate. ' Such a transi-
tion would be directly into a liquid phase, since loss
of translational order must accompany loss of orien-
tational order.

FIG. 3. Solid, liquid, vapor, and hexatic liquid-crystal

phases in a speculative pressure-temperature phase diagram

for circularly symmetric molecules with an attractive poten-

tial. Hatched lines indicate first-order transitions.

I
l
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FIG. 2. Transition sequences for melting on smooth and

periodic substrates. (a) On a smooth substrate, a low-

temperature solid with long-range orientational order and

algebraic decay of translational order is separated from an

hexatic liquid crystal with algebraic decay of sixfold orienta-
I

tional order and exponentially decaying translational order

by a dislocation-unbinding temperature T . A disclination

unbinding at temperature T; causes a transition into an iso-

tropic fluid phase, where both orientational and translational

correlations fall off exponentially. (b) In the presence of a

very fine mesh commensurate substrate potential, a com-

mensurate solid exists at low temperatures. The substrate is

relatively unimportant in solid and fluid phases at higher

temperatures. The disclination-unbinding transition which

would occur in the fluid on a smooth substrate is altered or

eliminated, however. (c) If' the substrate mesh is too

coarse, only commensurate solid and fluid phases occur.

A possible temperature-pressure phase diagram for
circularly symmetric molecules with an attractive po-
tential is shown in Fig. 3. Both two-stage solid-liquid
transitions [at temperatures T (p) and T~(p)] and
first-order melting transitions are shown. The line of
first-order transitions at high pressures would be con-
sistent with computer simulations by Alder and Wain-

wright ' of hard-disk melting. It should be em-

phasized, however, that many other phase diagrams
are possible, with or without regimes of two-stage
second-order melting transitions,

Several two-dimensional systems exist which could
conceivably be described by a th|:ory of melting on a

smooth substrate. The first of these are thin "soap-
bubble" films of smectic-8 or -H liquid crystals. In
particular, the theory may be applicable to the transi-

tion from a:smectic-8 to a smectic-A film. Birgeneau
and Litster" have gone further and have suggested
that the bulk smectic-8 phase may be understood as
a three-dimensional generalization of the hexatic-
liquid-crystal phase, in which there is long-range
orientational order with a sixfold anisotropy axis per-
pendicular to the smectic layers and short-range
translational order in the planes. Indeed, if one were
to build a three-dimensional material- out of hexatic-
liquid-crystal layers and if the coupling between the
layers was very weak, one would expect an equilibri-
um state with just these features. If this analogy is
correct, then srnectic-B to smectic-A transition in a
film would be an example of the disclination-
unbinding transition discussed in this paper.

An interesting experimental system, where a solid-
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liquid transition is expected to occur, is the system of
electrons trapped on the surface of liquid helium. i4

Thouless has discussed application of the
dislocation-unbinding transition to this system. "The
arguments presented in this paper would lead one to
expect a higher temperature disclination unbinding
transition as well.

B. Melting on a periodic substrate

Because a large number of experimental investiga-
tions of two-dimensional melting are carried out on
films epitaxially adsorbed onto a periodic substrate,
it is important to determine the effect of a periodic
potential on the theory sketched in Sec. I A.

A possible adsorbate-phase diagram is shown in
Fig. 4. Because of the substrate potential, one must
now distinguish between commensurate" and "float-
ing" solid phases. In a commensurate solid an adsor-
bate lattice or superlattice is locked to the substrate
periodicity. (Three commensurate phases are shown
in Fig. 4 together with floating solid and fluid
phases. ) Mathematically we expect a commensurate
solid to have 5-function Bragg peaks at a lattice of
vectors, which includes the two-dimensional recipro-
cal lattice (K ) of the substrate surface as a proper
subset. A floating solid, on the other hand, is
characterized by power-law Bragg singularities at a set
of reciprocal. lattice vectors (6 ), which vary continu-
ously with coverage and temperature; 8-function
Bragg peaks at substrate reciprocal-lattice points (K)
should be present as well. The phases called com-
mensurate solids in this paper were referred to as epi-
taxial solids in Ref. 6.

Note that we do not require every atom to be in re-
gistry in what we call a commensurate solid.

FLUID

Although a phase with only a superlattice of adsorbed
atoms locked to the substrate might better be called
partially commensurate, we prefer not to distinguish
between partial and complete registry. Also, the
phase we call a floating solid is often termed an "in-
commensurate solid" in the literature. %e prefer our
designation, because we wish to discuss a situation
where a floating solid is accidentally commensurate
with the substrate, at a particular coverage and tem-
perature. A locus of such commensurate points in
the solid phase is represented by the dotted line in
Fig. 4. In the literature, there has been a distinction
between an epitaxial fluid, which has an average in-
terparticle separation close to one preferred by the
substrate, and a fluid in which the substrate plays a
less important role. ' Because it seems unlikely to us
that such fluids are separated by sharp phase boun-
daries, we do not make this distinction and choose to
call the entire high-temperature region of Fig. 4(a)
fluid (the dashed line will be explained later). Two-
phase coexistence is shown between liquid and vapor
phases of this fluid, although this need not always be
the case. ' Another region of two-phase coexistence
separates commerisurate phase I from the dilute fluid
or vapor 26, is As an example, commensurate phase I
may represent something like the J3 && W3 regist-
ered structure of krypton adsorbed on graphite.

The heavy line separating the floating solid and
fluid phases represents a dislocation unbinding very
similar to that which would occur on a smooth sub-
strate. The predictions for the structure factor, elas-
tic constants, and specific heat are the same as for a
smooth substrate, except that the exponent v enter-
ing Eqs. (1.10) and (1.16) must be replaced by a
substrate-dependent result. Because the adsorbate
lattice is locked into a preferred Oriegtation relative to
the substrate, an additional term 2yz d r 8 r ap-
pears in Eq. (1.15) with H.given by Eq. (1.8). The
new elastic constant y& measures the energy associat-
ed with local deviations from perfect alignment. The
universal relation between p,~, A.~, and y& at the
melting temperature analogous to Eq. (1.17), is

LIQUIO

VAPOR

(M/
!
l
I

AT INC
'

SOLID

8

ps(T) (ps(T) + lis(T)] ps(T) ys(T)
lim +

r r 2@a(T) +~R(T) ps(T) +ys(T)

(1.22)
ao

FIG. 4. Schematic adsorbate phase diagram as a func-

tion of density and temperature at submonolayer densities.

Fluid, floating solid, and various commensurate phases are

shown. The dashed line indicates a Ising-like phase transi-

tion, separating fluid phases with different orientational sym-

metry. Such a line would be absent for a triangular sub-

strate, but could occur for substrates with a square symmetry.

where ao is the average adsorbate lattice spacing as
seen, for example, in a neutron scattering experiment.

In general, one expects an increasing multiplicity
and complexity of registered and partially registered
phases with decreasing temperatures. One of our
principal results is a criterion which determines
whether or not a particular commensurate phase pi-
erces the floating solid-Quid transition line. Analyz-
ing the stability of a floating solid to a weak commen-
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surate substrate potential, we find that all such per-
turbations lead to the formation of commensurate
solids at sufficiently low temperatures. If the mesh of
the substrate lattice is sufficiently fine relative to the
commensurate super lattice mesh, such perturbations
become unimportant at higher temperatures, before
dislocations can unbind and destabilize the floating
solid. The dotted line in Fig. 4 marks a locus of this
kind, where the floating solid is stable to both pertur-
bations tending to produce commensurate phase II
and to dislocation unbinding. If the substrate mesh
is too coarse relative to the commensurate superlat-
tice, the periodic perturbation remains important out
to quite high temperatures. There is then a transition
directly from a commensurate phase into a fluid.
This is the case for commensurate phase I and III.
These two possible transition sequences are summar-
ized in Figs. 2(b) and 2(c).

The precise criterion which differentiates between
the phases can be stated as follows. Let M be the
minimum nonzero reciprocal-lattice vector common
to the two sets (6 ) and I K j, of the adsorbate and
substrate reciprocal lattices, respectively. We find
that the renormalization-group eigenvalue of the
commensurate substrate potential in the floating solid
phase is simply given by

Z~(T) =2 ——,
' gg(T)

where q g(T) is given by Eq. (1.5) with the replace-
ments p,~ p,~ + y~ and ) ~ ) &

—2y&. This eigen-
value must be negative for the floating solid to be
stable. A minimum requirement for a floating solid
to exist is that h.~(T) become negative at tempera-
ture below the dislocation-unbinding temperature.
Making use of Eq. (1.22), we are lead to the require-
ment

M2 12(vs+~s)'(2I s+rs)'
2p&(p&+~sps+3ps'ys+2"sos)(3ss+ "s+vs)

(1.23)

wh««0=4~/(3)'~'ao is the minimum adsorbate
reciprocal-lattice vector, and p,g, A.g, and y~ are the
limiting values of these elastic constants at T . In
the limit of small y and taking a Poisson's ratio of
o s =0.6, we find the requirement M/Go & 3.54.

Although we are more limited in our ability to
analyze commensurate-floating solid transitions, it is
possible to treat this transition at the special point
marked 8, which is the lower end of the line where
the floating solid has the same periodicity as the com-
mensurate phase. This transition will occur at a tem-
perature Ts such that h.~(Ts) =0. In Sec. V we
demonstrate that this transition is closely related to
the transition at T&, something which can be
described mathematically as a dislocation unbinding
occurs with decreasing temperatures, where substrate
reciprocal-lattice vectors play the role of Burger's vec-
tors.

The fluid phase above the floating solid-fluid tran-
sition line is analogous to the liquid-crystal phase dis-
cussed in Sec. I A, except that the substrate induces
-long-range orientational order. If the substrate and
adsorbate lattices both have sixfold orientational sym-
metry, then the substrate couples linearly to the
orientational order parameter P and orientational ord-
er tends gradually to zero with increasing tempera-
tures. Thus, the disclination-unbinding transition
(indicated by the dashed line of Fig. 4) is smeared
out by the substrate potential and does not really ex-
ist as a sharp transition. For square substrate and tri-
angular adsorbate lattices, however, we find that the
disclination unbinding is converted into a sharp
Ising-like phase transition. This would presumably

show up as a logarithmic specific heat anomaly along
the dashed line. The applitude of the divergent part
of such a specific heat could be quite small, however.
Similar arguments would lead one to expect a Potts
transition for nematiclike molecules after melting
from a floating solid on a triangular substrate.

A salient physical feature of dislocation-mediated
melting transitions in real systems, is that they are
hard to see. The specific heat exhibits a virtually un-
detectable singularity, although there may be a max-
imum near T . Even the changes in the structure
factor are not as dramatic as one might hope. Little
evidence for a sharp transition has in fact been seen
in specific-heat measurements or in neutron scatter-
ing experiments" on the floating-solid-fluid transi-
tions. The predicted discontinuities in the elastic
constants at T are rather striking. It is important to
remember, however, that only the q =0 constants are
actually discontinuous. The renormalized shear
modulus at finite wave vectors p,s(q, T), for example,
is continuous through T . This is why the only
reflection of the jump discontinuity of p,a(0, T) in the
specific heat is an essential singularity.

C. Relation to previous work

As we shall see, melting problems on both smooth
and periodic substrates can be represented by a set of
elastic degrees of freedom, together with a system of
interacting dislocations, whose Hamiltonian is
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b(r) b(r)in I'-'{ unbinding transition are determined in Sec. IV.
Melting in the presence of weak, strong, commen-
surate, and incommensurate substrate potentials is
discussed in Sec. V.

+ ' ${b(r){' . (1.24)
II. RECURSION RELATIONS NEAR TM

ON A SMOOTH SUBSTRATE

The Ib (r)I are dimensionless Burger's vectors of the
form b(r) =m(r)ei+n(r) e2, where m(r) and
n(r) are integers, and ei and e2 are unit vectors
spanning an underlying Bravais lattice. The couplings
Ki and K2 are related to the elastic constants and are
inversely proportional to temperature; E, can be re-
garded as the core energy of a dislocation. The quan-
tity a is a.cutoff which we take to be the dislocation
core diameter. For melting of triangular lattices on a
smooth substrate we have K~ =K2. A Hamiltonian
of this form (with {K2{~ Ei) also describes the tran-
sition from floating solid to commensurate phase II in

Fig. 4 at the special point B.
One of us" has studied the properties of XD for

the special case K2 0 in some detail. In this work a
series of duality transformation was used to relate
this simplified melting problem to Hamiltonians with
short-ranged interactions more suitable for an ap-
proximate renormalization-group recursion analysis.
Using both approximate and analytic renormalization
techniques, it was found that the dislocation degrees
of freedom were unimportant at low temperatures
(large Ei) and that a dislocation-unbinding transition
was controlled by the terminus of a stable surface of
fixed points parametrized by Ki and ei e2. It was
also shown that addition of the angular terms in Eq.
(1.24) represent a marginal perturbation everywhere
on this fixed surface. Thus, in general, a three-
dimensional volume of fixed points is needed to
describe the behavior of Eq. (1.24) near T, in com-
plete generality. The possibility of disclination un-
binding was not considered in Ref. 32.

In Sec. II and III, we restrict ourselves to triangular
lattices (ei e2= —,) and extend this treatment to the

special case K~ =K2. Although this is all that is
necessary to treat melting of triangular lattices on a
smooth substrate, . the more general Hamiltonian with

Ki W K2 is necessary to describe melting on a period-
ic substrate. The recursion relations appropriate to
this more general problem have recently been con-
structed by A. P. Young. '

In Sec. II we determine the renormalization-group
equations which describe the solid below and near
T . The behavior of the elastic constants, correlation
length, specific heat, and structure factor in this re-
gion are derived in Sec. III. The prop'erties of tge
orientational order parameter and disclination-

A. Dislocation contribution to the elastic constants

The calculations in Ref. 32 were carried out on the
reduced elastic Hamiltonian

h

Xs —= —= , ——,(2p, u»2+ h. uk'k)
AT ~ " ap2

(2.1)

where p, and A. are the usual Lame coefficients divid-

ed by k&T and multiplied by the squared lattice spac-
ing ap of the underlying lattice, i.e.,

p = pap 1kB& li = leap /ks T (2.2)

and the strain tensor u»(r ) is related to a displace-
ment field u (r),

Bu;(r ) Bud(r )
u»r = — ' +

2 Brj df(

The field u»(r) contains a part

1 84(r) +84J(r)
2 dr& dr,

(2.3)

due to smoothly varying complexions and a singular
part uJ'"g(r) due to dislocations

u»(r) = @»(r) + ug"g(r) (2.4)

using(t ) &&k&&&
~21 g2

2I. '" "er„er, 4I () +I)

x ap Xb (r')G (r, r') (2.6)

A dislocation located at site r is conveniently charac-
terized by the amount by which a contour integral of
the displacement field taken around it fails to close, i.e.,

~

~ ~

du=apb(r) =n(r)apei+m(r)ape2, (2.5)

where b (r ) is the dimensionless Burger's vector'9 as-
sociated with the singularity, and n (r) and m (r) are
integers. The basis vectors e~ and e2 span an under-

lying square or triangular lattice.
Making use of results from continuum-elasticity

theory' reviewed in Refs. 7 and 32, the singular part
of the strain can be written
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I

where ~,J is an antisymmetric 2 && 2 matrix,

0 1

—1 0

r

b ( r ) b ( r ') ln

b(r)'(r —r') b(r') (r —r')

The summation is over a square mesh of lattice sites
with spacing a, which we take to be a dislocation core
diameter. This lattice is merely a- convenient way to
introduce a cutoff and bears no relation to the under-
lying physical lattice which determines the value of
the Burger's vectors. The Green's function G (r)
satisfies the equation

with

V G (r, r ') =—Epo „5(r—r)
fn

&o =4u, (p, + &)/(2 p, + h.)

(2.7)

(2.8)

For a crystal with free boundaries, the normal com-
ponent of the stress must vanish at the edges, which
leads to the boundary condition that '7G (r, r ') be a
constant for all points r on the boundary. For

~
r —r '~ large compared to the lattice spacing, but far

from the boundaries, we have

+E iQ o +LCD (2.10)

G (r, r') = G (r-r')
=( &o/4') o —„(r„—r„') [ ln (~ r —r '

~
/a) + C]

(2.9)

The positive constant C is a measure of the ratio of
the dislocation core diameter to the lattice spacing. It
is convenient to absorb C into an effective core ener-
gy (see below) and to take a to be the core diameter.
Note that a need not be the same as ao.

When the decomposition (2.4) is inserted into Eq.
(2.1), the Hamiltonian breaks into two parts

(2.12)

where

E =Epact /ks T

E, =. (C + 1)Eks T/8 rr

(2.13)

(2.14)

and a given complexion of Burger's vectors, must
satisfy the constraint $-, b (r ) =0. Note that Eq.
(2.12) is the same as Eq. (1.24) with E~ =%2.33

The calculations in Ref. 32 focused on the proper-
ties of D, neglecting the dot product or angular
terms in Eq. (2.12). Here we examine the renormali-
zation of the elastic constants in Eq. (2.11) by the
dislocation degrees of freedom. The calculations also
provide a convenient way to incorporate the angular
terms into the renormalization-group analysis
presented in Ref. 32. The approach is similar in spir-
it to that used by Nelson and Kosterlitz4 in calculat-
ing the superfluid density of a He film.

The dislocation-free Hamiltonian Xo can be rewrit-
ten in the form

Xo 1 ~ d2r

k T
—

2 J, 4yCpkidk( ~

B ap
(2.1S)

where the tensor of bare elastic constants is just

Cpki = p(5ik5ll + 5g, 5') + 35Il5kl (2.16)

The inverse of the tensor of renormalized elastic con-
stants C~ &kl, can be expressed in terms of a correla-
tion function

where we have

&o 1 'dr
, (2~~, +) e«)

AT 2 " ao2

Cggkg = (Up ,Uu&l «o
where 0 is the area and

(2.17)

A convenient alternative representation of Ko in
terms of the vector field P, provided boundary efFects
can be neglected, is

, (l (&y)'+(l +K)(V y)'],

(2.11)
where ('7$) =(5;@~),and the summation conven
tion is used. As shown in detail, for example, in
Ref. 32, the dislocation part D takes the form'

U&=—
—, Jl (u, n&+ujn;)dl (2.18)

The integration in Eq. (2.18) is over the perimeter P
of the solid and n is a unit vector normal to this
boundary. Equation (2.17) is readily derived by con-
sidering the response of (Up) to an infinitesimal
external stress, treating each component of U& as an
independent fluctuating variable. Although this last
assumption is correct for a crystal subject to free-
boundary conditions, it is not correct for the finite k
Fourier components of u&(r)
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l/s(k) = d2r e'" ~lip(z)
4

(2.19) moved to a separation R. Since the force on the
Burger's vector b due to a stress cr» is'

which have only two independent components. '4

Consequently, Cg»kI is not simply given by F; = +O~k~kj&P (2.25)

lim —(ti&(k) Qk/(
—k))

k-0 0 (2.20)
(this is the analogue of the Magnus force on a vor-
tex") the work done is

as one might expect.
Equation (2.17) is convenient for our purposes be-

cause the dislocation contribution to Cg»kI appears in
a .particularly simple form. Inserting the decomposi-
tion (2.4), we have

15 W =apbkejiR;(rkj =
2 ao(bke/ R;+bjek/R ) akj

However, this energy must also be given by the
str|;ss times the strain

6 8' = a.» U»'"~

(2.26)

(2.27)

CR, ijkl Cijkl + + (UJ Ukl ) t (2.21)

where U»'~ is the dislocation contribution to U», and
where Cjkl is the inverse of the bare elasticity tensor
(2.15)

calf
'

~
d ri Sd(r~) d r 4(d2r)2)

Oao'

1

4p
(gikgjl + gilgjk) — gsgki ~ (2.22)

4/4(jk+ h.)

UJm
g ap(biejkRk + bjelkRk) ~ (2.28)

which agrees with Eq. (2.24) for two equal and oppo-
site Burger's vectors at separation R.

S. Recursion relations

Comparing Eqs. (2.26) and (2.27), it follows immedi-
ately that:

The tensor Cljk~ is the inverse of Cj+ in the sense
tllat Cijk(Cklntn 2

(gi 8/ + 5i 5/

Although it is tempting to apply Green's theorem
to Eq. (2.18) and obtain

Uij= ~ d'r u»(r)

this is incorrect in the presence of dislocations, which

make u (r) a multiple-valued function of r. We may

eliminate the multivaluedness by introducing a cut
along the line segment joining each dislocation to the
origin and requiring u to be continuous everywhere

except on the cuts. The discontinuity in U at each cut
is just the Burger"s vector of the dislocation attached
to the cut. If we now apply Green's theorem to Eq.
(2.18), we find that

In principle, the dislocation contribution to the
elastic constants can now be determined as a power

—E /k~T
series in y = e ' ~ . One need consider only
configurations of two Burger's vectors to obtain
results correct to 0 (y') and so forth. We shall see,
ho~ever, that such series become badly behaved as T
approaches a temperature T which we identify with

the melting transition. The series can be analyzed
using a renormalization procedure which produces re-
cursion relations for the elastic constants, and for E
and y.

Two distinct complexions of Burger's vectors asso-
ciated with a square lattice of excitations are shown
in Fig. 5(a). These dislocations occur in pairs located
at r~ and r2 with Burger's vectors e~ with p =1,2,
i.e.,

Uj=„~ d r t/S(r) + X 2 ap [b;(R)ejkRk+bj(R)e, kRk]
R

(2.23)
1

cg= 0
i i

0
e2= (2.29)

where the second term is the contribution of the
cuts. Equation (2.6), together with the requirement
that VG (r, r ') be constant on the boundary of the
crystal, implies that the dislocation contribution to
the first term in Eq. (2.23) vanishes so that the dislo-
cation contribution to Uj is simply

Uij'"p=
2

ao $ [b;(R)ej(R(+bj(R) ei(R(l . (2 24)
R

The contribution to U&'~ of the pth pair is

1

i ap(ep, eji+ 'pjeii) Rl (2.30)

where R =r~ —r2. Inserting this contribution into Eq.
(2.17), we integrate freely over the positions of the
singularities r~ and r2. Since the first and second
complexions shown in Fig. 5(a) occur with probabili-
ties

To check Eq. (2.24), consider the work done by a
uniform external stress cr» when a pair of disloca-
tions with equal and opposite Burger's vectors is

p y2(R/a) —K/4ne(K/4nicos24+ 0( 4)

p2 y2(R /a) —K/4ne(K/4n) sin s+ 0 (y4) (2.31)



2466 DAVID R. NELSON AND B. I. HALPERIN 19

+O(y4), (2.32)

we find that

2

CR ljkl Cljkl +
4 y X (epiej + epjei ) (ep ksk + epieki)

-1 —1 1 2 W

p~i
' —K/4m

d2R R,R,
A

IRI&a g2 g2 p g
1

e1= 0
2

2

2

(2.34)

Fortunately, only two elastic constants are required
to describe the melting of a triangular array. The
relevant dislocation complexions which occur at
O(y') are shown in Fig. 5(b), the paired Burger's
vectors given by ep, p =1,2, 3, with

where the weight factors Ap are

e(K/4m) cos 8 A e(K/4m) sin ei=e (2.33)
According to Eq. (2.12), these complexions occur
with probabilities

The factor of area in Eq. (2.17) has been eliminated
by one of the integrations over space.

Since in reality three elastic constants are needed to
describe a square lattice, ' we do not expect the renor-
malizations associated with a square array of Burger's
vectors to preserve an initially isotropic elastic matrix.
It is straightforward to check from Eq. (2.32) that the
O(y') corrections do indeed induce a cubic anisotro-
py in C~,jk~. A consistent calculation for melting of a
square array would start with a more complicated
dislocation Hamiltonian &D associated with this cubic
symmetry.

p y2

K/4m

e(K/4o) cos28+ g ( 3)
g

s s

K/4n.

(K/4s)cos (4—2o/3) + g ( 3)
g

i

K/4n.

e(K/4c)cos (4+2c/3) + g( 3)
g

(2.35)

where we have R = r1 —r2 and we again integrate
freely over ri and r2. The O(y3) contributions to
these probabilities affect the renormalization of y and
will be discussed later. Since three configurations
shown in Fig. 5(b) each give a contribution to UJ"s
of the form (2.30), we have

3
—1 -1 1 2 M

CR,(jk/=Ceki+ 4y X (ep, ej, +e„je;,)(ep„ei, +ep, iek)
p~i

' —K/4''
d2R RsRf

A
R

~ IRI)a g2 g2 g

2
f

+ O(y') (2.36)

where the angular weighting factors are

e(K/4n) cos 8i=e
e(K/4n) cos (8—2n/3)

2 =e
(K/4m) cos (|Ii+2n/3)3=8 (2.37)

To extract the renormalized Lame coefficients p,~ and
)(R from Eq. (2.36), we assume that CR ijki has the
isotropic form

1 A.g
CR.ski (fiikfijl + fiilfijk) '—fi(jfikl

4ga 4/ R(/ R+&R)

(2.38)

(b)
FIG. 5. Configurations of Burger's vectors at O(y2) for

(a) square and (b) triangular lattices of excitations.

(it is tedious but straightforward to check that this is
indeed the case), and consider various contractions of
this elasticity tensor. In this way we Gnd
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1
CR,iijj

Pz+~a

r r 3—K/4~
1

re 2m dR R
+ 6y2 dQ sin2$ e(I(s /4n) cos 8

2m a ajx t l

+ 0 (y'),

(2.39a)

' 3—K/4n

+3 2 1 d~ (K/4

p, 2(p,„+K ) p, 2(p, +X)
t 3—K/4m

p2% dR R+32ry2 de sin2e e(/r/4o) cos 8 i + g (y3)
2~ &0 a a

(2.39b)

Combining Eqs. (2.39a) and (2.39b) determines the renormalization of the coupling K which enters Jc/i, i.e.,
l

1 1
Kg + = K '+ —,my2

1 = — 3

(/4s +"s),
/

+ 2my
1

s

r
3—K/4n.

dg e(K/4w) cos 8

2m' "o a a

3-K/4n
Ie 27r dR Rdesin'ee'"' '"' ' — +O(y') (240)
0 ~a a a

A consistency check is to calculate
Cp:~ = Cp yyyy

=Kp, which gives a result in agree-
ment with Eqs. (2.40).

As was the case in Ref. 32, we see that perturba-
tion theory breaks down because of infrared diver-
gences in the integrals in Eqs. (3.39) and (3.40) as K
approaches 16m. To analyze these difficulties, we
proceed as in Refs. 3, 4, and 32 to break the trouble-
some integrations into two parts

dR ae

a a a a ae~ a
(2.41)

(2.421)

with 5 small. The small R portions of the integrals
can then be absorbed into redefinitions of JM, , X, and
K. Upon rescaling the large R parts of the integrals
so that. they again range from a to ~, we obtain
series which are identical in form to Eqs. (2.39) and
(2.40), but with modified couplings p, ', X', K', and y'.
The rescaling factors can be absorbed into a
redefinition of y. Repeating this procedure many
times so that the core diameter of a dislocation- is
effectively increased from a to ae', we again find
series identical in form, with couplings p, (l), X(l),
K(l), and y(l) which are the solutions of differential
recursion relations. The effective rigidity modulus
p, (I) and bulk modulus [h, (l) +p, (l)] ' satisfy

—1
d/4 (I) 3~ 2(I) ex(l)/8oI K(I) + g ( 3)y

s l

(2.42a)

d[p, (I) +Z(l)] '
3 2(/) /r(, )/8

dI
s l

I K(i) IK(l) +O(,3)-
Sm 8m

8 i

dy(I) 2 —K(1) (I) +g( 2)
8~

(2.43b)

All these differential equations are subject to the ini-
tial conditions that the effective couplings reduce to
the bare or unrenormalized values at I =0.

To determine the O(y') contribution to Eq.
(2.43b), we must consider the complexions of three
dislocations located at ri, r2, and r3 shown in Figs.
6(a) and 6(b). When two of the dislocations in these
figures coalesce, as shown in Fig. 6(c), the resulting
configuration resembles the paired complexions
shown in Fig. 5(b). Increasing the core size in such a
configuration can be viewed as producing a change in
the pair probabilities P~, P2, and P3. For P&, for ex-
ample, we find

Isi —y2(p /l2) &/4oe (K/4o& cos s—'

1

2o
x 1+42ry

2m'
s

l s '1

—K n. 7ix exp cos @——cos @+-
4vr 3 3

' 1 —K/Sm

a a
+ O(y') (2.44)

where Io(x) and Ii(x) are modified Bessel functions.
The couplings K(l) and y(l) are the solutions of

dK '(I) 3 ~ 2(I) Re{i)/8 Io
Sm

s

1

—-'~ '(I)e»"'" I +O(y')
s

(2.43a)
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1

dy (I) 2
K(I) (() +2 2(I) eK(/)/16m

dl Sm

x Io +O(y3(l))
!

(2.45)

This result, together with Eqs. (2.42) and (2.43),
completes our derivation of the renormalization-
group equations for melting of triangular arrays.

r2

with similar expressions for P~ and P2. In Eq.
(2.44), R and 8 represent the distance and orienta-
tion associated with the separation between one dislo-
cation and the center of mass of the coalesced pair,
with the Burger's vector taken to be the vector sum
of the paired Burger's vectors. The variables r and d

refer to the vector joining this pair; their meanings
are made clear in Fig. 6(d).

If one were to extend the integration in Eq. (2.44)
to infinity, one would again be confronted with a
divergent integral as K approached 16m. The finite
correction displayed in Eq. (2.44), however, can be
absorbed into an additive renormalization of y. This
effect, together with the effect of rescaling the large
R integrations in the perturbation series (2.39) and
(2.40), gives rise to an eff'ective dislocation probabili-

ty y(l) which is the solution of

III. SINGULARITIES NEAR
THE MELTING TRANSITION

A. Elastic constants

An important feature of the renormalization
transformation described in Sec. IIB is that it
preserves the form of the perturbation series for p,~,
A.~, and K~. This invariance property may be written

p/t (p„&,y) = p, /t(/7(l), &(l),y(I))

X/t (/7„X,y) = X/t (p, (l), )t(l),y (l))

K, (K,y) =K„(K(I),y(I)) .

(3.1a)

(3.11 )

(3.1c)

The simplicity of these transformation equations
(note there is no multiplicative renormalization fac-
tor) allows a convenient calculation of p, /t, X/t, and
K. Similar results have been found in studies of
compressible spin systems near four dimensions, '
where a multiplicative renormalization factor was ab-
sorbed into a rescaling of the displacement field. In
two dimensions no rescaling is necessary.

The behavior of the effective couplings K(l) and
y(l) which appear in Eq. (3.1) is shown schematically
in Fig. 7. The dislocation probability y(l) tends to
zero in a region to the left of the incoming separa-
trix, which we associate with a crystalline phase. The
instability in the remaining flow trajectories towards
large y signals the dissociation of dislocation pairs
predicted by Kosterlitz and Thouless. ' Although they
assumed such an instability would lead to an isotropic
fluid, we shall see in Sec. IV that this new phase is
actually an anisotropic fluid, a liquid crystal. A typi-
cal locus of initial conditions given by Eqs. (2.13) and
(2.14) is shown as a dashed line. The intersection of

(a)
y(&)

(c)

FIG. 6. Distinct triplets of Burger's vectors denoted (a)
and (b) occur at 0(y3). When two vectors in a triplet

coalesce, as in (c), a contribution to the pair probabilities

represented by Fig. 5(b) is generated. The complexion (c)
renormalizes the right-hand configuration in Fig. 5(b). Part

(d) is an enlargement of the region surrounding r, and r2 in

part (c).

FIG. 7. Renormalization-group flows near the melting

transition. The fixed line at y(1) =0 is stable in the shaded

region of solid phase. Quantities outside this region can be

estimated by following the unstable trajectories until the

correlation length is of order unity. One is then at relatively

high temperatures and a simple Dubye-Hiickel approxima-

tion scheme can be used. The dashed line is a typical locus

of initial conditions, and the dotted line is given by

y 2m x (see text).
1
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pa(p„K,y) = lim p, (I), (3.2a)

X„(p, k,y) = lim k(I) (3.2b)

this line with the incoming separatrix determines
the melting temperature T .

Equation (3.1) relates a potentially difficult calcula-
tion of p,g, A,g, and Kg in the presence of a finite
density of dislocations to one with altered couplings
K(l) and y(I). According to Fig. 7, however, y(I)
tends to zero as I ~~ in the low-temperature crystal-
line phase. In this 1imit the renormalized couplings
are just given by their bare values and we have from
Eq. (3.1)

dy (I) =2xy+2may',
dI

(3.6b)

A =2eiIp(2) —e~Ii(2) =21.937

8 = e'Ip(2) =6.1965

(3.7a)

(3.7b)

Equations (3.6a) and (3.6b) are structurally identical
to those found for the simplified model of melting of
a triangular lattice in Ref. 32. In that case, it was
found that A =8 =1. Incoming and outgoing separa-
trices shown in Fig. 7 are given in the approximation
(3.6) by straight-line trajectories of the form
y(I) =m+x(I), with

Ka(K,y) = lim K(I) (3.2c) m+ =(1/12mA)(8 + (8 +24A)'") (3.8)
\

Quantities such as the Lame coefficients can no'w be
obtained simply by numerically integrating the recur-
sion relations (2.42), (2.43), and (2.45). The values

of p,q and A.~ obtained in this way are finite, even as
T T, and of course depend on the initial condi-
tions. We see from Fig. 7, however, that Ka(T)
must approach a universal constant as T approaches
T from below

4p g (T) [pii (T) + &R (T)]
lim Ka T = lim =16m

r-r r--r„2p, a (T)-+ Xa (T)

As shown in Fig. 7, a Hamiltonian which starts
slightly below T will initially hug the incoming
separatrix y =m x, and then break away, plunging
into the fixed line at y =0. To a very good approxi-
mation the limiting value K(I = ~) will be given by
K(I'), where I'is the breakaway point defined by the
condition that the trajectory cross the line y = —,m X.

This locus of breakaway points is shown as a dotted
line in Fig. 7.

Following Ref. 32, we parametrize the trajectory of
the Hamiltonian slightly below T by

(3.3)
y(l) =m x(I)+D(I) (3.9)

This result is identical to the Kosterlitz-Thouless cri-
terion for melting, ' obtained by balancing the energy
and entropy of an isolated dislocation. Recasting this
equation in terms of the two-dimensional Poisson ra-
tio oa —= ka/(ks +2ps), we find that D(I=O)-=D, -iri . (3.10)

where the deviation D(I) is initially small and pro-
portional to (T —T )/T =—t, i.e.,

lim p&(T) =8m lim [1+oii(T)] '
T T

m

(3.4) Carrying out the analysis described in Sec. V A of
Ref. 32, we find that the growth of D(I) is given by

which is the result claimed in the Introduction. Since
we expect that p,~ and A.q are zero above T,"these
quantities should be discontinuous at the melting
temperature.

It is interesting to note that the renormalization-

group Eq. (3.42b) produces a finite Lame constant
h.a(T) even if the bare value is infinite, as it would

be for electrons pinned to the surface of helium. "
This is precisely the e6'ect one would expect disloca-

tions to have on an otherwise incompressible lattice.
To determine how K„(T) approaches its limiting

value as T T, we must study the recursion rela-
tions (2.43a) and (2.45) in more detail in the vicinity

of K =16m. To quadratic order in y(l) and in a de-

viation x(l) defined by

D(I) = D(1p1+~2' mA'(xp(I)'" " —, (3.11)

(3.12)

namely,

x(I) -—(xp[/(1+12~'Am' (xp[l) (3.13)

where xp is the negative initial value of x(I). A tra-

jectory will have broken away from the incoming
separatrix when we have I = I", such that D(I") is
comparable to m x(1") in Eq. (3.9). From Eq.
(3.6a), however, we see that the decay of x(l) to
zero is given approximately by the solution of

=—12m Am x (I)
dI

K-'(I) = (1/16~) [1+x(I)],
these equations become

~(" -12w~Ayt .
dl

(3.5)

(3.6a)

Comparing Eq. (3.11) and (3.13), we find that
breakaway occurs when we have I I", where

I' lrl"— (3.14)
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as t ~0, with

) =6miAm~/(I +6qr2Am ) =0.36963477"

It now follows from Eqs. (3.5) and (3.13) that:

K =limK-'(I) =(I/16~)[1+x(l )j
I~oo

= (I /16qr }(I —c ( t (
")

(3.15}

(3.16)

where I" is the "time" necessary to integrate the dislo-
cation Hamiltonian well into the Quid phase. The
relevant trajectory is sho~n in Fig. 7. Taking over
thc analysis presented in Sec. VA of Ref. 32 it can be
shown from Eqs. (3.6a) and (3.6b) that I'diverges in
the same way as in Eq. (3.14) above, namely,

(3.21)

where ) is given by Eq. (3.15). Thus we have

pi)(q, T~) = pR(0, T~) [1+const/ln(qa) j

Above T, we expect that p, g tends to zero with
small q N, i((q, T) - (+q', where f+(T) is the
correlation length discussed in the next subsection.

S. Correlation length and speci8c heat

The analysis of the correlation length and specific
heat carried out for the XFmodel by Kosterlitz2 and
for a simplified model of melting in Ref. 32 is easily
extended to the present situation. As was discussed
in Sec. I, a correlation length g+(T) can be defined in
terms of the large-distance behavior of the correla-
tion function, i.e.,

(R)(p(R)pu(0))'(e/G'fu(R)u(0)l)
(3.17)

whose Fourier transform determines the structure
factor S(q) near q =G. Although Co(R) decays as

a power law (see Sec. III C) in the crystalline phase,
we expect that it decays exponentially for T & T,
i.e.,

-(R)/g (T)
Co(R) —e (3.1g)

where f+(T) diverges as Tapp«aches T «om
above.

The form of this divergence follows from the way

g+ transforms under a renormalization-group
transformation'9

g, (f—, )(,y) = g,e(f (I), )((I),y(t)) . (3.19)

This equation is conveniently evaluated by integrat-
ing the trajectory of a Hamiltonian initially slightly
above T until K )(I) is, say, ten percent above
I/16'. At this point the correlation length on the
right-hand side of Eq. (3.19) is finite, and we have

(+(p„k.,y) —e' (3.20)

where c is a positive nonuniversal constant, . The same
cusplikc singularity shows up in the approach of
tj.(T) and }((T) to their limiting values as T ~ T

A similar analysis may be applied to the approach
of, say„p, tf (q, T ) to its limiting value as q tends to
zero. One finds that

(+(T) —exp(C/[ t [
' '-} (3.22)

from which it can be sho~n that we have

F,(T) —e "-g (T)- (3.24)

near melting. Two diff'erentiations with respect to
temperature lead to a similar essential singularity in

the specific heat,

C. Structure factor

The structure factor

S(q) (p(q)pu(q)) $eiq R
(eiq fu(T)) —u5)f)

(3.25)

where the sum is over lattice sites R, is of particular
interest, since this quantity is probed directly by
diffraction experiments on thin films. %e shall first
discuss the solid phase, T & T .

The behavior of Eq. (3.25) for q near a reciprocal
lattice vector can be determined by making a cumu-
lant expansion,

CpR) (
iq fu(R) —u(0))),

q

1= exp [——q;qt

x ([u, (R) —ui(0)l[ut(R) —ut(0)]}I

(3.26)

The cumulant expansion truncated at the erst term as

where C is a positive constant. If we set A =1 (and
m =—I/3m) in Eq. (3.15), we find ) =

5
and

0+ «p(C~Jt~ t ), which are the results obtained in
Ref. 32. The dift'erence between 0.369 63... and —, is a

measure of the importance of the angular terms in
Xgo

The transformation law for the reduced
dislocation &rce-energy per unit area is

1 1, ' 2
FD(K,y) =6' J dee

i

pl
x ~ e i''yi(l')dl' +e i'FD(K(I),y(l)}

(3.23)
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in Eq. (3.26) is exact for the harmonic degrees of
freedom @(r) and is correct to 0(y') for the
dislocation-pair part of the displacement field. In
terms of the Fourier-transformed displacement field

u(q) = Xe'~'"u (R)
R

C, ( R ) becomes

C, (R) =exp[q;q~G» (R)]

with

(3.27)

(3.28a)

G»'(K) = d q(u~(q)u&( —q))(e' '"—1)4~' ~
(3.28b)

and where the integration runs over the first Brillouin
zone. The expectation (u&(q) u&(

—q)) is given iri the
limit of small q by the renormalized elastic constants

pg and Ag,

lim q' (ui(q) u&( q)—)q~

p, + h.„q,q&

p,, '
p,, (2p,, +)),,) q'

we obtain the behavior of gg along this locus dis-
0

cussed in Sec. I,

v)G
'—= lim gG (T)

T~T
m

= lim —„[3—a'R(T)][1+o„(T)]
T~T

m

According to Eq. (3.32), higher-order Bragg points
will have larger exponents qG'. When gG "exceeds
2, the infinities at the Bragg points are replaced by

cusped singularities.
Because CG ( R ) decays exponentially above T,

the structure factor will be finite at the Bragg points,

(3.34)

S (G ) X (el G ~ !u ( R )—u CO)l) (3.35)

S(G;p, X,y) =exp 2I — go(l')dl'

There can be divergences at these points, however as
T T+. It can be shown that the transformation law

for S(G) under the renormalization procedure of
Sec. II is

This convenient alternative definition of the elastic
constants was also used in Ref. 36. It is equivalent to
the definition used in Sec. II. Inserting Eq. (3.29)
into Eq. (3.28), we can readily extract the large I R I

behavior of G»'(R), i.e.,

where

I
G I'&o 3p, (I) + )).(I)

4rrp, (I),2p, (l) +)).(I)
(3.37)

x S(G, p(l), g(l),y(l)}, (3.36)

ks T 3p,„+—~& I K I

ij Sg ln
2mpa (2pa+Aa) a

(3.3O)

0

s(G T) -g, "', (3.38)

Evaluating the homegeneity relation at the same I'as
was used to evaluate g+(T), we obtain

The power-law decay of Co(R) then takes the form

with

c;(R) -I)IKI '

I G I2 ksT 3pR+XR
4~ pR 2pR+ ~z

(3.31)

(3.32)

1.0--

R 1/30 1/l2

0.5

s(q) —IyIq-G I' 'o (3.33)

where 6 is a Bragg point. Contours of constant qG,0
the exponent for the first-reciprocal lattice point
(where I GOI = 16m2/3a2), are shown in Fig. 8, to-
gether with the locus of melting transitions in the
p,„'—o„plane. Inserting Eq. (3.4) into Eq. (3.32),

A more careful argument, which makes use of a
homogeneity relation like that displayed in Eq.
(3.36), reveals that there are logarithmic corrections
to Eq. (3.31) precisely at T . Such corrections are
virtually undetectable experimentally, so we will ig-

nore them.
Inserting Eq. (3.31) into Eq. (3.25), we recover the

usual power-law divergences at the Bragg points '
1.0 2.0

8WII"R

5.0

FIG. 8. Lines of constant g~ in a plane determined by
0

Poisson's ration cr~ and the inverse reduced shear modulus

P& . The locus of dislocation-unbinding transitions is

shown as a heavy line. Values of cr~ nd p,~' in the shaded

region cannot occur in the solid phase. Note tht q& never
0

exceeds 3, which it achieves precisely at T when we have
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as Tapproaches T, where qg'is given by Eq.
(1.18). Since g+(T) diverges exponentially, peaks in

S(q) at the Bragg points should be a prominent
feature in a diff'raction experiment near T . Note the
di8ering divergences at the diN'erent Bragg positions.
Since the width of the peaks should be proportional
to g+, the integrated intensity in any peak remains
finite at T . Note that the integrated intensity for

~ q —6 (
& g+' is given by

I, —g 2S(G, T) —
g (3.39)

The free dislocations present above T permit a
shear stress to relax by the process of dislocation mo-
tion. " It may be seen that there will be a finite
viscosity v(T) above T with magnitude inversely
proportional to the density nf of free vortices, i.e.,

t (T) ~ 0+2(T) 0.40)

[Cf. the relaxation of superflow, discussed in Ref. 5.],
We neglect here the weak divergence of t (T) at long
wavelengths, which is expected for any two-
dimensional fluid. A more complete discussion of
the dynamics near T will be given in a separate pub-
lication.

IV. ORIENTATIONAL ORDER AND THE
DISCLINATION-UNBINDING TRANSITION

A. Oriyntational order below T~

e(r) = —,
'

stltl, uq(r) (4.2)

it is straightforward to compute the correlation func-
tion analogous to Eq. (4.1), namely,

Thus far we have not discussed orientational corre-
lations above and below T . As has been observed
by Mermin, " the solid phase has long-range orienta-
tional order. Mermin noted that averages of the
form

([u (R+ ape, ) —u (R)] [u (apel) u (0)]) (4 1)

with i = 1, 2, are nonvanishing (and are, in fact,
equal to ap2) when evaluated using a simple harmonic
theory of phonons. Clearly, this means that the an-

gles of bonds connecting nearest neighbors are corre-
lated over large distances even though long-range
tranlational order is absent.

A closely related measure of bond correlations is
the orientational order parameter p(r) = egest~ dis-
cussed in Sec. I. Note that a bond-angle field can be
defined even in a liquid, provided a suitable
definition of "nearest neighbor" is made. ~~ Since
8(r) is related to the displacement field u (r) in the
continuum limit by

(p'(r)p(0)) =exp[,—36((8 (0)) —{8(r)8(0)))]

.=exp —9e/Js DJ '(q)
a/ q

xq;q (I —e"") (4.3)
t

2In Eq. (4.3) ~~ means (I/4m ) &~ d q, and DJ„'(q) is
q

the inverse of the dynamical matrix appropriate to
isotropic continuum-elasticity theory, i.e.,

i( ) 1
g

VgQ 1

p, q2 q2 2p, + X q4
(4.4)

I

l

t

I
I
I
I

TN

FIG. 9. Variation of the shear modulus p,~ and orienta-

tlonal order parameter ( (Q) ~
on a smooth substrate: Both

quantities drop discontinuously to zero at T~.

Remembering that the effect of dislocations can be
absorbed in renormalized elastic constants u, lt (T) and

Xs(T), and making use of antisymmetry of s&, we

find

) (-) 9ks T — 1 Jp(qr)—
2m "o ps(q T)

(4.5)/

where A is an appropriate ultraviolet cutoQ', say,
A —ap ' and pa(q, T,) is the wave-vector dependent
shear modulus. This, of course, is a continuous
function of temperature except at q =0.

According to Eq. (4.5), (Q "(r)Q(0)) does indeed
decay to a nonvanishing value at large r given ap-
proximately by

1(y(r)) I =exp - [9ks TA'/g ~us(T)] (4.6)

The behavior of pR (T) and
~ (g( r )) as a function of

temperature is indicated schematically in Fig. 9.
Although p,a(T) displays a )T —T

~

.s 3" cusp as T
goes to T from below,

~ (P(r)) ~
contains only an

essential singularity. If Eq. (4.6) were exact, one
would of course also have a cusp in ) (P(r)) ~. Only
the q =0 component of the shear modulus p,a (q, T)
entering the more accurate formula (4.5) has this
cusp, however. The small q part of the integration in
Eq. (4.5) is damped out by phase-space factors,
which converts the cusp in p, s (0,T) into an essential
singularity in ( (P(r)) ~.
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B. Orientational correlations above T~ 8 (q) =[—iq b(q)ao]/q', (4.13)

ac~ = —,
'

K~ (T) ~

( 08(r ) [' d2r (4.7)

where K~ (T) plays the role of a Frank constant in a
liquid crystal. Although K~ would be a tensor of
rank two in a two-dimensional nematic, ' the sixfold
symmetry in the present case leads to a single scalar
constant.

To check this hypothesis we must calculate Kz(T),
which is given by

To see that (P
"( r ) ill ( 0 )) tends algebraically to

zero at large r just above T, we must determine the
effect of a gas of free dislocations on orientational
fluctuations. As discussed in Sec. III, the elastic con-
stants us(T) and A.&(T) vanish above T . If there is
residual orientational order above T, we expect this
will be controlled by a Hamiltonian of the form

where b (q) is the Fourier-transformed Burger's vec-
tor field, so that

ks T/Kg =lim (a$/Q)(qlq&/q ) (b (q)bJ( —q))q~
(4.14)

It is difficult to evaluate Eq. (4.14) directly just
above T, where the physics is dominated by a mix-
ture of free and bound dislocations. As is evident
from Eq. (3.22), the correlation length in this region
is quite large. This calculation can be related, howev-
er, to a more tractable one far from T by the renor-
malization equations constructed in Sec. II. This re-
normalization transformation was constructed to keep
the renormalized elastic constants (2.16) invariant.
Since Eq. (4.8) defining Kq involves two more gra-
dients, the transformation law for K~ is simply

ksT/Kg =lim (e'/II) (e(q) 8(—q)) (4.8) KA (p„X,y) —= e2'ICq (p, (l), X(l),y(l))
B

(4.15)

where 8(q) is the Fourier-transformed bond-angle
field,

8(q) = J d" "e(-) (4.9)

1[os( ) I 8X + 4 p
2p ~x Ko

using(r) I &X + 4 g
2p, Bp Kp

(4.10a)

(4.10b)

where X(r) is a function which drops out of the
present calculation, and

Since it is easily seen that the smooth part of the dis-
placement field does not contribute to Eq. (4.8), we
must determine the Burger's vector contribution to
8(q) to proceed further. According to standard texts
on dislocation theory, ' the displacement field
u""'(r) surrounding a dislocation of Burger's vector
b in the x direction located at the origin is

in contrast to Eq. (3.1). We shall determine Kq (T)
by evaluating the right-hand side of Eq. (4.15) at the
same value of I = I'we used to determine the corre-
lation length g+(T) (see Fig. 7). One is left with the
relatively simple high-temperature problem of deter-
mining

K„(&(1"),K(I'),y(1")) .

At sufficiently high temperatures, Kq can be calcu-
lated using Debye-Huckel theory, which amounts to
treating b (r) in ~D [see Eq. (2.12)] as a vector of
continuous length. (This approximation is discussed
further in Appendix B.) We shall actually treat the
more general dislocation Hamiltonian (1.24) in this
way. Upon Fourier transformation (see Appendix
A), Eq. (1.24) becomes

BC D $ ] Ki +K2 qjqj K~ —K2 qjqj

kB T 2 & q2 2 q2 2 q2
8jj +

2E,a2
+ '

gs b, (q)bq( —q)
AT

(4.16)

(4.11)

Forming '

8,(r) -=-,' [8 u, (r) -B,u„(r)],
we find that the rotation induced by an isolated dislo-
cation 8,(r) = aobx/2mr' Th—e generaliza. tion to an
arbitrary complexion of Burger's vectors b (r) is im-

mediate, i.e.,

This is a small momentum approximation, designed
to reproduce the large

~
r —r'~ behavior displayed in

Eq. (1.24). A cutoff-dependent constant has been
absorbed into a redefinition of the core energy.

Integrating freely over the bI(q), it is now straight-
forward to evaluate the average in Eq. (4.14), i.e.,

b b =) = 2q 02.""' ''=K, +K, +4E, ./k, T"
i

—ao
X

b(r') ~ (r —r')
2n, (i —i')2

Upon Fourier transformation we obtain

(4.12) 2q 0 qjqj

Ki K2+4E, q a /ksT q—
(4.17)
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Since the part proportional to the transverse-
projection operator does not contribute to K, ', we
obtain

AT 2q= lim
Kg e~ Ki —K2+4E,q'a'/ks T

ks T/2E, a, K) = K2,
0, Ki AK2. (4.18)

K„(T)/ks T —e"—&+2(T) . (4.19a)

For the case Ki & K2 (which describes melting on a
periodic substrate —see Sec. V) we have

For the case of a smooth substrate (K~ =K2), we
find K&=2E',a'/a0=0(ksT ), a finite result. Com-
bining this with Eq. (4.15), one finally obtains 1

re(Ti) = (4.23)

In analogy to the behavior of the superfluid density
in a 4He film, 4 the renormalized Frank constant
should jump discontinuously to zero at T;, 4'

where s(r) =0, + I, +2, +3,... is an integer meas-
ure of the disclinicity at the point r, a is the disclina-
tion core size, and E, a disclination core energy.
Note that the screening effect of a gas of dislocations
has produced a rather weak logarithmic interaction
between disclinations. Disclination pairs are quite
tightly bound in the solid phase with energy increas-
ing as the square of the separation. '

The transcription of Kosterlitz's results is immedi-
ate. A disclination-unbinding transition occurs at a
temperature T& such that we have'

K„(T)=~, (4.19b)
lim K~(T) =72ksT, /m.

T~T
l

(4.24)

(iii'(r) Q(0)) —r "' (4.20)

indicating that true long-range orientational order
persists in this case.

Having determined the Frank constant which
enters Eq. (4.7), we are in a position to study the de-
cay of orientational order. A standard40 calculation
gives

&y (r) y(0)) —e (4.25)

where the orientational correlation length (&(T) is
strongly divergent. As T T;+, one finds2

b/1 T—T 11/2

(~(T) —e (4.26)

Above Tj, one obtains exponentially decaying orien-
tational order in an isotropic liquid

with

v)r, (T) = I gks T/rrKg (T) (4.21)
~here b is a constant. As usual, there is only an
essential singularity in the specific heat, i.e.,

This slow decay of orientational order leads us to
identify the phase above T as a kind of two-
dimensional liquid crystal. Note that ri6(T) tends to
zero rapidly as T goes to T from above.

(—2 (4.27)

C. Disclination-unbinding transition

The algebraic decay of orientational order does not
persist indefinitely, but is destroyed at a temperature
TI ) T by the dissociation of pairs of +60' disclina-
tions. Indeed, the system is now isomorphic to the
model of superfluidity and XY magnetism treated by
Kosterlitz, 2 except that disclinations play the role of
vortices. Following Kosterlitz, we decompose the
bond-angle field e(r) into smoothly varying part
P(r ) and a part due to a collection of disclinations.
Inserting this decomposition into Eq. (4.7), one ob-
tains

V. PERIODIC SUBSTRATE POTENTIALS

A. Weak incommensurate potentials

Consider a Hamiltonian of the form

' —X v(K+ u(K)), (5.1)

Since many experiments are carried out on solid-
liquid transitions in films adsorbed onto a crystalline
substrate, it is important to determine the effect of
commensurate and incommensurate periodic poten-
tials on our results.

scD =—Kg J d r('7@) .

I

+E, Xs2(r)
r

(4.22)

where Xs is given by Eq. (2.1) (with dislocations in-
cluded), the summation is over lattice sites of the ad-
sorbed crystal, and V(r) has the periodicity of the
substrate. . An overall factor —I/ks T has been ab-
sorbed into the definition of this potential. The func-
tion V(r) has the Fourier representation
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y(r) g h~i K r~ (5.2)

where the sum is over the reciprocal lattice (K } of
the substrate and

-IF r y(-)n~ (5.3)

where 0 is the area of the system.
If none of the (K } in the sum (5.2) coincides with

an adsorbate recirpocal-lattice vector, the substrate
potential is incommensurate with the adsorbate lat-
tice. Physically, one might expect that weak poten-
tials of this kind could be neglected at long
wavelengths, with some slight modification of the
continuum-elastic theory appropriate to a smooth .

substrate. To study this further, let us expand the
periodic part of Eq. (5.1) in the displacements u (r),

The elastic part of the Hamiltonian KE has been
Fourier transformed and written in terms of the
dynamical matrix D&(q). Although D&(q) has the
usual isotropic form appropriate to a triangular lattice
at small q,

Dti(q) = pq'se+(p, +))qqj+0(q') (S.S)

we shall be interested in the properties of this matrix
far from q =0, where the underlying lattice structure
makes D&(q) manifestly anisotropic. In particular,
D&(q) should have the periodicity of the adsorbate
reciprocal lattice.

The first term in the expansion of the potential in
Eq. (5.4) vanishes and the term linear in u(r) can
be eliminated by a shift in u(q), i.e.,

u, (q) u, '(q) = ti&(q) +»1(q) (5.6)

with

ri, (q)D;J(q) tip( —q) + X X h-„
AT 2kgT ~ R K

+/ah-„e'"'"(I+iK u(K)+ ' } (5.4)

Rewriting DJ(q) in terms of polarization vectors
e, (K) and eigenfrequencies ~,(K), the second term
in Eq. (5.8) becomes

[K e, (K)]'c(e) -=—g x h-„'

x s-1 al, (K)
(5.9)

Although C is independent of the displacements, it
clearly depends on the orientation angle B of the ad-
sorbate lattice measured from some preferred orien-
tation relative to the substrate. The function C(e)
has sixfold symmetry for triangular adsorbates on tri-
angular substrates, but a 12-fold symmetry for tri-
angular adsorbates on square substrates. It has the
Fourier expansions

C(e) = 0 /eicos(6je)
J-0

(triangular substrate), and

(5.10)

C(e) = II $ cqcos(12je)
j~

(5.11)

where we have dropped the primes on u, and where

y = C"j40 is a new elastic constant. Upon resolving
u into a smooth part @ and a part due to dislocations
u„„~, Eq. (5.12) becomes

d f
k &

= —, Jt, »i 4i+i4kk+V(~, 4. —&.4,)'}
kg T 2 g02

(square substrate), where we take 8 =0 to correspond
to perfect alignment. Of course, the substrate and
adsorbate. crystallographic axes need not be aligned
with each other in the state of minimum energy. 2 It
will then be convenient, for the following discussion,
to redefine B to be measured relative to the
minimum-energy orientation.

If the relative orientation of the adsorbate and sub-
strate lattices is now allowed to vary slowly in space,
B becomes the bond angle field
8(r) =

2 (B,u„' —ti„u, ') discussed in Sec. I. For small

deviations of 8( r ) from perfect alignment, the effec-
tive elastic Hamiltonian at long wavelengths is now

8Ce = —,
'

JI dr'[2pu, ,'+ Zuk2k+ y(h, u„—h„u,)'[, (5.12)

april(q) =iDti (q) X+ghx~x, z
K

(5.7) ~D
ksT

(5.13)

The function biK - is unity if we have K.= q +0 for
some adsorbate reciprocal-lattice vector 6, and equals
zero otherwise. Inserting Eq. (5.6) into Eq. (5.4), we
obtain

where p„A., and y are reduced elastic constants, and
scD is given by Eq. (1.24) with (see Appendix C)

4p, (p, + h, ) 4p, y
2p, +A, p, +p

Fi, '(q) fj (q) fij'(q) (5.14)

Xh-„K(Dr '(K)Eg+
K

(5.8) %e expect a dislocation-unbinding transition in this
more general dislocation problem very similar to the
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one discussed in detail in Secs. II and III. Indeed, it
seems clear that the generalization of the recursion
relations (2.43a) and (2.45) to this situation must
take the form

—1

= 12 n 2A (Kt, K2)y (5.15a)

~ = 2 — y +2mB(Kt, K2)y
d
dl 8m

dEC '
= C(Ki,K2)y', (5.15c)

where a detailed calculation would be necessary to
determine the functions A, 8, and C. Recursion
equations of this form would lead to qualitatively
similar results to those dicussed in Sec. III, except
that the exponent v entering the correlation length
now becomes a function of the limiting value

limi „K2(l) at T . Clearly, the renormalized value

of K~ must be 16m at T . Equations of the form Eq.
(5.15) have recently been derived by Young. "

Below T, y(l) should be driven to zero by Eq.
(5.15b); the long-wavelength properties of this float-

ing solid phase are then given by the first term of Eq.
(5.13) with suitably renormalized elastic constants

pR (T), h.s (T), and ys (T). It is straightforward to
show that the exponents rto(T) characterizing the

power-law singularities at the Bragg points {6j in
this phase are now given by Eq. (1.5) with the re-
placements

ps(T) ps(T) + ys(T), (5.16a)

(5.15b)

Xs(T) ~ h (Ts) —2yg(T) . (5.16b)

The sound-propagation velocities at long
wavelengths are also given by their usual expres-
sions, ' provided one makes these replacements. Of
course, the power-law Bragg peaks in the structure
function discussed above should be accompanied by a

set of induced 5-function peaks at the two-

dimensional reciprocal lattice {Kj of the substrate
surface, as well as induced singularities of the form

2 +~gS ~
~ q —6 —K{,occurring at linear combina-

tions of elements of {6j and {Kj.
The changes of the replacement (5.13) makes on

the disclination-unbinding transition above T are
more profound. As was sho~n in Sec. IV, the Frank
constant K~(T) is infinite if K~ A K2, indicating that
conventional long-range orientational order persists
even above T . In particular, the elastic constant

7 R (T) remains nonzero. .

From Eq. (5.11a), we see that the effect of a tri-

angular substrate is to produce a magnetic-field-like
perturbation which couples linearly to the order
parameter P(r) =e6"t~. Consequently, we expect
that the discliriation-unbinding transition is washed
out, and that { (P(r)) { tends gradually to zero with
increasing temperatures. For square substrates, how-
ever, Eq. (5.11b) indicates a coupling to the square

of the order parameter. Since this is very similar to
an Ising-like perturbation to a two-dimensional planar
model, ' we expect an Ising-like phase transition to re-
place the disclination unbinding present on a smooth
substrate. The behavior of { (P(r)) { as a function of
temperature in these two cases is shown in Fig. 10.
A logarithmic specific heat anomaly should accom-
pany the Ising-like phase transition on a square sub-
strate.

8. Weak commensurate potentials

For weak substrate potentials commensurate with
the adsorbate lattice they are perturbing, the adsor-
bate and substrate reciprocal lattices {6} and {Kj
have a set of wave vectors in common. The analysis
presented in Sec. VA then breaks down, since some
of the phonon frequencies in the denominator of Eq.
(5.10) now vanish. Let {M} be the set of
reciprocal-lattice vectors common to both {Kj and
{6}, and let Mo be the minimum length of the
nonzero vectors in {M }. Components of substrate
potential in the expansion (5.2) not in {M } can be
treated by the methods of Sec. VA. Terms
corresponding to members of {M j with magnitude

{ M { & Mo will turn out to be more irrelevant than
the terms we will consider explicitly, We are thus led
to focus our attention on

XelQ u(R)
k~T k&T

I pl-~, g
(5.17)

N GULAR SUBSTRATE

I&/&l
I

I

UARE SUBSTRATE

lCf&)
I

FIG. 10. Variation of the orientational order parameter
for melting on triangular and square substrates.

where the effect of the incommensurate terms in Eq.
(5.2) has-been incorporated into st.'e.

To determine the importance of the hg perturba-

tion, we calculate its renormalization-group eigen-
value in terms of the elastic constants ps(T), ks(T),
and ys(T) which appear in Ke. We assume we are
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in a floating-solid phase, and that the renormalizing
effect of dislocations has already been taken into ac-
count.

Equation (5.17) takes the form

(S.lga)

with

0 (R) eIQ ~ u(R) (5.18b)

(0 (R)0 (0)) (eiQ [u(Nr —u(0)]) 1~
&g

The renormalization-group eigenvalue of hg ean be

extracted from the large-distance behavior of auto-
correlations of Og(R) in the ensemble with hg=0.
The relevant correlation function is

commensurate phase and underlying substrate.
For sufficiently fine substrate mesh (large Mo),

commensurate perturbations will become irrelevant
()).ir (0) before dislocations cause the adsorbed film
to melt. A floating solid can then exist over a finite
band of temperatures, even at coverages where the
adsorbate lattice happens to be commensurate with
the substrate. The dotted line indicates a locus of
such points, where the periodicity of the floating solid
is identical to that of commensurate phase II, which
occurs at lower temperatures. %e expect the
dislocation-unbinding transition at the point A and
properties of the orientation order parameter to be as
discussed in Sec. V A. The precise criterion for de-
ciding when it is possible to have a floating solid at
intermediate temperatures in the presence of a com-
mensurate perturbation was discussed in Sec. I [see
Eq. (1.23)].

(5.19)

~here

Moks T(3)I,R + XR + yR)
2)Q ~

4~(I R+VR)(2I R+)(R)
(5.20)

The expectation values in Eq. (5.19) are evaluated
with the harmonic part of the Hamiltonian (5.13),
using renormalized elastic constants.

It follows that the renormalization-group eigen-
value A.~ associated with this power-law decay is '

10=2 —2g

soka~ 3@~ + ~~+
8 % (P'R + 7 R ) 2 ILR + )) R

(5.21)

According to Eq. (5.21), all commensurate pertur-
bations are relevant variables (h.ir )0) at sufficiently

low temperatures'. The strength hg of these pertur-
bations grows under repeated iterations of the renor-
malization transformation, presumably leading to a
lattice-gas description of the absorbed film. For
sufficientl coarse substrhtes (small Mo), )(ir remains

relevant up to the temperature at which the crystal
would melt in the limit hg =0. One now expects in-

stead a transition directly from a low-temperature
commensurate phase into a fluid, as shown for com-
mensurate phases I and III in Fig. 4. The Kosterlitz-
Thouless picture and the analysis of this paper are
then inappropriate at any temperature. One could in-
stead attempt a renormalization-group analysis of a
lattice-gas model of the adsorbate, along lines taken,
for example, by Berker et al. and by Domany and
Riedel. The exponents associated with the transition
will typically depend on the relative symmetry of the

C. Floating-solid commensurate transition

where

t d2& e —IQ r+V(r)
0 (5.23)

Incommensurate terms in the potential have again
been incorporated into XE. For the potentials
displayed in Eq. (5.17), it is easy to show that we
have

Ag —exp[ —(1/2') I
M I') (5.24)

in the limit h~ 0. More generally, let us take

iny~l ~ I2

Ag =A-, e (5.25)

where the limit of vanishing potential strength now
corresponds to y~ 0.

Inserting this decomposition into the partition sum
associated with Eq. (5.17), we obtain

The floating-solid-commensurate transition can be
studied in. more detail at the special point marked B
in Fig. 4, where the dotted line runs into commen-
surate phase II ~ This will be done by mapping this
problem onto a vector Coulomb gas of the form
(1.24).

Consider the Hamiltonian (5.17) well below any
dislocation-unbinding temperature so that dislocations
can be neglected at long wavelengths. Rather than
Fourier expanding V(R), as done in Eq. (5.17), let
us instead represent e as a Fourier sum, i.e,

eV(R+u(R)) Xg eiQ u(R) (5 22)
'Q
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r

Z =T—re a g J/D@(R) exp ——,
'

J —,(p, +y )['7$(R)]'+(p +&a —ya)[& g(R)]'
(Q(R)I ao

+ Jt"", M(R) y(R)+i.y JI'"~ ~M(R)~' . (5.26)
Qo ao

At each lattice site R of the adsorbed film, we sum over the reciprocal-lattice vectors [M (R )] of the substrate.
We have approximated the elastic Hamiltonian (5.13) by

,'[pa(& i)'+(I a+&a)('7 @)'+Yal & x @ I']
AT 2 ~ Qp

=—J '[(pa+pa)(&@)' +(p a+~ a—Va)(&'4)'] (5.27)
2 Qp

where $(R) is a smoothly varying displacement field. A partition function of precisely this form was treated in

Appendix A of Ref. 32 in a different context. Carrying over the manipulations described there, we integrate out
the @ field, and find

dR & d2A
X exp' J, J, pM(R, ) M(R.,)in -'

IQ(R)I Qp Qp, g

M (R)) (R& R2) M (R2) '(Rl R2) t dR

R) —R2)' Qg

kaT(3va+) a+ra)
4 Ir(pa + ya) (2pR + "a)

ks T(pa + ~a —ya)
4~(~. +y.)(2~.+).) '

(5.29)

(5.30)

and y~ is proportional to y~, and X-„M (R) =0.
Equation (4.17) is, of course, just the vector

Coulomb gas for dislocations (1.24). Note. that P and

Q are proportional to temperature, in contrast to the
couplings K, which appear in Eq. (1.24). Although
we have not carried out a detailed renormalization-
group analysis of Eq. (4.17), we expect the recursion
relations for P(l), Q(l), and y~(l) to have the struc-
ture (5.15), with P = Kt, Q = K2, and y~ =y. We
expect in particular that y~(/) tends to zero at
sufticiently high temperatures, with an instability sig-

naling a transition into an epitaxial phase when
I' =4. This transition should be very similar to the-
melting transition discussed in Sec. III, with an ex-
ponentially divergent correlation length as T, is ap-
proached from the commensurate phase. A schemat-
ic plot of the expected renormalization-group Aows

[with the motion of Q (I) suppressed] is shown in Fig. 1 l.
The above considerations do not apply to the float-

ing solid-commensurate transition at points other
than 8 in Fig. 4. cwork by Luther and Pokrovsky4'
on a very simpli6ed model of the commensurate-
incommensurate transition suggests that the periodi-
city of the Qoating solid approaches that of the com-
mensurate solid continuously, the deviation being
proportional to

~
T —T, ~'~2 as one approaches the

transition curve at a general point. The sign of the
square root changes as one passes through the point

8, and of course, the square-root term vanishes pre-
cisely at 8. The specific heat singularity at a general
point is also stronger than at the point 8.

A second possibility is that the commensurate-
incommensurate transition at points other than 8 is
first order, with a jurnp in the adsorbate lattice con-
stant.

D. Strong substrate potentials

Although strong substrate potentials are dificult to
treat in general, we can make some speculations
based on the results of Sec. VC. Phase diagrams as
a function of temperature and potential st'rength (at
fixed coverage) are shown in Fig. 12 for both com-
mensurate and slightly incommensurate potentials.

4.0 F (/) -kgT

FIG. 11. Hamiltonian flows near the floating-

solid —commensurate-solid phase transition, The floating

solid corresponds to the shaded region, and the region of in-

stabilities is the commensurate phase.



19 DISLOCATION-MEDIATED MELTING IN T%0 DIMENSIONS 2479

Fig. 12(a) shows the commensurate case for large
Mo', this situation is very much like the cosp8 pertur-
bations treated by Jose et al. ,

' for p & 4. We have
seen that a suSciently weak incommensurate pertur-
bation can be neglected at long wavelengths. at all

temperatures. A strong incommensurate perturba-
tion, however, can pull an adsorbed film in partial re-
gistry, creating a new commensurate phase. This is
illustrated in Fig. 12(b).

It is intriguing to consider what would happen if
the three phases shown in Fig. 12 persisted even in
the limit of infinite potential strength. One would
then be dealing with a lattice-gas mode146 with a melt-
ing transition similar to.that of a continuum model
on a weak incommensurate substrate. Our results
suggest that there is a critical mesh size for such
lattice-gas models. Although a coarse mesh would
completely obscure any continuum d =2 solid-Quid
transitions, any mesh finer than the critical size could
be used to study dislocation-unbinding'transitions.
The mesh in this case would cause a spurious transi-
tion into a commensurate phase at low temperatures,

h"

ho~ever, and would alter or eliminate any
disclination-unbinding transition at high tempera-
tures.
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write Eq. (1.24) in the form,

'

APPENDIX A: FOURIER REPRESENTATION OF
THE DISLOCATION HAMILTONIAN

Qeg =—X Vs(r~ —rq) bl(r)) bg(rq)
AT

and try to represent the behavior of Vtl(R) at large
R by

(A1)

The calculations of Sec. IV make use of a Fourier
representation of the dislocation Hamiltonian (1.24)
valid at long wavelengths. To see that Eq. (4.16) is
indeed the desired form, let us write Eq. (1.24) in the
form,

Vs(R) = Vs(q)(1 —e" )0

where

(A2)

Vy(q) =—
~

Xgg+ Y, +Zgs+0 q,1 q;q&

q

(A3)

FLOAT IN G +
SOLI D

FLUl0

(b)

FIG. 12. (a) Phase diagram for an adsorbate subjected

to a commensurate substrate perturbation with high periodi-

city of strength h. The line of asterisks at h =0 represents a

solid phase on a smooth substrate. Commensurate solid,

floating solid, and fluid phases exist for finite h, however.

(b) Phase diagram for a slightly incommensurate potential.

At any fixed temperature below melting, such potentials are

unimportant for suf5ciently small strengths h. Consequently

a sliver of floating-solid phase extends down to zero tem-

perature. Conversely, a sufficiently strong incommensurate

potential can force the adsorbate into registry, creating a

commensurate solid.

V'(R) = —Xg„+ Y '+ (1 e" "), —(A4)

which will take desired form
't

V '(R) — ln —+C gs — +0-K( I Kg R(RJ g

a ' 8~ R&

(A5)

The integration in Eq. (A2) runs over the Brillouin

zone appropriate to the lattice of possible sites for

Burger's vectors, J means (1/4n') d'q and X, Y,
e

and Z are to be determined. When inserting Eq.
(A2) into Eq. (Al), the factor' (1 —e'+'") can be re-

placed by —e'+'", due to the charge neutrality condi-

tion X, b (r ) =0.
Since Z clearly contributes only to a core energy,

we concentrate on
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provided X and Y are chosen correctly. To extract
Ki, we take the trace of Eq. (A4), perform the angu-
lar integration, and impose a convenient exponential
cutoff

Substituting Eqs. (A3) and (A2) into Eq. (Al), we
are led immediately to Eq. (4.16), provided Z is ad-
justed to give the correct core energy.

V„„'(K)= 2X+ Y dq [I J,(—qR)]e "+-0—'
2m «q R

X+ Y a +(R2+a2)ii2
ln

2m 2a
+0-a

R
APPENDIX 8: DESYE-HUCKEL APPROXIMATION

Comparing this with the trace of Eq. (AS), we con-
clude that we have

(A7)

and that 2C —K2/gm is cutoff' dependent.
Turning to the off-diagonal element of V&'(R), we

find

1

S= X ~[[b(r)]}~ Xb(r)
(b( f r

(BI)

In this Appendix, we discuss the Debye-Huckel ap-
proximation, which was used to estimate the Frank
constant Kq(T) in Sec. IV. The approximation will

be developed in a way which allows one to estimate
the error involved in approximating sums over
Burger's vectors by integrals.

%e want to evaluate sums of the form

V '(R) = —cos8sinq(1 —e'i""' ' &)
XP (A8)

where (R, $) and (q, &) are the polar coordinates of
R and q. Straightforward manipulations now give

V~'(R) = cospsin@ ~ J2(qR)+0-Y . d a
2m 4P q R

Y cosg sin@+ 0—a '

4e R
(A9)

Comparison with Eq. (A5) now gives a cutoff in-

. dependent result

K2=—2Y (AIO)

X =
4 (Ki +K2), Y = 2K2—1 1 (All)

and we conclude that the only cutoff dependence is in
C. In order that Eq. (Al) agrees with Eq. (1.24), we
must take

~here g is some functional of a set of Burger's vec-
tors

(b(r)}= Im(r) ei+n(r) ei}

located at the sites of a square lattice. The function
b, (x) is zero except at the origin, where we have
5(0) =1; it selects only those complexions of
Burger's vectors which satisfy the charge neutrality

.condition.
At high temperatures [small Ki and K2 in Eq.

(1.24)], dislocations with quite large Burger's vectors
will be excited. This suggests that it may be reason-
able to treat b (r) as a continuous vector field, rather
than restricting it to the discrete points of a Bravais
lattice. To make this idea precise, we apply the
Poisson-summation formula to each sum over
b (r), making repeated use of the identity

X f(b(r)) =— g X f(m(r) ei+n(r) e2)
b( m (r)-—oo n (r)

oo oo

s&(r)-—oo s (r) —oo
2

(B2)

valid for any function f(x). Upon defining

y (r) =pi(r) e]+@2(r)e2,
x =c~ 'e2

and

(a3)

(84)

we obtain

S= X gJ~ dP(r)S([P(r)]}h Xy(r)
~s&) r r

&exp 2ni X@(r) s(r), (86)
r
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where an overall factor given by the Jacobian of Eq.
(B3) has been suppressed.

Setting all s (r) =0, we arrive at an approximation
which effectively replaces b(r) in Eq. (1.24) by a
continuous vector field $(r). Corrections to this ap-
proximation may be found by'systematically taking
into account larger and larger values of the (s (r ) }.
Re-expressing F in terms of

9img =0, (c2)

where m &(r } is an asymmetric stress tensor, i.e.,

s'y =2pQy+ XQ Sy+ p6 „8 Q„6y (C3)

Furthermore, the normal component of m& must
vanish at the boundaries, including the perimeter of
the excluded core about each dislocation. It is con-
venient to introduce a symmetric stress tensor

P (q) =Xe"'@(r) (B7)
pti

= (2p +27 ) us + (X —2 y) ukk gs (c4)
we have

S =g J dg, (q)&((@,(q)]}A(g,(q=0)) +... , (B8)

for which it can easily be shown that in the interior,
we have

~~my = ~1~y =o (CS)
where only the term corresponding to all the s (r) =0
has been displayed. Using this approximation to
evaluate (bl(q) bj(q)), we arrive immediately at Eq.
(4.17). The charge conservation constraint plays no
role since its only effect in Eq. (BS) is to force
pl(q =0) to zero. The neglected terms in Eq. (B8)
are also easy to calculate; it is straightforward to show
that they are indeed negligible at high temperatures.

APPENDIX C: DISLOCATION HAMILTONIAN FOR A
TRIANGULAR LATTICE ON A SIXFOLD SUBSTRATE

In Sec. V, we showed that the elastic properties of
a triangular adsorbate solid could be represented by a
Hamiltonian of the form

Since the equation Sip& =0 is identical to the equa-
tion appropriate to an isotropic solid with e6'ective
elastic constants,

p, = p, +y, A, = A. —2'V (C6)

we can take over with some important modifications,
results from isotropic continuum-elasticity theory. '

Following the usual methods for determining the
stress field surrounding a dislocation, we write the
symmetric stress tensor in terms of a scalar function
X(r), i.e.,

ptl(r) =e, eg, 8 8„X(r) (C7)

Although pti(r) now automatically satisfies Eq. (C5),
there are compatibility conditions which require"

& = —JI d'r [2@,us'+Xuk2k+y(8 uy By@ )i], (Cl) V4x(r) -0,. (CS)

where the final term arises from the preferred orien-
tation relative to the substrate. It was argued that
this would be an appropriate long-wavelength descrip-

. tion of the elastic properties in the floating solid
phase. Here, we determine the dislocation Hamil-
tonian corresponding to Eq. (Cl).

Consider an array of dislocations, in a crystal of
large but finite size. The integration in Eq. (Cl)
shall be takeA over the area of the crystal, excluding
a core region of radius a about each dislocation. The
displacement u must be continuous and differentiable
within the region of integration, but may be a multi-

ple valued function, however, when dislocations are
present. Specifically, the net change in u around any
closed contour is the sum of the Burger's vectors of
the dislocations enclosed by the contour. Our aim
here is to determine the displacement u (r ) which
minimizes the energy (Cl), for a given assignment of
Burger's vectors, and to calculate the value of that
energy.

The condition that the energy of a particular
configuration of displacements u (r ) be a minimum,
with respect to small variations Su (r), fmplies that
in the interior of the region of integration we have

The general solution of Eq. (C8) is

X xP +yQ +R

where P, Q, and R are harmonic, and P and Q are
harmonic conjugates. The displacements associated
with a particular solution are'9

—I bx~r=
2p, 8x

-1 8x
Qy

=
2', ~3'

2p, +X
P(P, +X)

2P, +X
p, (p, +i.)

(C10a)

(C10b)

X=2Ay In(r/a) +28xtt

P =(a -A)e,
Q (A —8) In(r/a)

(C 1 lb)

(C 1 1c)

where A and B are to be determined, and

r =(x'+y )'I', 8=tan '(y/x) (c12)

Let us try to find a solution corresponding to a dislo-
cation. at the origin, with a Burger's vector of length b

in the x direction. %e write
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It is easily checked that X, P, and Q are related as in

Eq. (C9). The usual solution for dislocations with

y =0 corresponds to Eq. (Cl 1) with 8 =0. To find A

and 8 in the present case, we first require that-we

have

(t du„= bao

r

() dMY =0

(C13a)

(C13b)

us = (I /2 p.)p„—(2/4 p(p + X)]pkk 80

and using Eq. (C7), we have

ms ——(p/P)e; e~„fi B„x+[(Zp —kp)/2P, (p+2)]

(C15)

which leads to the condition

27r8 + 2lr(A, +2p) (8 g ) b (C14)
p, +y (p, +y)(p, +z —y)

In order for the energy to be a minimum with

respect to a variation 5u of the displacement at the
perimeter of the dislocation core, we require that the
net force acting across any closed circuit surrounding
the dislocation vanish. '~ This force must be calculat-
ed from the asymmetric stress tensor m &(r). Noting
that we have

Solving Eqs. (C14) and (C21) for A and 8, we finally
have

bao (p+y)(p+k) b—aoy
2m 2p, +A. 2m

(c21)

which reduces to the usual result' when we have

y =0.
The elastic energy of an arbitrary complexion of

dislocations with displacements given by Eqs. (Cl 1)
and (C21) can be determined by the following trick.
Let us differentiate the dislocation contribution to Eq.
(Cl) with respect to y, i.e.,

(C22)

where ui(r) is the displacement field due to a set of
dislocations. Since we have already minimized XD
with respect to 5U, the second term vanishes and we
are left with the comparatively simple task of evaluat-
ing the squared integral of

X 7 X5(J + P&mn~m~n&ij ~
2 (C16) , 0 „(-) ao p X

b(r') (r —r')
p+y —, Ir —r'I'

(c23)
The force Fj acting across a closed circuit, given by

(c17)F, = &( n&n, dl

where nj is an inwardly directed normal, can now be
found using the results

This is the generalization of Eq. (C19) to an arbitrary
complexion of Burger's vectors. Inserting Eq. (C23)
into Eq. (C22), it can be shown after some manipula-
tion that we have

&'& =4(& —8)y/»',

a, (2p, + Z) (A 8) 2—
'EjJ ()j Qj

(p, + y) (p+ z —y) r'

(cis)

(C19)
with

202 2

X b, (r )bJ(r,) V~"'(r, —r,)p+y '--
"I' 2

(C24)

The force in the x direction trivially vanishes, and the
force in the y direction will vanish, provided

Ir(2)(r), ",, «b (I elq )4

p, 4 8 4my(2p+ A.) (~ 8) 0
p, +y (p+y)(p, +z —y)

(C20)

where we have made use of the charge neutrality
condition. Equation (C25) is just a special case of
the quantity (A2) evaluated in Appendix A. Taking
over the results tabulated there, we find

2 2 Ir —r'I + b(r) (r —r') b(r') (r —r')
m(p+y), ~, a Ir —r'I2

(c26)
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(C27)

Thus, K~ and K2 must have the form

(C28)

where a contribution to the core energy has again
been suppressed.

Comparing Eq. (C26) with the y derivative of the
expected result (1.24) and going over to reduced
elastic constants (p, = p, ao /ki, T, etc.), we arrive at
partial-differential equations for K~ and K2, i.e.,

9K) 4p, 9K2

By (+)' B (+)'

Imposing the requirement that we have

It't(p. » y) I-„~=&2(p.» y) I;~

4p(p, + Z)

2p, +~

we determine f~ and f2, and arrive at our final
results, namely,

4p, (p, +X) + 4p, y

2p, +A, p, +y

4p, (p, + 2) 4p, y2=
2p, +A, p, +y

(C29)

(c30)
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