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Dielectric constant of a two-component granular composite:
A practical scheme for calculating the pole spectrum
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A new method is presented for a systematic calculation of the effective dielectric constant c, of a granular,
two-component composite material with a precisely known microscopic geometry. The basic approach is to
attempt to calculate the poles and residues of e, as a function of the dielectric constants of the pure
components. This calculation is reduced to an eigenvalue problem with a non-negative, self-adjoint, bounded
linear operator. That problem is dealt with 'in two stages: First the eigenvalue problem for each of the
individual, isolated grains is solved. Then the general eigenvalue problem for the entire composite is

expanded in terms of the individual grain eigenfunctions, and in this way it becomes a matrix eigenvalue
problem. The method is applied to a number of physical systems, including a general periodic composite, and
a simple-cubic lattice of identical spheres. The results include some new predictions concerning additional
optical resonances which should apped in periodic or quasiperiodic metal-insulator granular composites.

I. INTRODUCTION AND SUMMARY

In a previous article, we discussed the general
analytical properties of the complex dielectric con-
stant of a composite medium z, viewed as a func-
tion of the complex dielectric constants of thepure,
homogeneous constituents e„~„etc.' This was
done by introducing a characteristic geometric
function, which depends only on ratios of the e&' s.
In the case of a two-component or two-phase medi-
um, this function is defined by

m(h) =- ~,/e, .
For a specific, finite sample of the composite, this
function was shown to be analytic everywhere (in-
cluding the point h =~) except for a finite number
of simple poles with negative residues on the ne-
gative real, axis of k. Therefore, a knowledge of
the poles and the residues completely determines
the function m(h).

In this article we will develop a general method
for calculating these poles and their residues. The
basic idea is to recast the problem as an eigen-
value problem of a linear, non-negative, self-
adjoint operator —the eigenvalues being the poles
of m(h). Once this has been done, one can solve
the problem in stages: for a composite made of
grains 6y embedded in a host material e„we can
first solve the eigenvalue problem for each iso-
lated grain separately. We then expand the eigen-
functions of the entire composite using the eigen-
functions of the individual grains. In this way, we
get an eigenvalue problem with an Hermitian ma-
trix whose elements can be represented in the
form of overlap integrals involving eigenfunctions

of two grains.
When the general formalism thus obtained is

applied to the problem of two grains, and to the
problem of a periodic lattice of identical grains,
the results are somewhat surprising: when two
identical grains are considered, it is found, as
one might have guessed, that the mutual influence
or. interaction between the grains splits each of the
doubly degenerate eigenvalues into two distinct
eigenvalues. But the residues or weights are not
equally divided: one of the split poles carries all
of the weight, while the other has a vanishing resi-
due t Similarly, the interactions between the
grains of a periodic composite cause every eigen-
value of the individual grain to be broadened into
a quasi continuous band, in which the different
states are characterized by a wave vector k in the
first Brillouin zone of the appropriate reciprocal
lattice. But again the weights are far from being
uniformly distributed: in each band, all the weight
is concentrated in the k=0 eigenvalue. Therefore,
the spectrum of poles contributing to m(k) for such
a composite is discrete, as it was in the case of
the isolated grain, with every pole having a finite,
rather than an infinitesimal weight. In order to
get a spectrum of poles with weights that are
smeared quasicontinuously one presumably needs
to have a disordered composite.

The outline of this article is as follows. Section
II shows how the calculation of m(h) can be re-
duced to the problem of finding all the eigenvalues
and eigenfunctions of a certain linear operator. In

. Section III we apply this method to a series of
problems, starting with an isolated spherical in-
clusion; a system of interacting inclusions; a
pair of identical or similar (i.e., related to each
other by a uniform dilatation) inclusions; a gener-
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H. GENERAL THEORY OF THE POLE SPECTRUM

The poles of m(h) were shown in Ref. 1 to be
eigenvalues of the following linear homogeneous
boundary-value problem for the electrostatic po-
tential g in a parallel plate condenser with per-
pendicular walls, filled with the composite mate-
rial under discussion

v [(he, +8,)vg] =o,

g = 0 on the condenser plates,

8—=0 on the condenser walls.
~S

(2 1)

Here eg/sn denotes the normal derivative, while
8, (r) =1 if r is inside phasei material and 8, (r) =0
otherwise.

It was shown in Ref. 1 that all the eigenvalues
h of (2.1) arereal and negative. It is clear that
an eigenfunction („ describes a situation where a
spurious electric field exists inside the condenser
without any external field or potential difference
being applied. In order to find an expression for
the residue of k, we focus attention on the re-
ciprocal'function A(h) -=1/m(h), where 5 -=1/h.
Obviously, near a pole of m(h) we can write

m(h) = -A„/(h -h„),
m'(h ) =h'„/4„, (2.2)

since h„ is a regular point (in fact, a zero) of
&(h). The derivative A'(h) was evaluated in Ref.
1 in terms of the solution of the following inhomo-
geneous boundary-value problem defined on the
same condenser as (2.1)

v [(he, +8,)vy] =0,
/=0 on one plate,

Q= const. on the other plate, (2.3)

—=0 on the walls,
an
1 sp
8 (he +8 )—dS= l.1 2

This problem describes the situation where a
given total charge is placed upon the pla, tes of

al periodic array of inclusions; and finally a sim-
ple cubic array of identical spheres. A prediction
is made about the existence of hitherto unobserved
additional resonances in the optical properties of
certain metal-insulator granular composites. In
Sec. IV the effect of disorder on these results is
discussed qualitatively. Finally, in the Appendix
we calculate the matrix elements (or overlap in-
tegrals) for a pair of spherical inclusions.

the condenser. The surface integral appearing
in (2.3), which can be taken over any one of the
condenser plates, describes that charge. The
condition on the surface charge could also have
been replaced by

(h 8, + 82) ~ d V = 1,1 Qd)
(2.4)

where the integration is now over the entire vol-
ume V and where the ~ axis has been chosen to be
perpendicular to the plates.

As was noted in Ref. 1, the eigenfunction f„
associated with a pole of m(h) is proportional to
the solution of (2.3), and hence we can write [see
Eg. (II. 16) of Ref. 1]

B„=M~

(1/V) f (h 8, + 8.) (84 /ez) dV

[(1/v) f e,gq )'dv]'~'

(2.7a)

(1/V) f g (88,/ez)dV
[(1/V) f 8,(vs.)' d]V'" '

where integration by parts of the numerator as
well as the boundary conditions on g have been
used to get the final result. We note that M is
proportional to the total charge that is present
on the plates in the given eigenmode of the con-
denser, that it can be negative as well as positive,
and that it can vanish for some of these modes.
(As we shall see below, it must in fact vanish for
most of the eigenmodes. ) We will call M„ the am-
plitude of the pole or eigenvalue h„, in order to
distinguish it from the residue or weightB .

In order to make further progress, we recast
the eigenvalue problem of (2.1) in the form of a
linear integral equation with -a self-adjoint kernel.
This is done with the help of Green's function for
Laplace's equation with boundary conditions on
the surface of the condenser

Nl'(h )=—J 8,(h„6,+6 ) (vg) dV

(1/v) f 8,(vy„)'
[(1/V) f (h„e,+ 8,)ey, /s~dV]&

From this, we can immediately obtain an expres-
sion for the residueA .

In what follows, it will be more convenient to
use an alternative form of the characteric geome-
tric function, namely, '

s =- 1/(1 -h)
(2.6)

E(s) =-1-m -=Q
OI S —Sot'

where the residues B~ are all on the semiclosed
segment [0,1). Using (2.5) and (2.2), we can write
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v'G(rl r') = —5~(r —r')

G =0 on both plates, (2.8)
(y, y)-=8,vy+ vydv. (2.14)

BG =0 on the walls.
~8

Using the fact that 8, +6,=-1, we can write the
differential equation of (2.1) in the form

1
V g= —V (8,V)).

We can then use Green's function to "solve" this
equation in the form

(2.9)

sq(r) = O(r I
r')V' ~ [8,(r')V')I)(r')] dV'

8; r' V'G r r' ~ V r' dV', (2.10)

where we integrated by parts and used the boun-
dary conditions on G and on ( to get the final re-
sult. The right-hand side of (2.10) is a linear
functional of g which we denote by Gg. If we now

define the scalar product of any two real func-
tions by

(2.11)

then we can show that 6 is a self-adjoint, non-
negative, bounded linear operator. In order to
show the self-adjoint property, we only need to
use the fact that G is real and satisfies'

o(r I
r') = G(r' I r),

and write for any iwo functions g&, (
(2.12)

(2.13)

That Green"s function is real results from the
fact that the inhomogeneous differential equation
(2.8) is real. The non-negativity and boundedness
of G follow from the fact that the spectrum of
eigenvalues is contained in the semiclosed seg-
ment [0, 1).

While it is possible to conduct the entire dis-
cussion in terms of the real scalar product of
(2.11), because the eigenfunctions of G can all be
chosen to be real, it is often convenient to allow
complex solutions. The reasons for this are simi-
lar to those that sometimes lead us to prefer com-
plex eigenfunction solutions of Schrodinger" s equa-
tion even when the Hamiltonian is real. We there-
fore generalize the definition of the scalar product
to include complex functions

The norm of a function will be denoted, as usual,

As a consequence of the above discussion, the
eigenvalue problem (2.1) can be reformulated as
the eigenvalue problem of the integral operator G

GS=&t ~ (2.17)

The boundary conditions of (2.1) are automatically
satisfied by any eigenfunction solution of (2.17),
due to the properties of Green's function G. This
formulation now enables the entire machinery de-
veloped for handling such eigenvalue problems to
be used for the evaluation of the poles of m(h) and
their amplitudes.

In particular, we can immediately conclude that
the eigenfunctions of G form a complete orthogonal
set with respect to the scalar product of (2.14).
Thus, any piecewise continuously differentiable
function can be expanded inside the phase-1 volume
in a series of these functions. For this to be true,
the total number of eigenfunctions must be infinite,
-which would seem to contradict our earlier asser-
tion that the total number of poles of m(h) is
finite for a finite composite. The only way to re-
concile these two correct statements is by having
only a finite number of nonvanishing amplitudes
M„. Thus, most of the eigenmodes of 8 must in-
volve a spurious electric field in the system that
results in no charge being accumulated on the con-
denser plates. We will see an example of this in
Sec. III.

Before closing this section, we will note a cer-
tain symmetry property of the eigenvalue problem:
if two composite systems have similar geometries,
i.e., if one can be obtained from the other by a
simple uniform dilatation r' = ~ 'r, then the eigen-
functions, the norms, the 8, function, and Green's
function for the two systems are also obtained
from each other by a simple transformation

(.'(r') =(I (r) =0 (&r'),

lie'. ll'=&' 'lie ll',

8', (r') = 8,(zr'),
G' (r'I r,') = ~'-2G(~r'I ~r,'),

(2.18)

(2.15)

We must now also allow the amplitudes Af ~ to be
complex, and we must therefore replace (2.7a)
and (2.7b) by

(2.16a)

(2.16b)
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i'VI' =A. "i M (2.19)

Finally, we should note that an equation similar
to our Eq. (2.10) has been used in the past by Engl-
man and Ruppin' to calculate the optical lattice
modes in a finite crystal. The novel feature of our
paper, which will appear in Sec. III, is the use of
that equation to calculate the modes of a collection
of many small grains.

where d is the dimensionality of space. The eigen-
values are invariant under this transformation, and
are the same in both systems, and the same result
is obtained for the amplitudes by using (2.18) in
(2.16b), as well as the fact that V' = A. ~V.

There are cases, however, where the total vo-
lume is so much greater than the volume of phase
1, that one may perform the dilatation transforma-
tion only on that phase and still use Eq. (2.18) to
describe the changes that occur within that phase.
In such a case, the V' ' factor appearing explicitly
in the denominator of (2.16b) remains unchanged
and the amplitudes are altered, becoming

r'Y, (0), for r(ao
2l+ 1

(r)=( '„, Y', (0), for r )a„ (3.2)

l =1,2. . .; —l (m &t, ,

i+1 1
~lm ~l

f ) lm l 1 I 21+1) ( ' )

(g, , ).. .)=I r drdQv)r'I, "„) 'w(r' )', „)
r&ao

r2dAr'Yf —(r' Y, ,„.)
r=ao

=l'a'" " dQ Y* Y0 rm t'm'

where a, is the radius of the spherical inclusion.
Note that the mutual orthogonality of these func-
tions with respect to the scalar product of (2.11)
is different from the usual orthogonality property
of the spherical harmonies

=la""6), 6 (3.4)

III. APPLICATION TO SOME SPECIFIC GEOMETRIES

A. Single spherical inclusion

Note also that this is an example where most of
the eigenfunctions are in fact complex.

The amplitudes M, can now be calculated by
using (2.16b), and noting that

r'Y, (fl), r '-' Y(n), - (3 1)

where Y, is a spherical harmonic.
If we take the boundaries of the condenser to be

infinitely far away from the spherical inclusion,
then inside the sphere we will have only the func-
tions r'Y, , while outside the sphere we will have
only the functions r ' 'Y, . Furthermore, the
l = 0 function will be absent outside, because its
appearance would have required the presence of a
total nonvanishing charge inside the sphere. The
boundary conditions on the plates and walls are
thus automatically satisfied. The differential
equation of (2.1) is also automatically satisfied by
these functions, except at the surface of the
sphere, where p as well as es)l)/an must undergo
no discontinuity upon passing through the surface.

These continuity conditions lead to the following
series of eigenfunctions and eigenvalues

The first problem we will discuss is that of a
single spherical inclusion e„situated at the cen-
ter of a very large cylindrical condenser filled
with ~, host material. %e introduce polar coordi-
nates with the origin at the center of the sphere
and the polar axi.s along the cylinder axis. The
potential function can be expanded in a series of
the functions

Bgi Br
ez

' = 5(r -a )—= cos 8 5 (r -a )' ez 0

= (-,'m)'i2Y„(n)5(r -a,) . (3.5)

Because of the orthogonality of the spherical har-
monics, we find that the only nonzero weight is

(a'„/V)( ,'w)'i' f—dn Y'„
[(3/4))V) J' (5 ) dV]

v/V
(v/V)1/2 V. (3.6)

where v=-4ma2/3 is the volume of the sphere. This
is in agreement with the sum rule, proved in Ref.
1, which states that the total sum of all residues
is equal to the volume fraction of phase-1 materi-
al. Of course, M„ itself also vanishes in the limit
V-~ which we have been using. But the other .

amplitudes vanish "exactly" in this approximation.
What that must mean is that if we had made a more
honest calculation on a sphere within a large but
finite cylinder, we would have found an'additional
finite number of poles with very small but non-
zero amplitudes. The total number of these poles
probably increases to infinity as V-~, but the
sum of all their weights must tend to 0 faster than
v/V.
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B. System of interacting grains

Suppose that the composite is made of a number
of grains (inclusions) c, embedded in the ea host,
and that we know the eigenfunctions and eigenvalues
of each grain separately in the same host. When
they are present together, the grains will influence
each other or "interact, " so that the spectrum of

. the entire system will not be simply the sum of
the spectra of the individual grains. This is rem-
iniscent of the problem of the energy levels of a
collection of atoms whose individual levels are
altered as a result of mutual interactions.

In order to take advantage of the available infor-
mation, we will try to expand the potential g in
terms of the potential eigenfunctions g, of the
individual grains, denoted by the index a. Clearly,
we cannot hope to expand an arbitrary function
everywhere in terms of these functions, In fact,
it is clear that any function which vanishes inside
all of the grains will be orthogonal to all of the
eigenfunctions. We therefore attempt to expand
g(r) in this way only for points r that are essential-
ly inside one of the grains

g+ p)q( ) g ~ an a.( )fan( ), (3 7)

Here we have introduced the function 6; (r), which
is equal to 1 if r is either inside the grain a, or
at most an infinitesimal distance away outside it,
and is equal to 0 otherwise. The function 8', is
defined in a similar way by considering all of the

e, grains, i.e.,

II g (9 vi/) *8 vlf, dv
an an

(3.11)

This is a matrix eigenvalue equation which can be
rewritten as

(S —San)Aan Z @an,58+58)
s8

Qwa

where

Sasf eaV)an Vf, edV
lie. I Ileasll

(3.12)

(3.13)

=lie. II 'lleasll '

x dV dV'8, r

~ 8 ( )g~ &(rlr)
BrpBx„'

~ sta*n(r) &tI a 8(r')
(3 14)

Bf
p Btp

Once Etl. (3.12) has been solved and we know an
eigenvalue s ' and the appropriate eigenvector
A.,'„, we can calculate the amplitude AI '~ by sub-
stituting (3.7) into (2.16b). In this way we get

(ao) () a()()(
f

+la(() I)
I

an an
(3.15)

to (3.10), the single term bP is selected, but when
we apply it to (3.9), we are usually left with the
entire sum

g+ 8+ (3.6)

+y ~+an S+c(an
lie. II

(3.10)

We can equate (3.9) and (3.10) for r inside any one
of the c, grains. We then take the scalar product
of the resulting equation with any individual grain
eigenfunction (,q When we. apply this procedure

We now substitute (3.7) into the eigenvalue equa-
tion (2.10) or (2.17) noting that, by (3.8), we can
write G as a sum of individual grain operators Ga a

When this sum operates on (3.7), every operator
G, selects only those terms that refer to its own

grain. By choosing the region where ~', W 0 to be
infinitesimally larger than the actual grain itself,
we have ensured that VH,' vanishes everywhere
inside the grain. Thus we obtain

G (g +~A

Gy
—G(g+q) g an a a )an

an an (3.9)
+anGag'an ~+anSankan

Ill..I

We note that it is possible to have eigenstates of
the individual grain that do not contribute a pole
to m(h) of the isolated grain, but which neverthe-
less play a role in determining the poles of the
multigrain system. For example, while only

hf Mt 0 in the case of an isolated spherical inclu-
sion, there are nonzero overlap integrals between
that state and many other states of other grains.
Because of this a system of interacting spherical
grains will have many poles, in contrast with the
single pole of an isolated spherical grain.

The scheme we have developed in this subsection
can be useful if a reasonable approximation can be
obtained by truncating the infinite set of equations
(3.12) or a simple transformation thereof. In the
following subsections we will investigate this ques-
tion for the case of two identical grains, and for a
periodic lattice of grains. An approach that is
somewhat reminiscent of ours has recently been
proposed by Clippe et a/. ' However, they restrict
the applicability of their discussion by assuming
that the different grains in the composite interact
only through dipole-dipole forces.
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A„(s —s,) =A„,C,

A~, (s —s,) =A„C*, (3.16)

f 0, V $,*0» &Sbo d V
(3.17)

The solution of this little eigenvalue problem
is of course I

C. Two identical or similarly shaped small gra~s

In this case, the unperturbed eigenvalues are all
at least twofold degenerate, since the spectra of
the two separate grains are identical. Therefore,
even if the grains are far away and interact only
very weakly, the perturbed eigenstates will be
very different from the unperturbed states. If w'e
neglect the interactions with other, nondegenerate
eigenstates, and concentrate only on the degener-
ate pair g„, g„, the resulting equations for the
expansion coefficients are

ever —since the total amplitude for the case of
identical grains is W2M, and not 2M, ). In the anti-
symmetric combination, by contrast, the two

grains contribute opposite charges to a given
plate, and the mutual cancellation results in a
zero combined charge for the case of identical
grains. By contrast, when the grains are very un-

equal, the larger one always dominates the spuri-
ous charge produced on the plates in both the sym-
metric and antisymmetric combinations. The
weights of s, and s are then roughly equal.

D. Periodic lattice of identical grains

In this case the eigenstates and eigenvalues of
all the grains are identical. Consequently the ma-
trix element q, ~, , s of (3.13) depends on the posi-
tion vectors of the grains a and b only through
their difference a-b. According to Bloch's theo-
rem, the eigenvectors of (3.12) can always be
written in the form

s, =s,* IcI

A„=~(c/I cl )A..
(3.18)

(3.19)

A..(T) -=A„(T)e'"'. (3.21)

When this is substituted in (3.12) we get the follow-
ing equation for A„(k)

As we might have expected, the unperturbed eigen-
value is split symmetrically, while the eigenstates
are the symmetric and antisymmetric linear com-
bination of the unperturbed states.

In order to investigate what the new amplitudes
are, we assume C&0, and use (3.15) and (3.19) to
get

A.,(M.,~M„) M.,~ilf„
(3.20)

where we chose A.„to be real and positive. %e
then use (2.19) to note that, for similarly shaped
and oriented grains, the amplitude is proportional
to the square root volume of the grain. Thus for iden-
tical grains the upper (symmetric) eigenvalue s, car-
ries the combined weights of the unperturbed
states —its residue is M+ 21M'p while the lower
(antisymmetric) eigenvalue s carpies zero
weight. On the other hand, if one of the grains is

& much larger thad the other one, then the weights
of s, and 8 will be roughly the same, and equal
to half of the weight of the unperturbed pole.

One can understand these results on physical
grounds in the following way: each of the unper-
turbed eigenstates g„, g,o builds up a spurious
charge on the condenser plates whose magnitude
is proportional to the amplitude of the correspon-
ding individual grain pole. In the symmetric com-
bination of the eigenstates, the charges produced
on a given condenser plate by the two grains have
equal signs, and they add up to a greater com-
bined charge (there is some interference how-

(s —s„)A„(k)=Qq„s(k)A~(k), (3.22)

q s(k)= q, se -ik' ( a-6)
c-Qwp

The Fourier-transormed matrix elements q„8(k)
and the eigenvectorsA„(k) satisfy

q*.,(T) =q,„(T)=q.,(-T),
A*„(T)=A.(-T).

(3.23)

(3.24)

The eigenfunction corresponding to an eigen-
value s;(k) is given by

&,"(r)g&&(r) =P 9:(r)A"(k)s'"'g. (r)/II l. II

.' (k)4 ..(r) (3.26)

for r inside phase-1 material, where

~ e', (r)e'" 'g.„(r) (3.26)

The amplitude of the pole at s;(k) can be found

by substituting (3.21) into (3.15) and recalling that
M, =M„. In this way we find:

~) N51, „Z„A~„'~(0)M„
(~Z.IA'."(0)I')"' ' (3.27)

where N is the total number of grains or unit cells
in the periodic lattice, The last result is the natu-
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ral extension of a previous result for the two- --

grain system: all of the weight is concentrated
at the discrete k=0 poles, even though there is
a quasicontinuous band of eigenvalues s, (k) for
every index i. This result contradicts some
statements that have appeared in the literature
recently, according to which the interactions be-
tween grains in such a system must cause a broad-
ening of the single sharp resonance (i.e., pole)
that appears in the Clausius-Mossotti equation for
the dielectric constant. ' We find that in a periodic
system, these interactions can only bring about
the appearance of additional sharp resonances in
the complex dielectric constant. We expect a
broadening of the pole spectrum only as the result
of disorder, e.g. , deviations from perfect periodi-
city or variations in the sizes and shapes of the
grains.

E. Simple-cubic lattice of identical spheres

(f +!'+ m —m')!
I'(l+m)! (l —m)! (l'+m')! (!' —m')!]' '

)& Sr $3 (m ' -m )f3 (m' -m)
(C OS g ) (3.28)

This is a problem that was discussed a long time
ago in a historic paper by Lord Rayleigh, ' who
developed what is essentially an expansion of
1/F(s) in powers of the volume fractionPr of e,.
We are now in a position to do a better job, es-
pecially in the neighborhood of the poles and when
the volume frac'tion is not small. We note in this
connection that although by considering 1/E rather
than E the poles are changed into zeros, the trou-
bles do not disappear. This is so because the
zeros of E, of which there is one between every
pair of neighboring poles, are changed into poles
of 1/Ii.

The overlap integral between the eigenstates
and g» „, of two spheres with radii a„a„

situated at the origin and at a site b, respectively,
is worked out in the Appendix. The resulting ma-
trix element is given by

sor'm' f go&rC'or
' %$31 dV

II II rI)3 r '

Z+1/2 Z '+1/2
~

1/2

~t+ i'+1 2l + y 2li + y ~

where
n+1

p(n+ 1) /3 —g ~ f3„(cosg )
5 &0

(3.31)

and the sum is over all the sites of a simple-cubic
lattice.

We now solve this equation to get the eigenval-
ues, eigenvectors, and pole amplitudes by means
of standard perturbation techniques. The eigen-
values and pole amplitudes are given by

(1) I 930.101 r
(1 p ) 24g3p10/3'

S1-S3

the sites of a simple-cubic lattice, some simpli-
fications occur: The sum vanishes unless rn-m'
is an integral multiple of 4, and unless l+l' is
even. When l+l' &2, the sum will be absolutely
convergent. But for l+l' =2, which occurs only
when l =l'= 1, m=m'=0, this is'not the case and
care must be taken to perform the sum on distant
sites correctly. The sum is then over a set of
potential fields created at the origin by dipole
sources at all the other lattice sites. This is the
same type of sum that is encountered in calculating
the Lorentz local field at the origin, and can be
dealt with in the same w'ay: The sum is divided
into a "near-field contribution" resulting from all
the sources within a large but finite sphere around
the origin, and a "far-field contribution" resulting
from all the sources outside that sphere. The far-
field contribution is calculated by replacing the
discrete dipole sources by a uniform polarization
density, while the near-field contribution must be
calculated exactly. In the cubic case it vanishes.

We have seen that in the case of an isolated
sphere, the only nonzero amplitude is M10
= (v/V)'/'. Therefore, when the lattice is not too
densely packed with spheres (i.e., P, «1), only
states that couple directly to r!Ir = g» with a small
negative power of b are important. Thus, to low-
est order inP„we only need to consider the state

We are thus left with a 2 && 2 matrix eigenvalue
problem

where b, 0~ are the polar coordinates of the vec-
tor b, while P'1"'(u) is an associated Legendre
polynomial, defined by'

f3(rm)(u) (1 u2)m/2 1 ) for m & 0g a(u&

(3.29)

When these matrix elements are summed over

s(3) s + I @10 30I

83 -S1
3 60 g pv/3+ 24g3pl0/3

1/2 ~io
(1+ I @„.3. I-'/(s, -s.)')'"

(p 252/2p13/3)1/2

~ (3) ~r/2/)/j @30.10 — 8~7 g p13/6
10 S3 —S1

(3.32)
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and the effective dielectric constant is given by

3 2+8 1 —.h a xo/s
F(s) I-a ' -+T 4 ' (3,34)

This should be compared with Eq. (64) of Ref. 6,
noting that Rayleigh's coefficient S4 is related to
our Z4 by

~4P1 ~4(~0/ 0) (3.35)

where b, is the cubic-lattice parameter. Thy com-
parison shows that the last term in Rayleigh's Eq.
(64) contains an extra factor -', which we think is
wrong. The comparison also enables us to get the
numerical value of Z4 from Rayleigh's approxi-
mate evaluation of S4, namely, S4=3.11. In this
way we find

Z4 = (3/41/) 6/3$4 = 0.286 . (3.36)

Clearly, our expression (3.33) will give a better
approximation to F(s) in the vicinity of the leading
poles than will Rayleigh's corrected expression
(3.34). Thus, we can predict that for P, =0.2, the
second resonance will appear in optical experi-
ments with a weight of about 0.019, while the first
resonance will appear with a weight of about 0.18.
Indications of such additional structure in the opti-
cal properties of a cubic array of Drude metal
spheres have also been found recently by a numer-
ical solution of Rayleigh's equations for the di-
electric constant. ' In a forthcoming publication
we will examine this problem in detail and pre-
sent results of numerical solutions of the eigen-
value equations for the poles and weights of cubic
arrays of spherical inclusions with various values
of p, .'

In a recent series of articles, McKenzie and
Mc Phedran" have pursued Rayleigh's approach
to this problem by solving a truncated portion of
his infinite set of equations. From a physical
point of view, their truncati. on procedure involves
ignoring higher electrostatic multipole moments

S —S S —S
S = (1) + (3)

2

p 2 5252p lg/3
I + —'p + 24gapxo/s

2 62' 3P 13/3

60 E wv/3 24E3 10/3 ' (3'33)
7 7 6+1 4k g

Note that this form satisfies both of the sum rules
proved in Ref. 1 up to and including terms of or-
der p,'/'.

In order to compare our result with the one ob-
tained by Rayleigh, we expand our result to get
a power series in P, for 3/F(s), and use (2.6) to
write s in terms of h. Doing this, we find

which are induced in the spherical inclusions. In
our procedure, we would also have to ignore high-
er multipole moments in order to be left with a
finite matrix to be diagonalized. Our procedure
encounters no difficulties near a pole of ~, . In
fact, because we calculate these poles directly,
our results may even become more accurate in
the vicinity of such a pole. On the other hand, the
procedure of McKenzie and McPhedran, in which
~, is calculated directly, would blow up near a
pole of e, . We would therefore expect it to be of
limited usefulness for calculating the optical pro-
perties of metal-insulator composites, where
a,/&3&0. Indeed, it blows up even for e, &0, f3=0
when the spheres are nearly touching, "whereas
we seem to encounter no serious diffulties at that
point. '

1/r « &g « 10» (4.1)

where v' is the relaxation time for dc conductivity
ig. the metal while u~ is the electronic plasma fre-
quency of the metal, the dielectric constant of the
hyetal is real and negative, and it can be quite
large. At these frequencies:, the dielectric con-
stant of the insulating host el is usually quite inde-
pendent of &, while that of the metal ~„varies
rather strongly. , Typically, this variation is de-
scribed by

C 1/(00) —= 1 —0/3/01 (4.2)

IV. DISCUSSION

The scheme developed in this article offers a
systematic way of getting approximations for the
complex dielectric constant of a composite mate-
rial whose microscopic geometry is known pre-
cisely. The scheme is strongly reminiscent of
the tight-binding method for calculating the energy
levels of a solid. It should be especially useful in
cases where the composite is in the form of a
periodic array of identical inclusions embedded in
a homogeneous host. In that case, once the eigen-
states of an individual grain are known, it should
be possible to get very accurate results for the
dielectric constant of the periodic composite by
a numerical solution of the matrix eigenvalue pro-
blem of (3.22), properly truncated of course.
Good results should be obtainable even for a vol-
ume fraction of the inclusions p, which is close to
1,

The significant general result for such systems
is that the pole spectrum is discrete. This would
be reflected in the optical properties of a com-
posite made of metallic grains embedded in an
insulating host. In the range of frequencies char-
acterized by
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Thus, by. varying &, the ratio

s =~,/(c, -e„) (4 3)

can be made to approach the poles of I' (s), leading
to resonances in the optical properties of the com-
posite.

Such a resonance has indeed been observed ex-
yerimentally. " " Previous attempts to interpret
this resonance by means of the Clausius-Mossotti
approximation have met with a mixed success. Our
discussion offers the chance for a more systematic
approach to the interpretation of these observa-
tions,

What still needs to be done is to find a way to
introduce a certain amount of disorder into the
periodic arrag that we have been discussing. - Pre-
sumably, if the disorder is not too great, the dis-
crete resonances will only be slightly broadened,
but will retain their identity. For a strong dis-
order, the smearing may become so pronounced
that the resonance structure will disappear alto-
gether. Indeed, for granular metal-insulator com-
posites where a great deal of clumping of the me-
tallic particles occurs, sharp resonances have not
been. observed in the optical properties. "

Finally, we predict that if the disorder is small,
additional resonances will be observecf in the op-
tical behavior, such as the one whose properties
were worked out in Sec. III for a simple cubic
array of spheres.
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APPENDIX: THE MATRIX ELEMENT OF 6 BETWEEN
EIGENSTATES OF TWO ISOLATED SPHERES

We wish to calculate the matrix element (3.13)
between the les eigenstate in a sphere of radius
a, centered at the origin, and an /'m' eigenstate
in a sphere of radius g, centered at b. The two
spheres do not overlap. In order to evaluate the
integral in (3.13), we shall have to expand the f'm'
function

@2~ +~

&»- (r)-I- -Ii+. Yi;(Q, b), f» lr-bl&a„r-b
(Al)

in spherical harmonics centered around the origin.
This can be done with the help of Ref. 15, where
explicit formulas are develoyed for the Helmholtz
multipole matrix elements of the translation oper-
ator. From Eels. (24), (13), and (19') of thatrefer-
ence we can deduce the following equation,
which expands the singular multipole field
n, , (k

I
r —b I)Y, (Q„,) as a sum of products of a

regular multipole field j,(kr)Y, (Q) and a singular
multipole field n~(kb) Y»(Qb),

n, .(k I r —b
I )1;. i(Q„,) =g i~' ~ ' (- 1)~'" [4s (2L+ 1)(2l + 1)(2A, + 1)j' '

LM
X.p

X j, k~Y»0 nikb YAMA,
0 0 0 M-nip

(A2)

(L f' ~'I

&oo oj
(A3)

Here j, and n, are the regular and the singular
spherical Bessel functions, and 0 is a wave-num-
ber which should be sent to zero in order to re-
duce these multiyole solutions of the Helmholtz
equation to the desired multipole solutions of La-
place's equation. When this is done, and: all the
powers of k are brought to the right-hand side,
the appearance of the combination

scalar product of this sum with g„, which is
given by

(A4)g» (r) = r'Y, „(Q), for r& a, .
When the norms II goi~ll, II qbg' ll and the eigen-
value s» „are properly included from (3.3) and
(3.4), one obtains for the matrix element the ex-
pression of (3.28). ?n order to get that result
we used the explicit expression for 3 —j coeffi-
cients of the form'

ensures that, in the limit 0 0, only the terms
with I = /'+ ~ survive in the sum. The orthogonality
relation (3.4) can now be used to calculate the tu m' —.yn™

(A5)



2368 DA V ID J. BERGMAN 19

as well as the connection between F, and the
associated Legendre polynomials P, .

A more elementary derivation of the results of
this Appendix is possible if instead of taking the

k 0 limit in Helmholtz multipole fields, one uses
the simpler electrostatic multipole fields from
the outset. We will present such a derivation in
a forthcoming publication. '
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