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Nonlinear heat conduction in solid H2
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On the basis of recent empirical data, the temperature distribution in solid crystalline hydrogen is shown to
be governed by the essentially nonlinear diffusion equation a 8/a t = DH'+'8 in which there appears the
dimensionless variable 8 = [1 + (T/T, )'] ' with the constants D and T, dependent on the ortho-H, percentile.
It is observed that this governing equation can be transformed to an equivalent linear diffusion equation for
situations with one-dimensional spatial symmetry. By utilizing this remarkable linear-theoretic
correspondence, exact solutions to initial-value boundary-value problems of current experimental interest are
derived and reported here.

In solid crystalline molecular hydrogen, the
temperature distribution T = T(x, t) is governed by
the Fourier equation"

pc,sT/st=v (kvT),

where the density p =0.088 g/cm' at low pressures
(«1Mbar), the specific heat" c~ = (0.531 m J/g K')T'
at constant pressure, and the thermal conductiv-
ity" is given to within the experimental accuracy
of about 5'%%uo by the empirical expression

expected to correspond more closely to experi-
mentally observed temperature distributions in
cases for which T &2 K prevails throughout most
of the solid volume.

The general time-dependent solution is obtain-
able for one-dimensional spatial symmetry, with
Se/Sy = 8 8/Sx = 0 and V 8 = 8'8/Sx', by noting that
the'specialized version of (3) guarantees exis-
tence of an extensible distance coordinate x
=x(x, t) such that

k —= (19.4 mW/cm K)X '(T/T, )'[1+(T/T, )'] ', Sx/Sx= 8 ' (&1), Sx/St = Dse/Sx—, (5)

415 cm'/sec 1.69 cm'/sec
XT'. X(1 +1.043X)'

' (4)

Steady-state solutions to (3) feature harmonic
functions for 8 (e.g. , 8= const+constx for steady
heat transport with one-dimensional symmetry),
but the associated temperature distribution T
= T,(1 —8)' '8 ' ' varies with the spatial coordi-
nates in a much more complicated fashion. Be-
cause there is no inclusion of the g-dependent
Schottky-type term' in the specific heat for T & 2 K,
nor local heat release due to the conversion of
ortho-H, to para-H„' "solutions to (3) can be

(2)

in which X denotes the ortho-H, fraction (1 —)t the
para-H, fraction) and T, =6.26 +.65 y3. Valid as a
good approximation for T &14 K and 0.05 &X &0.75,
our empirical expression (2) features a mathe-
matically tractable dependence on T in place' of
the unwieldy Arrhenius-type umklapp term in the
semitheoretical formula for tQe thermal conduc-
tivity [see Ref. 5, Eq. (4)]. Substitution of these
empirical expressions for c~ and k into (1) yields
the essentially nonlinear heat conduction equation

se/st =De'v'e,

in which the dimensionless thermal variable 6)

= 8(x, t) = [1+(T/T, )'] ' is patently positive but less
than unity, and the diffusion constant appears as

since the one-dimensional form of (3) is the
integrability condition for x (obtained by cross
differentiation) that follows from Eqs. (5). From
the latter we have 8(8/ex), = (S/sx), for differentia-
tion with t held fixed, and (8/et), = (8/st);-D(88/
Sx)(8/Sx)~ by the chain rule. Hence, if viewed as
a function of the extensible distance coordinate,
the thermal variable 8—= 8*(R', t) satisfies the fami-
liar linear diffusion equation

88*/st =D 88*/80.

To eliminate x from a solution to .(6), one uses
the connection formula implied by (5),

(6)

x = (8*dx+D (88*/Sx) dt],

with the line-integral taken along any convenient
path in the x, t plane. Note that 0*=—1 and hence
x=x+const throughout spatial regions with T «T„
while 8* is significantly less than unity and x
varies more slowly with changes in x throughout
regions with T &T,. This means that more pro-
nounced thermal. gradients mill evolve and persist
in physical x space than those admitted in x space
by (6) in regions with T & T,.

This remarkable linear-theoretic correspondence
for one-dimensional heat conducti. on in solid H,
facilitates the exact solution of initial-value boun-
dary-value problems of current experimental im-
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x/2(Dt)' '= [8(+ (80 —8))(1 —erfrtg '] q

+(8, —8,)(l —erfg, )
'

x [r) erfq+g ' ' exp(-q')]. (9)

By setting x= 0 and q= g, in Eq. (9) and making
algebraic simpl. ifications, one obtains a formula
for the constant parameter t)0 in (8) and (9):

1 —8, '8, =m' 'rt, (1 —erfqg exp'',

portance, "as illustrated by the following two ex-
amples.

(a) Semi inf-inite solid subj ect to surface cooling
oxwarming: 8=-80 (=const) at x=0 for all t&0, 8
—= 8& (~const) at t=0 for all x&0. The desired so-
lution to (6) is

8= 8q+(80 —8~)(I —erfqo) '(1 —erfg) for qo &q&~,

(6)

in which

erfq—= 2s ' ' exp(-a') dn,
0

with '8= x/2(Dt)' —'given implicitly by evaluating (7):

9=8+m '~' A'x+2Dt'i'P exp—

(12)

x= N+w ' A(x+2(Dt)' P)exp( P—) dtl,

A(y)= A-(-y)=-A(y-+28 'L) for all real y,
(14)

and given over a half period by the equation de-
rived from (12) and (13) at t =0,

A(y.) +e y

8((x) 'dx=y.

From our original equation (3), it follows that

8(x, t) ' dx = 8 'I for all t & 0,

(13)
L

in which the constant 8= L[ fo 8;(x) 'dx] ', the
domain of x is 0 &x &7) 'L, and the functionA() is
odd, of period 28 'L,

'
1 —2go'+O(g, ') for ri, &1

=( n'i'rt, —2rto+O(rPO) for Idol

~2m' 'rlo[exprP, +O(l'gol )] for '14& —1.
(10)

8= 8 —q x/(Dt)' '+O(x'/Dt).

(b) Thermally isolated finite slab: 0 &x &I
with 88/sx = 0 at both x= 0 and x = L for all t & 0
and 8= 8~(x) at t =0 (prescribed general initial
value). The desired solutions to (6) and (7)
are expressible as

A unique positive value of rio satisfies (10) for
surface cooling with 0, 8», while a unique nega-
tive value of g, is obtained as the solution to
(10) for surface warming with 8, &8». In the neigh-
borhood of the surface in either case, the solution
(8)-(10) produces

8= 8+6 exp(—t/7') cos(s'8x/L),

x= 8x+ (v8) '6L exp(-t/v) sin(m8x/L),

(16)

(17)

where the constants 5 and 8 (& ~6 ~) are prescribed
by the initial temperature distribution.
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and differential-inequality analysis" can be applied
to (3) to show that lim, „8=8 for 88/ex=0 at
+=0 and L, the boundary conditions preserved
here for all t & 0 by the symmetry conditions in
Eq. (14). Further analysis shows that the charac-
teristic time for asymptotic approach to the uni-
form distribution 8 is generally given by &= L /
s'DiF, as in the representative special forms for
(12) and (13),
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