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The far-infrared absorption data of Kahan et al. on the pressure dependence of impurity-induced lattice
modes in KCL:Li* are analyzed in terms of a static three-dimensional potential that separates into a sum of
three one-dimensional symmetric double-minimum potentials. Numerical calculations have been performed on
two model potentials, a quartic well with a quadratic barrier (two parameters) and a harmonic well perturbed
by a Gaussian barrier (three parameters). We show that both potentials can account for the strain
dependence of the observed absorption lines and the °Li-'Li isotope effect for the lowest frequency line. In
each case the potential-barrier height is found to depend linearly on the lattice constant, while the off-center
displacement (coordinate of minimum energy) is weakly linear in strain up to an abrupt collapse at the lattice
constant for which the barrier disappears. The strain dependence of KCLLi* can be partitioned into three
regimes of behavior: an off-center (tunneling) region, a very anharmonic transition region, and a harmonic

region perturbed by an increasingly weak anharmonicity.

I. INTRODUCTION

Pressure, when coupled with far-infrared spec-
troscopy, should be an important probe of the
local defect potential of impurities which induce
low-frequency modes in alkali halides. Among
the most studied host-lattice—~impurity systems are
KBr : Li* and KCl1: Li*. The on-center nature of a
Li* substitutional impurity in KBr and its off-
center behavior in KC1: Li* were determined by a
variety of experimental techniques.' Nolt and
Sievers? investigated the dependence of the fre-
quency shift of defect modes in KBr : Li* on uni-
axial stress. They found by symmetry arguments
that the impurity occupies the normal lattice site
of the cation it replaces. This result was in dis-
agreement with theoretical predictions of off-
center behavior,® * which led to a better under-
standing of the defect potential.® Recently, Kahan
et al.® varied the hydrostatic pressure and mea-
sured far -ir properties of several host-lattice—
impurity combinations. They observed a transition
from off-center to on-center behavior in KCI : Lit ,
with increasing pressure, verifying a prediction
by Quigley and Das.® This result was the first
spectroscopic evidence suggesting a connection
between off-center and on-center defect systems.
Furthermore, Kahan et al.® established a cor-
respondence between the properties of highly
stressed KCl : Li* (~dr /r =0.65%,7 is the lattice
constant) and unstressed KBr : Lit.

Extremely anharmonic potentials are required
to model the behavior of these low-frequency im-
purity-activated modes. The most common ap-
proximation used to study off-center systems is
the tunneling model developed by Gomez, Bowen,
and Krumhansl” (GBK). A basis of pocket states,
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(typically harmonic-oscillator eigenfunctions)
localized at each of the equivalent off-center sites
of minimum potential energy is chosen. Usually,
only the ground-state wave function of each pocket
potential is used. Mixing with excited-state mul-
tiplets is ignored. A matrix taking overlap and
external fields into account is constructed in this
basis and diagonalized to determine the splittings
and eigenfunctions of the lowest-energy manifold
of states. This procedure is valid only when the
energy barriers between pockets exceed the energy
levels and splittings under consideration. Excited-
state multiplets may be treated in 2 similar man~
ner if they lie sufficiently below the barrier maxi-
mum. The GBK model cannot be used to fit the
strain dependence of the far-ir absorption lines
in KCI : Li* because the assumptions about barrier
height are violated, especially at high strains for
which the Li* ion is driven on-center.

Kahan et al.® interpreted their data in terms of
a three-dimensional generalization of a one-dimen-
sional symmetric double-square-well potential.
Three parameters—barrier height, barrier width,
and total well width—were required to obtain fits
for the defect-mode frequencies. The large iso-
tope effect observed for the lowest frequency or
tunneling mode in KC1:°Li-"Li was explained
qualitatively in this model. However, almost no
correlation was found between the values of the
three parameters at one strain and the next. Con-
sequently, little insight was gained from the form
of the potential at each strain. The model was too
crude to give meaningful information on details
of the local defect potential such as the variation
of the barrier height with strain.

This paper reports calculations on two sym-
metric double-minimum potentials of the type used
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by Kahan et al.,® but more realistic in terms of
shape and smoothness: a quartic plus harmonic
(QH) potential,

vx) =v x? +v, 4% (1)

and a harmonic potential perturbed by a Gaussian
barrier (GB),

v(x) =Ax? +B exp(—-Cx?) . 2)

By fitting these models to the data and comparing
the results we can make some empirical state-
ments about the form of the defect potential and
the dependence of its parameters upon strain. A
potential such as Eq. (1) can be regarded as a
“spin Hamiltonian” approximation or truncated
expansion of either the true defect potential or the
potential resulting from a first-principles calcula-
tion of the type performed by Quigley and Das.®

The environment of an impurity in an alkali halide
is not static due to the effects of the defect-lattice
interaction. Hence, it is best to interpret the
variable x not as a position in real space, but as
a generalized coordinate. This choice is in the
spirit of our goal, which is to account for the
resultant frequencies observed experimentally,
including all dynamical effects.

Section II begins with a discussion of the sym-
metry properties of the model. Transitions are
assigned to experimental absorption lines and our
choices of potential v(x) are motivated. Also, the
computational methods used to calculate eigen-
values and fit them to the data are summarized.

In Sec. III, results of calculations with each po-
tential are presented and interpreted. Both model
potentials are able to account for most of the fea-
tures in the strain-dependent absorption spectra
and the tunneling mode (ground-state multiplet)
isotope effect, but the QH potential does the

- job with one less parameter. The strain Hepen-
dence of the parameters is found to be continuous.
These results allow us to identify three regimes of
behavior in the data. Finally, some comparison of
our potentials with the results of calculations by
Quigley and Das® is made.

II. THE MODELS
A. Symmetry properties
A potential intended to model the accepted picture
of off-center behavior in KCI: Li* must possess
a minimum in each of the eight [111] directions.
The most mathematically tractable potential of

this type is a sum of three one-dimensional po-
tentials,

Vix,y,2) =v(x) +v(y) +v@), @3

where v(x) is a symmetric double well with minima

v(x)

]
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FIG. 1. One-dimensional double-minimum potential
showing barrier height V, and off-center displacement of
minimum potential energy x,,.

at £x,, (see Fig. 1). To reduce the number of
parameters we assume that the one-dimensional
functions are identical. If V, is the barrier for
tunneling between adjacent wells, a consequence
of this form is that the barrier for tunneling across
a body diagonal and along a diagonal of a face of
the cube formed by the eight minima are 3V, and
2V,, respectively. Before we have even chosen

a function v(x), we find that V(x,y,z) is quite re-
stricted. Of course, none of these constraints are
strictly valid for Li* in KCl, and we shall note

- some of the consequences later.

The form (3) was chosen so that the stationary
Schrddinger equation

HY(x,y,2)=(T+V)¥ =E¥ (4)

separates into three identical single variable eigen-
value problems that are relatively straightforward
to solve. Suppose the solutions to the one-dimen-
sional problem are, in ascending order, the ener-
gies ey, e,,e,, €5, . . . With associated eigenfunctions
@ox), 0.(x), @a(x), pglx), ... . The eigenfunctions
possess definite parity and form a complete ortho-
normal set. The functions with even indices have
even parity; the rest-are odd. The eigenfunctions
of the 3D problem are sums of product states of
1D eigenfunctions, and the energies are sums of
the corresponding eigenvalues. For example, the
ground-state energy is

Eg=eq+ey+eg=3e, (5)
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FIG. 2. Lowest-energy levels for the potential
Vix,y,2)=v(x) +v(y) +v(2) drawntoapproximate the situ-
ation in KCl: Li* at zeroapplied pressure. v(x) hasalarge
barrier so that the tunneling splitting is small and the
levels are arranged in three distinct multiplets. The al-
lowed electric dipole transitions from the ground state
multiplet are shown. The transitions marked with dotted
lines are electric dipole forbidden in the model, but are
discussed in the text. The levels are labeled with the
appropriate irreducible representations of O, on the left
and the sum of energies from the 1D potential v(x) on the
right.

and the wave function is

T(x,y,2) = o) po(¥)ol2) . (6)

The state is nondegenerate since there exists only
one combination of 1D eigenfunctions with energy
E,. The first excited state is triply degenerate
because there are three linearly independent com-
binations of product states with eigenvalue

E,=2¢,+e,. (7

The entire spectrum of H can be constructed in
this manner.

A potential of the form given by Eq. (3) has
octahedral symmetry, so the eigenfunctions must
transform according to the irreducible representa-
tions of the group O,. Figure 2 is an energy-
level diagram depicting the lowest three mul-
tiplets of states labeled with the irreducible repre-
sentations of O,. The figure is drawn for a high-
barrier potential such that the tunneling splitting,
e,-ey, is much less than e,-¢, and e;-¢,. Figure
2 also displays the allowed electric dipole transi-
tions from the lowest energy, or “tunneling,” mul-
tiplet. There are a total of 13 transitions allowed
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by cubic symmetry within the ground-state mul-
tiplet and from this multiplet to the lowest excited-
state multiplets, but the fact that our cubic poten-
tial is separable reduces the number of electric-
dipole-allowed transitions to the nine indicated by
solid lines. The remaining four transitions® con-
nect states for which two of the three 1D eigen-
functions differ, so the matrix elements vanish

by orthogonality of the pairs of 1D eigenfunctions

_ not connected by the dipole operator. The transi-

tions indicated by dotted lines are two of these
forbidden transitions, but they closely match an
observed absorption line. No line corresponds to
the remaining forbidden frequency (E,-E; and
E.-E,). .

The 11 frequencies shown in Fig. 2 are not
unique, but satisfy the following conditions:

W TWy Wg=€; ~ €,
W =Wy =W, =€ =€, (8)
W5;=Wg=Wyp=€3~€p,
wy=wy=e, +e, —2e,.
An additional condition is
Ws=wg +20, . 9

Thus only three distinct frequencies exist for the
allowed transitions involving the tunneling mul-
tiplet and the first two excited-state multiplets.
We consider transitions from all states in the
tunneling multiplet because at low pressures the
level spacings are sufficiently small (0.82 cm™!
for KC1:7Li* and 1.15 em~! for KCI :®Li* at zero
strain®) that even at liquid-helium temperatures
all four levels are populated. The relative popula-
tions for ®Li* impurities in unstrained KCl at

4.2 K are E,, 21%; E,, 43%; E,,29%; and Eg, 1%.
As the hydrostatic pressure is increased, the tun-
neling splitting increases and the higher tunneling
levels are depopulated.

B. Assignment of transitions and choice of v(x)

To assign model transitions to experimental ab-
sorption lines, we examine some far-ir absorption
spectra. Figure 3(a) is a reproduction from the
paper by Kirby ef al.'® showing the 40-cm™! ex-~
cited-state absorption band of KCI :®Li* at zero
strain for two temperatures. The strong tunneling
line at 1.15 ecm™!, which does not appear in the
figure, is assigned to w,, w,, and w,. There are
at least two peaks in the spectrum—near 37 and
50 cm~!." The 37-cm~! peak becomes stronger when
the temperature is increased, whereas the 50-cm™*!
peak does not change. Since the transitions

Wg =Wg =Wy (10)
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FIG. 3. (a) Temperature dependence of the KC1 SLi*
40-cm=! absorption band. The transitions wg and w; are
assigned to the lines at 37 and 50 cm™!, respectively.

(b) KC1:5Li* absorption spectrum for a high- concentration
sample at 0.275% strain. The peaks are assigned, in
ascending order, to the frequencies wg, w,, and ws.

do not originate from the ground state, the ab-
sorption strength at this frequency will increase
with temperature as the upper three levels of the
tunneling multiplet become populated. Therefore,
we assign the 37-cm™! line to w,. Since one of the
transitions

W5=Wg=Wig (11)

originates from the ground state, there will be
little change in the absorption when the tempera-
ture decreases from 4.2 to 1.15 °K. Thus we
assign the 50-cm™" line to w,. Note that

Ws> We (12)

in agreement with the data.

Figure 3(b), taken from Kahan ef al.,® shows a
spectrum measured at the strain —dr /» =0.275%.
The tunneling line (transitions within the ground-
state multiplet), found at 6 cm~! for this strain,
is not shown. We observe three lines associated
with transitions from the ground-state multiplet
to excited-state multiplets. The lines at 25.4 and
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FIG. 4. Strain dependence of KC1:%Li* absorption fre-
quencies. Symbols indicate data from Kahan et al.; sol-
id lines and dashed lines represent the best fits obtained
with the QH and GB potentials, respectively. Identical
fits (alternating dashes and lines) were obtained for the
lowest three transitions: wy, wg, w,.

51.4 cm™! match the frequencies w,; and w;, re-
spectively (see Fig. 4). Following Kahan et al.,®
the weak line at 40.3 cm~', although electric dipole
forbidden in our model, is assigned to w,. Evident-
ly this transition is allowed for the true defect
potential.

Although not shown in Fig. 4, two tunneling fre-
quencies appear in Kahan’s data over a wide range
of strains. Hetzler and Walton'! also observed
unequal tunneling splittings at zero strain using
phonon spectroscopy. We shall ignore this dis-
crepancy between experiment and our model, as-
signing w, to the stronger, higher-frequency line.
For further discussion of the data, we refer the
reader to Kahan et al.®

Knowledge of the 1D potential v(x) is required for
further progress. Upon choosing a form for v(x),
a Hamiltonian matrix is formed using a harmonic-
oscillator basis. The matrix is diagonélized nu- -
merically to obtain the eigenvalues and eigenvec-
tors. The parameters of v(x) are varied by a
search program to determine the best fit of model
frequencies to absorption lines for each strain.

A large variety of double-minimum potentials
have been applied to hydrogen bonding, hindered
rotation, and other problems. A potential used
by Somorjai and Hornig,'2

vix) =v,x%+v,%%, (13)
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seemed particularly suited to our problem. With
v,> 0 and v, sufficiently negative, the potential
consists of two wells separated by a barrier.
When v,> 0, the potential is a single well. Thus
Eq. (13) can account for both on- and off-center
behavior. An obvious advantage of this function
is that the Hamiltonian matrix is easily computed,
since the matrix elements of a polynomial in a
harmonic-oscillator basis can be found using
creation and destruction operators. The matrix
elements are written downby Somorjai and
Hornig.? The resulting matrix, a band matrix
with nonzero elements near the main diagonal only,
is preferred for many numerical diagonalization
techniques. However, a relatively large number
of harmonic-oscillator basis functions is required
to obtain accurate values for the eigenvalues.
30x 30 matrices were adequate, as we required
only the lowest four eigenvalues.

Clayman et al.'® used a harmonic-oscillator
perturbed by a Gaussian barrier,

v(x) =Ax® +Bexp(-Cx?), A,B,C>0 (14)

to analyze data on KBr : Li*. The term B exp(-Cx?)
was treated in perturbation theory. For KCI: Li*
at low pressures the barrier is too high for per-
turbation theory to work, so we choose to solve
this potential numerically by diagonalizing a
20x20 matrix. A smaller basis of harmonic-os-
cillator functions gives results comparable to the
QH potential calculations because the GB poten-
tial is harmonic at large x. A disadvantage of this
potential is the need t» compute matrix elements
for the Gaussian barrier. This difficulty was
overcome by using a clever procedure devised by
Chan and Stelman'* that requires calculating only
n matrix elements to form an nX»n matrix.

C. Computational methods

The computer calculations were performed on a
PDP 11/34 computer. The Hamiltonian matrices
were diagonalized using the EISPACK®® routines
TRED2 and TQL2 for real symmetric matrices.
Single precision FORTRAN was adequate given the
precision of the data.

For the QH model, the potential can be rewrit-
ten :

V(E) =37B(0,* +0,8%), &= (mB/M) *x (15)

where B is the frequency of the harmonic oscillator
defining the basis, m is the mass of a Li* impurity,
and ¢ is x in dimensionless units. B is chosen so
that the parameters v, and v, are of order unity,
i.e., the basis harmonic oscillator is selected to
roughly overlap the double minimum potential.
This choice of basis minimizes the dimension of
the Hamiltonian matrix required to achieve the

desired accuracy of the energy eigenvalues. The
accuracy of the lowest four eigenvalues of a 30

X 30 matrix describing KCI: Li* at zero strain was
checked by comparison with the results obtained
with a 50X 50 matrix. The four lowest eigenvalues
were in agreement to five significant figures.

The basis set of twenty harmonic-oscillator func-
tions for the GB model was chosen to be eigen-
functions of the oscillator Ax2. Again, agreement
to five significant figures with the results of cal~-
culations using a 50X 50 matrix was obtained for
the four lowest eigenvalues.

The parameters of the potentials were optimized
by the method of parallel tangents, as described
in the book by Wilde.'® The parameters converge
quickly when the contours of the function to be op-
timized are elliptical. In practice, the method
worked well when two parameters were adjusted to
fit two frequencies. When fits to three transitions
were attempted, convergence was slow.

For both models, two parameters were varied
to fit assigned frequencies to the appropriate ex-
perimental lines. In the QH model v, and v, were
adjustable. The parameters of the GB model were
B and C—measures of the magnitude and width
of the barrier, respectively. The parameter A
specifying the unperturbed harmonic oscillator
was fixed in order to reduce the number of var-
iables. The value A was taken from Clayman
et al.'® to match the harmonic part of the potential
of KBr:Li* at zero strain. Clayman ef al. de-
termined A by fitting the energy difference be-
tween the ground and first excited states to the ob-
served resonant frequency and its isotope shift.
Using this value of A, we were not able to fit ab-
sorption spectra, including transitions to the ex-
cited-state multiplets, at the highest strains for
which data exists for the entire set of lines
(—dr /r=~0.8%). A larger value of A is required
to give a well narrow enough to account for the
high-strain data. A narrower well might also
improve the fit of the GB model at lower strains,
near 0.3%, by pushing the frequency w, up towards
the data point (see Fig. 4).

" III. RESULTS AND INTERPRETATION

Plots of the QH and GB potentials showing 1D
energy levels of KCl: Li* for several values of
hydrostatic strain are displayed in Fig. 5. The
models are easily distinguished: The GB har-
monic envelope is wider than the QH quartic,
and the GB barrier is narrower. Note also the
monotonic decrease of barrier height with strain.

Figure 4 shows data for the strain dependence
of the center frequencies of absorption lines in
KC1:°Li* and the corresponding fits for both model
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potentials. The optimization program attempted
to fit the lowest two frequencies, w, and wg, only.
For the QH potential we were able to match w,
and wg with the data over the entire range of -
strains shown in the figure.” The GB model could
not be fit to the data for strains above 0.7% due to
the excessive width of the constrained (fixed A)
well. The transition w, is completely determined
by w, and wg in these models. w, matches the
data at low strains, but deviates at large strains.
Since w, is electric dipole forbidden in our model,
the fact that'it is observed at all in addition to the
deviation at large strains demonstrates a failure
of the separable potential given by Eq. (3) to ac-
count precisely for experiment.

The only transition for which the two model
potentials give different results is w,. At high
strains (-dr/r > 0.6%), for which the potential is
a perturbed harmonic oscillator, both models fit
the data well. For intermediate strains
[0.3< ~ar /7 (%)< 0.5] the three-parameter GB mod-
el provides a better fit, as the two-parameter QH
model misses the data by about 12% of the average
of the experimental and theoretical values of w,.
However, the fit of w in the QH model can be im-
proved if we are willing to sacrifice some pre-
cision in the fits to w, and/or we. Given the un-
certainty of the experimental determination of
wg, as evidenced by the scatter in the data, we
conclude that the two-parameter QH potential is
able to satisfactorily account for the strain de-

pendence of the four lines shown in Fig. 4. There
are no data for w, at strains below 0.25% since
the excited-state transitions merge into a single
band and cannot be resolved. Absorption frequen-
cies at low strains were obtained by interpolating
w, using the zero-strain datum and extrapolating
wg from higher strains.

Figure 6 shows the strain dependence of the bar-
rier height 1] and off-center displacement (coor-
dinate of minimum energy) x,, for both potentials.
V, is linear up to strains near 0.5%, where the
barrier disappears. The linearity is probably a
consequence of the approximate linearity in the
strain dependence of w, and wg, to which the model po-
tentials were fit. x, varies linearly with strain
up to —dr /r =0.4%, then falls abruptly to zero.
The suddenness of this drop cannot be explained
by the idea of two rigid wells pushed together by
the application of pressure and remains a puzzle.

On the basis of the plots in Fig. 6, we can iden-
tify three regimes of behavior in KCl: Li* for
strains up to 0.8%:

(i) The off-center region, 0.0< —@r /r (%)< 0.4,

for which the barrier exceeds the ground-state
level and tunneling effects are important.

(ii) The transition region, 0.4< —dr/r (%)< 0.6,
where the barrier disappears, but the potential

is strongly anharmonic.

(iii) The perturbed harmonic region, 0.6 < —gr /r (%)
< ?, where the anharmonicity is a perturbation

of decreasing importance relative to the harmonic



19 STRAIN DEPENDENCE OF DEFECT-INDUCED TUNNELING... 2349

FIG. 6. Strain dependence
~2 of model parameters (O, sol-
i id line—QH; A,dashed line—
GB): (a) barrier height Vj;
(b) off-center displacement of
minimum potential energy x,,.
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well. A harmonic regime is expected to exist at
higher strains. This sectioning closely resembles
the partition into regimes suggested by Kahan
etal’

A remarkable feature of off-center defect sys-
tems is the unusually large isotope effect observed
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FIG. 7. Strain dependence of KC1:%Li~"Li isotope ef-
fect for transitions within the ground-state multiplet.
Circles indicate data, a solid line shows the QH model
fit, and the dashed line shows the fit for the GB model.

for transitions within the ground-state multiplet.
The strain dependence of the isotope effect in
KCl1:#Li-"Li and the fits obtained from our cal-
culations are shown in Fig. 7. Although both fits
qualitatively follow the data, the QH fit overshoots
the zero-strain isotope effect worse than the GB
fit, but gives a better match to the data for inter-
mediate strains. The discrepancy at intermediate
strains indicates that our potentials might not be
anharmonic enough. Both fits fall off to the har-
monic, or Einstein oscillator, limit

2(we = wq)/ (e +wq) =1.7% (16)

(7,6 denote isotope) more quickly than the data.

It is possible to fit both the isotope effect and ab-
sorption frequency of the tunneling levels at the
expense of missing the excited-state transitions.
The inability of the models to fit the complete data
exactly might be explained in part as a failure of
the form

Vix,y,2) =vx) +v(y) +v(z) 1)

but in all likelihood is a manifestation of the failure
of the static potential approximation. The approach
of the fits to the Einstein oscillator limit at high
strains indicates that no effects of the impurity-
lattice interaction are built into the potentials at
least for high strains. However, the tunneling
splitting increases with strain and, since the den-
sity of phonons increases as w? (Debye model), if
the defect-lattice coupling is significant we expect
phonons to play a more important role at high
strains. The defect mass enhancement induced

by interaction with phonons should remove the
asymptotic approach of the tunneling-mode iso-
tope effect to the Einstein limit, so that the iso-
tope effect should continue to drop with increasing
strain. Effects of the defect-lattice interaction



2350 R. P. DEVATY AND A. J. SIEVERS 19

TABLE I. Comparison of results.

Dipole moment

V3x,(R) 3V, (cm™) (D)
QH potential 1.55 183 7.44
GB potential 1.23 234 5.91
Quigley and Das 0.44 97 5.15
Experiment e .. 2.54

2[111] displacement of minimum potential energy.
bBarrier height for tunneling along body diagonal.

have been discussed in more detail by Page and
Helliwell'® and by Dick.?

A negative isotope effect has been observed for
the 40-cm™! excited-state absorption band in
KCl:Li*. Our calculations on static potentials do
not exhibit such an effect. However, a possible
explanation has been suggested by Benedek.?°

Finally, we compare some of our results with
the calculations of Quigley and Das*' ® (QD). Table
I lists the values of V3x,, the displacement of
minimum potential in the [111] direction; 3V,, the
barrier height for tunneling across the main diag-
onal; and u, the dipole moment of an off-center
ion. We estimate the dipole moment for our po-
tentials using the formula

w=v3ex,, : (18)

where ¢ is the electronic charge. For compari-
son, the dipole moment measured by Lombardo
and Pohl?! is also listed. As was the case for

the ground-state multiplet (tunneling-mode) iso-
tope effect and the frequencies w, and w;, we did
not attempt to fit the dipole moment when we varied
the parameters of the model potentials. However,
the two-parameter QH potential is still able to
give a dipole moment within a factor of three of
experiment, and the GB prediction is not much
worse than the results of the elaborate QD cal-
culation. The QH and GB potentials exhibit larger
off-center displacements and barrier heights than
the results of QD. The large central barrier is
an attribute of the general form given by Eq. (17),
but the large values of v3x, must arise from
fitting transitions involving excited-state multip-
lets as well as transitions within the tunneling
multiplet. These results might be another indica-
tion of the importance of the defect-lattice inter-
action in determining the frequencies of the ex-
cited-state absorption band, since the small dis-
placements obtained by QD arise from detailed
calculations taking all static forces into account.

IV. SUMMARY

We have performed model calculations on a
separable static 3D potential to gain insight re-
garding the strain-dependent far-infrared proper-
ties of KCl1: Li*. Two 1D model potentials, a
quartic well with a quadratic bump (QH) and a
harmonic well perturbed by a Gaussian barrier
(GB), were fitted to the data of Kahan et al.® Both
models were able to match the strain-dependent
absorption spectrum of KC1: Li*, but the QH po-
tential has the advantage of one less parameter.
The fits to the isotope effect for transitions with-
in the ground-state multiplet were not so pre-
cise. This discrepancy between the models and
experiment was suggested to arise from further
anharmonicities in the impurity potential and
interaction of the localized defect modes with the
host lattice. Examination of the strain dependence
of the parameters V, and x,, revealed surprisingly
simple behavior. V, was linear in strain up to the
point at which the barrier vanished. x, was weakly
linear in strain, but abruptly dropped to zero as
the barrier disappeared. The physics underlying
this behavior remains unexplained. We suggest
that the data can be divided into three regions of
behavior for 0.0< =@ /(%)< 0.6: off-center (tun-
neling) behavior, a very anharmonic transition
region, and a perturbed harmonic region. We
conclude that the potential

Vix,y,2) =0(x) +v(y) +v(z), (19)

where v(x) is a symmetric double minimum poten-
tial of the QH type is a good first approximation
to explaining the properties of low-frequency de-
fect modes in KCl: Li*, but that some of the puz-
zles uncovered by this work remain as topics for
future investigations.
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