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Vibrational Raman scattering induced by Jahn-Teller systems in polar crystals
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The first-order vibrational Raman spectra due to Jahn-Teller impurities in a cubic-symmetry site are
studied, and the contribution of the phonon densities of states to the Raman cross section in different
polarization geometries is given. The case of a I'f electronic doublet at a cubic crystal site is treated in

detail.

I. INTRODUCTION

Recently particular attention has been paid to
the Raman scattering induced by transitions be-
tween vibronic levels of Jahn-Teller (JT) im-
purities in polar crystals.”? Such levels, gener-
ated by the interaction between the JT impurity
electron in its degenerate ground state and the
crystal vibrations,3~5 have been seen as giving
structures at low frequency in the Stokes region
of the impurity-induced Raman spectra in
Ca0: Cu?*' AL, O, : Ni**? and BaF, : Eu®*.® In the
same Raman spectra, besides the structure due
to the vibronic levels, it is possible to observe
the vibrational structure” due to the first-order
contribution of the phonon densities of states
transforming according to the irreducible fepre-
sentations of the point group of the impurity-site
symmetry in the rigid lattice. The vibronic con-
tribution to the total Raman spectra falls in the
low-frequency region and can be separated at low
temperature from the contribution due to the pho-
non densities, when in the same region the phonon
densities involved are flat and low in intensity
(such as the alkaline-earth oxides and fluorides).

The two kinds of structures come from two in-
dependent Raman processes, which involve a dif-
ferent excitation, either a vibron or a phonon,
when the lowest-order approximation is consid-
ered (linear electron-phonon interaction, har-
monic lattice dynamics, few excitations involved).

The vibronic levels are determined by the JT-
active linear electron-phonon (EP) interaction in
the degenerate space of the ground electronic state
of the impurity. They are due to a “rotational
motion” inside this space, associated with the
angular components of the JT-active symmetry
modes, when the polar-coordinate representation
is adopted.** Such a motion has been studied®
with an effective Hamiltonian where the EP inter-
action is integrated over all the lattice vibration
frequencies, and the energy spectrum is found
to be discrete. The vibron is an excitation of this
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“rotational motion.”

The vibrational energy spectrum is related to
the details of the local perturbed lattice dynamics
through the phonon densities of states.

The identification of the processes giving rise
to the vibrational spectra in the Raman scattering
and of the physical quantities supporting such
processes for JT impurities is the aim of the pres-
ent paper. Here we deduce the vibrational first-

v order contribution to the Raman cross section

and present the results for the phonon-density
symmetries and the selection rules involved in
polarized spectra. We refer instead to Ref. 1 for
the corresponding discussion about the vibronic
spectra.

In Sec. II the electron-phonon interactions which
create the phonons involved in the first-order
spectra are. identified and the assumptions made
are discussed.

In Sec. I the first-order Raman cross section
is reported. In Sec. IV symmetry arguments are
applied to determine which phonon densities are
present in the first-order Raman spectra, and
in Sec. V the relations between the Raman in-
tensities for different polarization are obtained.
In Sec. VI the case of a JT impurity whose elec-
tronic ground state transforms according to the
T'; irreducible representation of the O, point group
is considered in detail.

A main result of the present work is that the
symmetries of the phonons involved in a given
polarized scattering geometry are found to obey
new relations® with respect to the case of an im-
purity with a nondegenerate ground state.®°

To our knowledge, such selection rules have
been studied only for systems whose electronic
ground state has been assumed to be a singlet
state. They have been deduced for molecules and
perfect crystals® as well as for impurities in
crystals,’® and are widely used. One consequence
of the assumption that the ground state is a
singlet state is that for impurities in solids the
selection rules are found to depend only on the
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symmetry of the impurity site, and not on the
detailed electronic structure of the impurity. Here
we extend the theory to examine impurities with a
degenerate ground state, such as the JT impuri-
ties. We show that one cannot identify the sym-
metry of the phonon density of states involved in
the spectra in the usual way. In particular, the
selection rules now depend on both the site sym-
metry and the electronic structure of the impurity.
These results are important for a variety of sys-
tems, and are subject to straightforward experi-
mental verification. We refer the reader to
Engleman® for a discussion of the JT ion proper-
ties in general; to Abragam and Bleaney'' for

the properties of the JT rare-earth and transition-
meétal ions.

Unfortunately, the phonon contribution to the
scattering has not been fully analyzed experiment-
ally in the spectra reported in Refs. 1, 2, and 6.
For this reason we cannot check the theory we
present here with those experimental results.

The theory presented in Secs. II-VI can be ap-
plied to impurities whose ground state is degen-
erate, without actually discriminating the simple
orbital degeneracy either from the total momen-
tum degeneracy or from the simple spin degen-
eracy without. orbital degneracy. Of course the
last case is not that of a JT impurity, but it could
concern impurities, such as F center in some
alkali halides, which shows interesting and un-
usual behavior with respect to the Raman scat-
tering'>!3 as do the JT impurities.

II. VIBRATIONAL RAMAN SCATTERING

In the problem we are considering the JT im-
purity is initially in its degenerate relaxed ground
state at the thermal equilibrium with the lattice.
This means that the linear EP interaction relative
to the pure electronic degenerate ground state
(i.e., the JT interaction®~®) has already been con-
sidered in defining the relaxed ground state and
no residual linear interaction is left. In other
words all the forces acting on the ions in the lat-
tice are in equilibrium. The forces on each ion
surrounding the JT impuritiy are essentially of
two types: the direct forces between each ion
and the electron of the JT impurity, and the forces
between ions, supported directly by the ion-ion
interaction and indirectly by the ion-core electrons
interaction. At T=0 °K, the ground state has the
symmetry and the degeneracy of the pure electron-
ic ground state and neither phonons or vibrons
are present.

In the off-resonance Raman scattering the elec-
tron (optical electron) of the impurity undergoes
a virtual transition from a relaxed ground state

to the excited states. At the same time, due to
the transition, the ground state remains without
the electron. All these states considered are in
the equilibrium lattice configuration of the re-
laxed ground state (initial configuration). We des-
cribe this situation with a model in which the op-
tical electron is in one of the excited states and
there is a missing electron, i.e., a hole, in the
ground state, both interacting with the ions. In
fact, the direct interaction between the lattice
and the electron is changed with respect to the
initial situation of the JT impurity. The trans-

. ition thus induces net forces on the ions around

the impurity. These forces define the electron-
lattice and hole-lattice interactions, that in the
vibrational Raman scattering induce creation or
annihilation of phonons. In particular, the first-
order Raman processes can be divided in two
classes.

(i) The processes arising from the infrastate
EP interaction in which a phonon, emitted or ab-
sorbed, can induce mixing between the levels
inside the degeneracy of the excited state, if de-
generate, and of the hole, without any mixing be-
tween different states. This interaction is actually
the difference between the EP interaction evaluat-
ed on the excited states and the hole-lattice inter-
action in the ground state.

(ii) The processes arising from the interstate EP
intevaction, in which a phonon is able to induce
a transition among different electron states of the
same parity. This EP interaction which mix to-
gether the excited states is, in the following, as-
sumed not to involve the hole. Since in nonreson-
ant conditions the interstate and the intrastate in-
teractions can give comparable contributions to
the Raman cross section,'* both processes (i) and
(ii) will be considered in the present paper.

II. VIBRATIONAL RAMAN CROSS SECTION: FIRST-
: ORDER SPECTRA

In order to deduce the vibrational Raman cross
section from a JT impurity, we use the perturba-
tion theory introduced in the nondegenerate
case,” ! taking into account the modifications
which arise from the fact that the ground state is
in its degenerate relaxed state. We can still use
the expressions deduced by Loudon,® provided one
keeps in mind that the total EP interaction is zero
when the electron is in its degenerate ground re-
laxed state. Then the EP interactions entering
the problem are only the EP interactions for the
electron in the excited states and for the hole in
the ground state, and the EP interactions which
mix the different electronic states. Otherwise
the perturbative theory used by Loudon is no long-
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er valid. Then the only difference between the

JT case and the nondegenerate case lies in the
fact that by following the response theory for degen-
erate states the trace (indicated by Tr|+-«|) over
the initial degenerate ground state must be per-
formed in obtaining the Raman cross section.

We indicate as usual by d20/dQ2 dw the differen-
tial cross section per solid angle ©, and fre-
quency shifted by w from the incident light fre-
quency w,. The first-order contribution to dZs/
dQ dw is related to @/(I'y),'® i.e., to the first der-
ivative of the polarizability ®[{x}] with respect to
the symmetrized ionic displacement u(I'y), evalu-
ated in the equilibrium position of the ions when
the electron is in the relaxed ground state. The
u(I'y) are the combinations of the defect neighbor
displacements transforming according to the ir-
reducible representation I' (partner y) of the sym-
metry point group of the impurity site.'® One ob-
tains

d*o ~ S =R |2 2
(dwdﬂ)v ;Tr]n"-@’(ry)-nlil p(T,w?). (1)

Here ( *++), means that only the vibrational con-
tribution to the differential Raman cross section
has been considered. n” and n® are the polariza-
tion vectors of the incident and scattered linearly
polarized light, respectively. p(I', w?) is the den-
sity of one-phonon states'® transforming accord-

ing to the T irreducible representation.

In order to define &’(I'y) [whose components we
call @/,(Ty), a,B=x,9, 2] we use the perturbative
approach used in Eq. (14) of Ref. 9. There the
sum over the a and g states'” in Eq. (14) is per-
formed only on the virtual excited electronic states
of the system considered: then in no case a and
B can be the initial and the final states of the sys -
tems, i.e., the ground relaxed state and the
ground relaxed state plus one phonon. Moreover,
for simplicity, we do not consider in the following
any contribution coming from the phonon-induced
mixing between the ground state and the excited
states. This assumption does not change the re-
sults presented here because the contributions de-
leted in this way [i.e., the contributions coming
from the first two and the last two terms in Eq.
(14) of Ref. 9] give only negligible contribution
in the example considered in detail in Sec. VI. In.
Appendix A we give the complete expression of
the derivative of the polarizability taking into ac-
count those terms.

The derivation of @/,(I'y) is performed in the
one-effective-particle approximation, with the
assumptions stated in the previous sections. Fur-
thermore, we do not take into account the inter-
action between the hole left in the ground state
and the electron in one of the excited states.
®’4(I'y) is given as follows:

CLp(T) =D, BI(gM)F %, 0mm") (B e — 1)) ~ST()S ., (rm JoTImg) + (g )T Yomg)S , ( £2)]

mm’

1 1 .
X((wmlg—wp)(wm‘_w[,) +(0)m:,+ (JJL)(wm‘+ wz)) : ) (2)

We indicate by |g> the degenerate relaxed elec-
tronic state (degeneracy #, and energy E,); by
lm) and |m') the excited electronic states (de-
generacy n, and %,, and energies E,, and E,, re-
spectively).

an’(gm) are the radiation dipole moments of the
virtual transition between the electronic ground
state |g) and the electronic excited state |m).
The usual definition of the dipole moments can be
adopted with no change to degenerate initial-state
case'® provided it is understood that the symbols
]g), lm), etc., in the following mean a set of
ordered levels inside the manifold spaces of the
ground and excited states, respectively. S (gm),
given by

o (gm)=e<glalm> (a=x1y,2), 3)

-arethen, X n, matrices. Here e is the electronic

charge. In Appendix B, we report the matrices
o (gm) and their elements for the case considered
in detail in Sec. VI.

§%,(mm’) are the interstate EP interaction
forces, transforming according to the I irreduci-
ble representation (partner y) of the point sym-
metry group considered, which mixes the state
Im) with the state |m'). As for the dipole mo-
ments, we adopt the matrix notation to represent
such forces. They are #n,, Xn,, matrices given by

me

‘;fri,(mmﬁu(ry)sm |[$Cgp|my @)
Y
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where ¥C;p is the linear contributions to the inter-
action Hamiltonian between the electron and the
lattice.

F¢, (mm) are the intrastate EP interaction forces
on the states |m} in the lattice configuration of the
relaxed ground state. They are #,, X n, matrices
given by

; Fg, (mm)u(Ty) = (m }JCEP Im) . (5)

EF;’(gg) are the intvastate EP interaction forces
between the lattice and the hole left in the ground
state in the initial lattice configuration. They are
n, X n, matrices, given by

d®o ) R
(dwdsz , ;Tr

;:ﬁ’;,(gg)u(l"vh (g]%czlg) - (6)

We give in Appendix B as an example, the matri-
ces %, (mm), F%,(mm’), F%,(gg), and their ma-
trix elements for the case considered in Sec. VI.
Wy and w,,, are the energies (7=1) of the ex-
cited states E,, with respect to the energy of the
ground state E,. From Eq. (2) it follows that
@’ 4(Ty) is a matrix n, X n,.
By using the quantities introduced before, we
obtain for the first-order differential Raman cross
section the following expression:

Eu;‘ ; {nEloms(gm)F L, (mm”)(8 pm: — 10MGn’g) ~01( ) ST, (mm Pugome)
1

2p(l", w?). (7

+Lgm)ougime)st, (s} (

IV. SYMMETRY CONSIDERATIONS

By using symmetry considerations, we derive
now from Eq. (2) which irreducible representa-
tion I' of the densities of phonon states is involved
in the first-order Raman scattering, given in Eqgs.
(1) and (7).

We call Ty, I',, and I', the irreducible represen-
tations according to which the dipole moment, the
ground-state wave function, and the excited-state
wave function, respectively, transform. Group
theory states that the matrices which appear in
Eq. (10), i.e., m%(gm) andm3(n’g) [given in Eq.
(3)] and F ., (mm’) [given in Egs. (4) and (5)] are
different from zero only if the following relations
hold:

r,xr,er,orl,,, (82)

IZerforr, xI,,el. (8b)
We may combine these two conditions into

(T3xTI2),el’, 9)

the irreducible representation I' appearing in Eq.
(9) must be contained in the symmetrized direct
product (I3 X I'2);.** This result includes also the
condition on the irreducible representation for
hole-lattice interaction forces EF’},(gg) of Eq. (6),
as one can see from Eq. (2). Note that the sym-
metry of the excited states is ineffective in de-
termining the symmetry I' of Eq. (9).

1
(@ = D) @pg = @7) * (e g+ @ L)@+ wL))

r

Let us consider Eq. (9) for impurities at a site
of O, symmetry, because there a high electronic
degeneracy can occur. We recall that T'; trans-
forms according to I'j and

[2=Ti+ T3+ T+ T2, (10)

where I'j, T';, and I'! represent the symmetric
part of the direct product.

If the ground state is a singlet state I‘?:I";, SO0
that from Eqs. (9) and (10) one gets that &/ (I'y)
must transform according to I', where

=%, T3, (11)

This is a well-known result that can also be ob-
tained by symmetry arguments alone about the
defect neighbors dynamics.!® However, because
the same symmetry arguments must work when
the ground electronic state is degenerate, the
irreducible representations involved in the JT
case must be those of Eq. (11). This result too
comes from Egs. (9) and (10), since on one hand
I'? always contains the identity representation I'},
so that the symmetric representation in Eq. (10)
must be involved and, on the other hand, I'Z does
not introduce other irreducible representations
into the symmetrized direct product of Eq. (9) but
those of Eq. (11). '
Therefore, the first-order Raman spectra in-
duced by JT impurities are weighted superposi-
tions of the same phonon densities p(I", w?) which
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are involved in the nondegenerate case. However,
the superposition is diffevent in the two cases.
This is an important consequence of Eq. (9), as
will be shown in Sec. V.

V. POLARIZATION SELECTION RULES

We present now the polarization selection rules
for a O, point group. We analyze first which ir-
reducible components of I'; are involved in a given
scattering geometry and by using linearly polar-
ized light. We write the irreducible representa-
tions in Eq. (10) as matrices in the real space
x,y, 2z by noting that their representation is the
same as that in the linear vector space spanned
by the eigenfunctions of the threefold degenerate
I'] state {given for instance in Ref. 4, pp.59-60).
The scalar product A%+ T't - 1R, etc., for all the
components of I'j given in Eq. (10), can be evalua-
ated and it is easily recognized that the I'f and I'}
components contribute to the n*[100] and n%[100]
polarization geometry (hereafter indicated by '
[100]-[100]); the T} and I'; components to the
[110]-[110] geometry; the I'; and I'; components
to the [100]-[010] geometry. Thus

I'{+ T} when 1* || [100], §F || [100]

nl-T2-0fe( i+ Ty when nf || [110], AR ||[1T0]
r;+T¢ when nf |[[100], 1% || [010].
(12)

Finally, we put the results of Eq. (12) in Eq. (9).
One gets that a I'-type phonon density p(T", w?) is
involved in the Raman scattering for a given po-
larization geometry, only if it is contained in the
symmetrized direct product, as follows:
I'e|TiXI)+T13)]s when nfii[100], n®i[100]
De|TXT3+T3)]s when n*i[110], n®u{170]  (13)

e [2XT;+T)]s when nfi[100], n®i[010].

=%}

Equation (13) holds also for non-JT impurities.
In this case the ground state is not degenerate and
T%=T}. Therefore, from Eq. (13) the p(T,w?)
contributing to the first-order Raman spectra are
p(Ti,w?) and p(T'},w?) in the [100]~|100] polariza-
tion geometry; p(T'j,w?) in the [110]—[170] geom-
etry; and p(T'%,w?) in the [100] ~|010] geometry.

The selection rules reported above are also
valid mutatis mutandis when the local site sym-
metry of the impurity center is 7';.

VI. JT IMPURITY WITH A I'j ELECTRONIC GROUND
STATE

We examine in particular the Raman cross sec-
tion for different scattering geometries induced by

an impurity in the local-site symmetry group O,,
whose electronic ground state transforms accord-
ing to T'j. Such is the case of the impurities
whose experimental Raman scattering spectra are
reported in Refs. 1 and 2. This case is particular-
ly interesting because the vibronic levels are de-
termined by the ground-state EP interaction trans-
forming according to I'; which is JT active (T}
XTj case). Then the Raman spectra show struc-
ture corresponding to the vibronic levels when the
polarization geometry is either of the [100]~[100]
or of [110]—|T10] type.!’?

For what concerns the vibrational Raman scat-
tering, the polarization selection rules of Eq.
(13) of the Sec. V can be applied to this case,
taking into account that T, =T and I';XT;=T}]
+T4+T3.2° Then in the [100]—~[100] polarization
geometry, the densities of phonon states which
determine the Raman spectra must transform
according to T'j + T'j. In the [110]-[1T0] geometry
they must transform according to I'{ + T'; + I';.

In the [100]~[010] geometry, they must transform
according to I';.

We now evaluate the infensities of such process
for the above-considered polarization geometries
by using Eq. (7). First of all, we have to deter-
mine what excited states are connected to the
ground state by dipole-allowed transitions and the
relative dipole moments M’ (gm); then evaluate
the terms corresponding to the (intrastate and in-
terstate) EP interactions and analyze them in ir-
reducible components; finally, once we have de-
duced ¢,4Ty), we write the Raman differential
cross section given in Eq. (7) for the different po-
larizations geometries.

Since the dipole moment transforms according
to I';, the excited states connected to a I'j ground
state must transform according to the threefold-
degenerate irreducible representations I'; and T;
because I';XT';=T;+TI';. In principle we consider
several excited states of both the symmetries.
The o component of the dipole moment Y (gm)
given in Eq. (3) corresponding to an allowed tran-
sition between the I';-symmetry ground state and
either a I';-symmetry or a I';-symmetry excited
state, is therefore a 2X3 matrix (see Appendix
B). The forces F%,(mm) and FP,(gg), appearing
in the intrastate EP interaction Hamiltonian, are
3%X3 and 2X2 matrices, respectively. Ft,(mm)
transforms according to I'j, I';, or I'f, and
Ft,(gg) according to I'{ or Tj. The forces &%,
(mm’) with m #m’, appearing in the interstate in-
teraction Hamiltonian, are 3X 3 matrices, trans-
forming according to I'j and I'}, but not accord-
ing to Tj{. In fact #(Ty), i.e., the I'{-symmetrized
displacement, has the total point symmetry of the
defect and therefore cannot induce transitions be-
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tween I';- or I';-symmetry states (see Appendix
B). We refer to Appendix A for the comments on
the contributions coming from the terms neglected
in the above analysis. We give in the present sec-
tion the results for the differential cross sections
in the different polarization geometries in the fol-
lowing cases: (i) all the considered excited states

J

transform according to I'j; (ii) all the considered
excited states transform according to I';. In
the Appendix C we give the general result by
considering all the excited states transforming ac-
cording to either I'j or I';, Since the results for
(i) and (ii) differ only by a sign, we report them

in an unique expression,

) H@' —a)’p(T],w?) +2[b2 + 20" - b")? £20(p" - b")]p(T},w?)} when n*1[100] and n®i[100]  (14a)

( d’o )v ~] (@' —a)p(T;,w?) +2[b% + 36" =b")2£2b(0" - b")]p(T3,w?) +(c’ —c” ML, w?)
when n™[110] and n®i[1T0] (14b)
4(c’ -¢”")*p(T%,w?) when n*1[100] and n*1[010]. (14c)

dwd)

In Egs. (14a) and (14b) the (+) sign is such that (+)
refers to the case (i) and (=) refers to case (ii).
The coefficients a, a', b, b’, b”, ¢', ¢” involve
the oscillator strength of the virtual transitions,
the transition frequency, and the EP coupling co-
efficients (see Appendix C). In particular g is re-
lated to the I'{ hole-lattice coupling coefficients,
in the ground degenerate state I'}; ¢’ is related to
all the contributions of the I'{ coupling coefficients
in the excited states I'j |or T'; for the case (ii)];

b and b’ have the same meaning for the I} intra-
state coupling coefficients; ¢’ is related to the

T’} intrastate coupling coefficients relative to the
excited states; b and ¢” are related to the T'§ and
the I't coupling coefficients, respectively, of the
interstate EP interactions relative to all the T’}
lor all the T'; for the case (ii)] excited state.?!

The terms proportional to the densities p(l“;,wz)
and p(T},w?) in Eq. (14b) owe their presence en-
tirely to the degenerate character of the ground
state. In fact, when the ground state is a singlet
one, the density of phonon states appearing in the
[110] -~ [170] scattering is only that transforming
according to I'§.!°

Let us consider some cases that we think worth
discussion.

(i) ¢" and ¢” or (¢’ —c”) are negligible: in the
[100]~[010] geometry no first-order Raman spec-
tra can be seen. Furthermore, scatterings [100]
—[100] and [110] - [1T70] become nearly equal in
shape, apart from the intensity ratio 8/3. In
fact, the relative weight of p(r;,w2) with respect
to p(T'},w?) is practically the same in the two po-
larized spectra given in Eqs..(14a) and (14b).

(ii) Either 4’ and 4 or (¢’ —a) are negligible.
The three polarized spectra given in Eqs. (14) are

i

all different, More specifically, the polarized
spectrum [100]—-[010] is determined only by
p(Tt,w?) the polarized spectrum [100]—[100] only
by p(T'§,w?), while the polarized spectrum [110]
- [170] is the sum of these two spectra, reduced
by the factor 3/8.

(iii) Under the joint assumptions (i) and (ii), the
two polarized spectra in Egs. (14a) and (14b) are
determined only by p(T'},w?) and have an intensity
ratio equal to 8/3.

Let us compare these results with those valid
for non-JT impurities (singlet ground state), For
non-JT impurities the first-order polarized spec-
tra [100]~[100] and [110]~[170] become equal in
shape [actually the shape of p(T§,w’) density of
phonon states ] only when the T'{-symmetry EP in-
teraction coefficient is negligible, and their in-
tensity ratio is then 4/3. This last result is only
apparently similar to that considered in (iii), be-
cause the intensity ratio of the two spectra [100]
—~[100] and [110]-[1T0] in the singlet case is one-
half than that of the JT doublet case.

VII. CONCLUSIONS

We have given in Sec. III the theoretical expres-
sion for the first-order differential Raman cross
section, in Sec. V the polarization selection rules
for the first-order Raman processes, and in Sec.
VI the differential Raman cross section for a JT
impurity with a I'j electronic ground state, More-
over in Sec. V the coefficients weighting the dif-
ferent densities of phonon states in the Raman
spectra have been deduced in the assumption that
the excited states are either of the T’ type or of
the T'; type.
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We try now to compare the theory presented
here with the experimental results given by Guha
and Chase! and concerning Cu®* in Ca0.? For this
purpose we need very detailed information about
the excited states of the JT impurity Cu®* (ener-
gies, symmetries, and oscillator strengths for
the allowed transitions from the I'j ground state)
which, unfortunately, to our knowledge do not
exist in the literature. Because their evaluation
is outside of the aim of the present paper, we
assume first that either the oscillator strength
for the I'j-type states is stronger than that for
T';-type states, or vice versa. The results of Sec.
VI can then be used for a comparison with the ex-
perimental results. In Ref. 1 the authors report
that no impurity-induced scattering has been de-
tected in the [100] - [010] geometry. This means
that assumption (i) of Sec. VI holds: ¢’ and ¢” or
(¢’ =c") are negligible® and the experimental vi-
brational Raman spectra in the two polarization
geometries [100]-[100] and [110] - [1T70] should
approximately have the same shape. This seems
to be in agreement with the experimental re-
sults.!"?* For these spectra the contributions of
the T'§ density of phonon states cannot be separated
from that of the I'f density of phonon states be-
cause they appear together in both the spectra.
Only in the case that the coefficient (¢’ —a) is equal
to zero [case (iii) of Sec. VI] the two spectra have
the shape determined by the I'; density of phonon
states alone. Unfortunately the authors in Ref. 1
do not report the intensity ratio between the [100]
—-[100] and [110]-[1T0] polarized spectra, which
should be 8/3 in the present case and 4/3 in the
non-JT case. If, onthe contrary, all the oscilla-
tor strengths for the transitions I'{ - T'; and T'}

- I'J are equal.in intensity, the theoretical results
given in Eq. (C1) must be considered for a com-

parison with the experimental results. This is a
difficult task because of too many coefficients
appearing there. However, since there is no ex-
perimental scattering for (100) ~(010) geometry,!
this implies again that all the I'; EP coupling co-
efficients c;; (¢,j=u,v) are negligible, Then we
can conclude as before and in agreement with the
polarization selection rules (Sec. V) that the [100]
—~[100] and [110]~[1T0] polarized spectra are a
superposition of p(I'{,w?) and p(T'},w?). Only when
all the T'{-symmetry EP interaction coefficients

a iy are negligible, is the result again apparently
similar to that obtained for non-JT impurities.
But in the non-JT case the ratio of the intensities
[100]~[100] and [110]~|1T0] is rigorously equal
to 4/3, while in the JT case the same ratio does
not give this result at all [Eq. (C1)].

We conclude by emphasizing that a careful mea-
surement of the Raman spectra intensities and of
their intensity ratios should not only allow dis-
crimination between JT and non-JT impurities,
but also should give very interesting information
about the composition of the spectra in terms of
p(T,w?). '

APPENDIX A

We give the complete expression of [®%5(T'y)]iot,
following the Loudon theory of Ref. (9) Eq. (14).
a,8=x,y,z in our notation. Here we take into
account also the terms coming from the EP inter-
actions which mix the ground state with the excited
electronic states. These are the first two and the
last two terms in Eq. (14) Ref. 9, we neglected in
the text. In addition to the excited states |m) and

Im') in Eq. (2), we introduce the states |g) which

are the excited states connected to the ground
state through the interstate EP interaction.

@ s(TV)eot =Coa(Ty) =2
qm

(W?x(gm)ﬂﬂ%(mq)ffﬁ ag) + 52, (gq)M(gm)M%(mg)
w qm(wmg + C"L) .

+

b (ga)MY(gm)IMg (mg) +Miy(gm)IMg (mq)Ft ,(4g) ) , (A1)

W (W mg —wr)

where @, 4(T'y) is the expression given in Eq. (2) of
the text.

The excited states |g) are connected to the
ground state |g) through the dipole moments 912
(gm). In O, symmetry the excited states |g) must
then have the same parity of the ground state |g

r

and different parity from the [m) state’s parity.
In O and T, symmetry site, where the inversion
symmetry does not exist any more, the previous
restriction on the excited states 1q) and [m) does
not exist any longer and the two indices ¢ and m
can be interchanged in the sum in Eq. (Al).



In particular, in O, site symmetry where I' =T§,
T§, T} and for a T'; ground state (Sec. V of the :
text), the |g) states must transform as the irre-
ducible representation of even symmetry, where

r,erer (I'=TI§,T4,TY. (A2)
In the example considered. in Sec. VI (CaO:Cu?*),
the lowest excited electronic state of even sym-
metry is of I'f symmetry. Then according to
Eq. (A2), @4 g(T¥)iot =®%s(Ty) in Eq. (Al) is dif-
ferent from zero only for the components I' =T,
In the case considered in Sec. VI, the contribution
of p(Tt,w?) weighted by the '} coupling coefficients
appears in the spectra of the polarized scatterings
[110]~[1T0] and [100]—[010]. [See_ Egs. (14) of the
text.] Inparticular, inEq. (14c) p(I'}, w?) is the only
one responsible of the shape of the first-or-
der vibrational spectrum. Since from the ex-
perimental results there considered it turns
out that the scattering is negligible for this
geometry, it follows that all the I'} coupling
coefficients are negligible, as we say in Sec.
VII. This also implies that the I'; coupling co-
efficients, related to the EP interstate inter-
action forces considered in the present appendix,
are negligible.

APPENDIX B

We determine the expressions for the dipole
moments MY (gm) and the interstate and intra-
state EP interaction forces Fr(mm) and Fp(mm’)
introduced in Sec. IV and used in Sec. VI for the
T'; electronic ground state.

First of all we give the symmetry properties of
the electronic wave functions. We use as a basis
for the double ground state I (E, in German no-
tation) the real wave functions ¥, =y and ¥, =¥,
which are taken to transform, respectively, as
222—x%- 92 and V3 (x2—y?); for the triplet
excited states we use the real functions ¥,, ¥,, ¥,
which are taken to transform, respectively, for
T';(T,,) as x, ¥,z and for I';(T,,) as x(y*-2?),
y(2%-x%), 2(x*-9%. . ,

We indicate with g the electronic I'j state, with
m the electronic I'] states, and with #n the elec-
tronic I'; states.

By using these wave functions the dipole mo-
ment matrices are

me(gm) = e(glx|m) =M |72 0 0, (BY)
v3i oo
Mg m) = egly|m) =Mpm |© "1 O,
0 -Vv3 0
Me(gm) = elglelm) =M, [ O 2|,
000
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and

v3 0 0
1 00

M) = el gle|n) =M, . @

0 -V3 0
0 1 0

MY(gn) = e glyln) =M,,

?

00 O
00 -2

Mg ) = e gle|n) =My,

Note that for symmetry properties the coefficients
M, in Eqs. (B1) are equal for x, 3, z polarized
transitions. The same properties is valid for
M,, in Eqgs. (B2).

The dipole moments are related to the oscillator
strength f,, of the transition by the following ex-
pression:

Jem= 327—;;,—:_2— ; Tr [&m%,(gm)]zw,,,, ) | (B3)

where w,, is given in the text and m* is the effec-
tive mass of the optical electron.

In order to determine the intrastate and inter-
state forces, we give first the symmetry proper-
ties of symmetrized displacements «#(I'y) for
I'=T;(E,) and I'=I'}(T,). They are chosen in
order to transform for I'j as (2z 2—x%~y?) and
V3 (%%~ y?) and for I'} as yz,zx, xy. Then the
matrices transforming as I'; in the electronic
wave-function spaces, have the following forms:
in the gX g space

-10
01

01
10

€g = y €= H ) (B4)

in the m Xm, m Xm', nXn, nXn' spaces

-1 0 0 Vi 0 o
=10 -10|, &=|0 -v3 0|; (B5)
0 0 2 0 0 o

in the m X n space
85=6c, 6c=-84; (B6)
in the m X m, mxm', nxXn, nXn' spaces
000
Toe =0 0 1f, (B7)
010

with obvious changes, for 7,, and 7,,; in the
mX n space
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00 0
Th=|0 0 -1/,
01 0
0 01
r7,=[ 0 0 0], (B8)
-100

0

0

0 -1

Tse= |1 0

00 O

By using the matrices given in Eqs. (B4)-(B8) and
by indicating by 9 the unit matrix, the interstate
and intrastate forces transforming as I';, T,

and I'} have the following expressions:

ff%’;(gg>=F"(1"I,gg)9,

(nn) Fé(T'}, nn)g, (B9)
EF’1'~;,1(1;a§.f) =FXT}, gg)eq,
F1' (g9)=F"(T],g0e, (B10)
Fty, (mm)=F°(L3,mm)8,,
ﬁﬁ;'z (mm)=F*T;,mm)&,, (B11)
|
+[@yp = @) +(@ =@, )] (IF, 02 + 5

[(au [T au) - (@ = av)]zp (I‘I’

d?c
(dwdﬂ)y ~ <
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Frr(mm) =F°(T'}, mm)s,

19
Sy, (mm) = F*(T;,mn) 85,
1-;'2 (mn)=Fe(T;, mn)&, (B12)
Sy, (mm)=F*(T3,mm) T, , (B13)

with obvious changes for fFF;z (mm) and S}?gq(mm),

Fer_ (mn) =TS, m)Ts, (B14)
with obvious changes for Fg+ (m m) and ff‘}m(mm)

F™T, gg), F°(T,mm), F"(I‘ mn) in Eqs. (B9)-
(B14) are scalar coupling coefficients evaluated
in the electronic states as indicated. The EP in-
trastate forces ¢ (nn), the EP interstate forces
F % (nn’) F¢ (mm') have the same matrix repre-
sentations given in Eqs. (B11) and (B13), only
the coupling coefficients F®(T, nr), F°(T, mm'),
and F°(T, nn') being different.

APPENDIX C

We give the general result for the differential
Raman cross section by considering all the ex-
cited states transforming according to I', =T
and I', for different incident and scattered light
polarizations:

(2B s =byy) +2(Byysr = byy)? +4b%, +52
+52 = 2(by e = by )by, +2(Dyyr = byp)by
+2b,, (b, +b,)]p (T';, w?) when #%[[100], %[ [100];

w?2) +23[(Byyr = by ) +(Byyr = byy))? +2b%,] +(by, = by,)?
+2(by,
+2(bpu' - buu)(bvv' - buv) 2% v}p(r )
+[(eyyr = ) -(cw.—c“u) +2/V3¢chy]

\ xp (T,

b= by + Dy = b, )(By = b) +2(Byr = b= by +B)b oy

(cy

w?) when %[ 110/, 7%|/[110],

F[(Cpur = €4 +(Cppr— €)% +2¢ 2, 10(T}, w?)

when 1%[[100],

In what follows, as in Appendix B, we indicate
- with g the I'}-type electronic ground state, with
m the I';-type electronic excited states and with

" [010],

r

n the I';-type electronic excited states. The co-
eff1c1ents appearing in Eq. (C1) are given by the
following expressions:



ZM"’ Fe(T*, mm)Q;L

mm ?

ZMZ Fe(T, nn)S2;) (c2)

nn?

= ZMZ F*( I‘*,gg)ﬂmm,
a,= ZMz FMTt, g2)%L

Z:M2 Fe(T%, mm) QL
by = ZZM oMo ¢ ik F° (T4, mm’),
ZZM M, Fé (T3, mn) k=0, ,
= DM Fe(Ty,mn) 5,
0
b, = ZZ M, M, ,F&(T%,nn" )L, | (©3)

ZM2 FNT'%,g9) 5k,

Z M2, FMT%,88) ;)5

19 VIBRATIONAL RAMAN SCATTERING INDUCED BY... . 2341

ramm) QL

ZMZ Fe(T

Cunr = 2.0 My M, Fo (Tt mm") ok, ,  (C4)
m m' -
ZZM M, F® (T3, mn) QL =c,,,
Cyp = ZMZ Fe(Ti,nn) Q},

Copr = ZZ Mgy My F€ (Timn’) QL
n

where
o
1 ‘ 1
(@, — @)@, _w) (W + 0 ) (@, + @) [ (C5)

All the other quantities in Eqs. (C2) and (C3) have
been already defined in Appendix B.

In the case where only the I', excited states are
considered it turns out that

auu=q” a,=a buuzbl’ buu""b
alw:O’ au=0’ buv=0’ bvv' =O ’ (CG)
b,=b, ¢c,,=c¢’, ¢, ,.=c”, b, =0,

bv=0’ CW=0, Copr =0’ Cuv':o‘
The opposite (a,, =0, a,,=a’, etc.) holds when
only the I'; excited states are considered. These

two choices have been considered in the text,
Egs. (14a)-(14c).
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contribution of the same symmetry in the (110)— (110)
scattering, as deduced in Ref. 8.

2?We think that CaO:Cu®* is a good example for the theory
presented in Sec. VI, where only the spatial degeneracy
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the ground electronic state of CaO:Cu®* has also a doub-
let spin degeneracy. This last degeneracy does not play
any role in determining the differential Raman cross
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235ee the comments in Appendix A.
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