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atomic-hydrogen impurities in solid molecular hydrogen
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The dynamic-local-field approximation has been modified to accommodate dilute atomic-H impurities in

solid H&. The impurities are assumed to occupy substitutional sites. Calculated properties of the atomic

impurities include the single-particle-distribution function, the root-mean-square fluctuations about the
equilibrium position, and the lattice distortion.

I. INTRODUCTION

There has recently been considerable interest in
producing and storing atomic hydrogen in bulk
quantities. One approach, taken by Webeler, 2'3

involves the generation of atomic hydrogen within
a molecular-hydrogen lattice by tritium decay.
These experiments have all been at low concentra-
tions of atomic hydrogen. The purpose of this
study was to investigate such systems using an
appropriately modified dynamic-local-field approx-
imation. 4 The model used allows for the distortion
in the lattice around the atomic-hydrogen impurity.
Some studies of defects in other quantum solids'
predict that point defects would be nonlocalized
"defectons. " This work, however, treats the hy-
drogen atom .as a localized defect in a, manner
similar to previous studies for 3He and He.
An important assumption in this study is that the
hydrogen-atom impurity occupies a substitutional
site. The electron-spin-resonance experiments of
Adrian support this view for atomic hydrogen
in a molecular-hydrogen lattice. For simplicity,
calculations assumed a face-centered-cubic lattice
instead of the actual hexagonal-close-packed struc-
ture.

H. THEORY

The energy of a molecular-hydrogen lattice con-
taining a single hydrogen-atom impurity was cal-
culated variationally. The starting point was the
dynamic-local-field approximate calculation of
the ground-state energy of an all-molecular-hydro-
gen lattice. " For an all-molecular-hydrogen cal-
culation, the variational wave function of the N-
particle system is assumed to have the form

@(r» ~ ~ r»») =.[][4H,(r» —R»). .], fH, -H, (r»a) (I)

where the Q(r» -R, ) localize the particles around
their equilibrium lattice sites (R») and the f»»z „~
account for the important short-ranged pair cor-

relations. Parametrized forms are chosen for Q
and f, and the parameters are determined by min-
imizing the expectation value of the free energy.

With a single hydrogen-atom impurity introduced
into the system, the total wave function is assumed
to have the form

E
@'(r») "~r»»)=»tn(r»). „.4a, (r~)

$-2

Ex]"[f„»»,(r&,)
'

f»», H, (ran), (2)

where the subscripts H and H2 refer to the hydro-
gen atom and molecule, respectively. The position
r&, will always locate the H atom. The quantities
in Eq. (2) are chosen to be of the form

Q»»(r») =(PH/»»)' ' exp[-2P»»(rj R») ] (2)

0 H~(r») (PH~/ »)"' exp[-MPH~(r» R»)'], (&)

fn-n, (r»») =exph(kn/r»g)'], (5)

fs, -H, (»a) =exp[-k(kn, /r»a)'], (6)

where Q»» and f„„play the same role as in Eq.
(I), Q»» localizes the H atom around R», and f„„. H "2
accounts for the short-ranged pair correlations
between the atom and the molecules. There are
four variational parameters in the wave function,
P»», P» k» and k»» . These and the nearest-neigh-
bor bond length of the 8 atom make five variational
parameters. In order to simplify the problem P„.H2
and kH are assumed to have values corresponding
to the ground state of the all-molecular-hydrogen
lattice. These values are 1.714 A and 3.282 A,
respectively. ~ This reduces the calculation to a
manageable one with three variational parameters.

The Hamiltonian for the system is
52 S2II=- — Vg — ~V)

2mH SSH2 j
8 N

+ VH-H r&y + ~H H +)k ( I)
2 2 sa2 2 2

where VH „ is the interaction potential between"2 "2
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two molecules" and VH H is the interaction poten-H-H2

tial between a hydrogen atom and a hydrogen mo-
lecule. The V„„potentials used in this study are" "2
those of Gengenback et al. They fit the most re-
cent experimental data with a Born-Mayer potential
in the repulsive region, a cubic Spline fit in the
well region, and a van der Waals form for the long-
range region. It is appropriately labeled the Born-
Mayer-S"pline-van der Waals potential. The well
depth for this potential is 27.15 K, compared with
32.6 K for VH" H2'

Using Eqs. I2)-(7) and some manipulation (sim-
ilar to the development in Ref. 4), we can put the
expectation value of the Hamiltonian of the system
in for form

( )
35 p„(N-1)35 ps2 (g4~„+ 4m„

2

N

x
H p ~)~ + pH y')p dry. "dry

P(k
x~2

(8)
where

p„(~,~) = y„„2(r;g)—
4 &InfH H, (ra),

S'
vz (r~}= Vz „(t'~) — ))'zlnfH z (r~), (10)

2

and p, is the reduced mass.
In the dynamic-local-field approximation Eq. (8)

becomes

+
4 +«'u~@d p AH(r&)AH2(r')fs-s(+1j)~H(+IS)GH(r1 r/)dr1drg

3I p„(N ~1)3h pH2

2 2=2

+
H2 )t H2 rp H2 H2 +2 +)ga G

2 rg r„r)tdr&
)t~z

where G„(r„,r), ) is the same as in Eq. (12) of Ref. 4,"2

G„(r„,r),)= [ f„„(r~-R,) J[ [ f„„(r„-R} ][M,(r~),[ M,.(r„) N, (r„,r~),
sANNX PINNA j=NN& )=WNA 1 =NBA

where the primes indicate that the product is not to include index X or k, NNX represents the nearest
neighbors to particle ~, NNXk represents the nearest neighbors to both particles X and k,

M (rr) ff „(r r)d (rr-Rr)drr,

Ni(rx, r~) = fH2-H (+ay)f H2-H2(~hi)AH2(rl Rg)drl

(12)

(13)

(14)

and

G„(r&, r&) = „.[ f„„~(r&—
pe N 1

tI w ~ ~ (
R,} f„„(r),—R,) „, f„„(r«)$„2(r&—R&)dr&

g4NNk jWNi
ANNA

J'I ff (rw)d (rr —Rr)drr, , f (r„)fr, «, (r, )dr (r, —)),)dr-, .
'- NN0 1= NN10
=NNX

(15)

In evaluating Eq. (11) as a function of the three
variational parameters, several approximations
were necessary. First, the products in Eq. (14)
included only the first and second nearest neighbors
to 1 and k. This approximation was also made for
other dynamic-local-field approximation calcula-
tions in a face'-centered-cubic lattice, and intro-
duces negligible error. Second, the distortion in
the lattice was assumed to affect only the distances

between the hydrogen impurity and its first nearest
neighbors and the distances between the atom's
first nearest neighbors and those fourth nearest
neighbors which are in the same direction from
the atom as the lattice distortion.

Consider the effect of the lattice distortion on
the nearest neighbors to the impurity. Let the
energy change per molecule of these nearest
neighbors, from their value for a pure H2 solid,
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be 4E&. Clearly, the impurity distortion will
change the equilibrium distances between this
molecule and all of its neighbors. Here 4E& is
calculated by neglecting all but two of these dis-
tance changes. A careful look at how the distances
change shows why this approximation is justified.
As the nearest-neighbor molecule moves away
from the atom it moves directly toward one of the
atom's fourth nearest neighbors. Two distance
changes are obviously important. They are the
change in bond length with the atom and with the
fourth nearest neighbor. The molecule also moves
closer to four of its nearest neighbors, which
form the base of a square bipyramid, with the
molecule in question and one in the fourth nearest-
neighbor shell as the apex molecules. However,
the change in distance between the molecule and
these four neighbors is approximately a factor of
2 less than the incremental change in the distance
from the molecules to the atom's fourth nearest
neighbor. This, plus the fact that the molecule,
while moving toward four molecules, is also mov-
ing away from other nearest neighbors, tends to
negate the importance of bond-length changes for
nearest-neighbor molecules other than the two
previously mentioned. The energy change for the
fourth nearest neighbors to the atom, 4E4, is
based on similar reasoning. The only bond-length
changes are assumed to be with the atom and with
its first nearest neighbor. Finally, all second,
third, and molecules beyond fourth nearest neigh-
bors are assumed to have the same energy per
molecule as in an all-H2 lattice.

The predominant change in the lattice energy is
due to the substitutional replacement of an H2 mo-
lecule by an H atom. This energy change we call
b,E„, which is the difference in energy between
that of the H atom, E„, and that of an H2 molecule,
EH, :

3@2 1 N

ZH —
g

+
g Q H(+l/)) '

BZ H2 j=2

(16)

Two additional quantities were calculated: the
single-particle distribution function R( j r, —R& ~)

and the root-mean-square fluctuation about the
equilibrium position for the hydrogen atom,
((r& —Q) )~I . The equations used are similar
to Eq. (16) in Ref. 4.

III. RESULTS AND DISCUSSION

The quantity of interest is not the actual energy
of the crystal given by Eq. (11), since this quantity
depends on the crystal size. For this study the re-
sults will be given in terms o f the difference in

energy, 4E, of a crystal with one atom of hydro-
gen and N —1 hydrogen molecules and a crystal
composed of N hydrogen molecules. For the all-
molecular-hydrogen calculation the results were
reported in terms of an energy per molecule.
Note that when this is done, two-body contributions
to the energy, like the interaction potential, are
divided equally between molecules. Thus, &E is
made up of (i) EZ„, the "energy" of the hydrogen
atom, 8„, minus the "energy" of a hydrogen
molecule in an all-molecular-hydrogen lattice,
E„;(ii) the difference in energy between the
"energy" of the 12 molecules in the atom's first
nearest-neighbor shell and the 12 molecules in an
all-molecular-hydrogen lattice, ~&, and (iii)
similar terms ~2, ~E3, etc. , for each successive
shell of neighbors to the hydrogen atom. In this
work,

EE = Lhg H + b,E ) + EE4 .
When the contributions to 4E are separated in

this manner, all of the contributions to &E at
equilibrium are positive. That is, all of the terms
tend to increase the energy of the lattice with a

TABLE I. Variational results. o = 2.958 A

18.0
15.5
13.5
13.5
13.5
13.5
15.0
16.5
18.0
15.0
13.0
12.0

1.07
1.06
0.97
1.01
1.05
0.93
0.93
0.93
0.93
1.02
0.97
0.93

I'

NN, re1 NN, urlrel

1.00
1.03
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.06
1.09
1.12

(K)

147.71
132.01
129.37
127.11
128.16
133.97
133.06
133.05
133.72
122;64
132.04
141.63

(K)

106.00
83.73
67.75
66.83
67.25
69.98
73.90
78.15
82.63
72.88
59.02
52.70

AF. ,
(K)

44.45
42.26
44.92
43.64
44.34
47.23
43.71
40.64
37.93
38.47
46.89
53.26

dE4

(K)

-3.74
6.02

16.70
16.64
16.56
16.76
15.45
14.26
13.16
11.29
26.13
35.67
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hydrogen-atom impurity compared to the all-mo-
lecular-hydrogen lattice. The largest contribution
comes from bE„=E„-E„.This term is large"2'
and positive, which is not unexpected, since the
H-H2 potential has a shallower well and is more
repulsive than the H&-H2 potential. Moreover, the
lower atomic mass leads to a higher kinetic energy
for the H atom. The magnitude of all of these
terms depends on the values of the three variation-
al parameters. Table I is a partial list of some
representative values obtained in this study. A

total of over 70 points was used, giving some in-
dication of the difficulty of minimizing a function
with respect to three separate variational param-
eters.

The minimum in energy occurs for values of the
variational parameters p„, k„, and P of 1.714 A ',
3.017 A, and 1.060I, where P is the ratio of the
relaxed to the unrelaxed nearest-neighbor distance.
The total difference in energy, compared with that
of the all-molecular-hydrogen lattice, M, at this
point is 122.6 K. The energy of the hydrogen atom
is Ea ——-15.9 K, This energy is defined by Eq. (16)
and is the analog of the binding energy of a pure
lattice. This compares with a value of Z„=-88.8
K.

One of the interesting results of this study is
the rather large 6.0% distortion in the nearest-
neighbor distance. Similar studies ~ for 3He in
He found distortions between 0.5 and 2.2%. The

distortion for H in H2 was expected to be larger
than for 3He in He because of the greater differ-
ence in mass, but this alone would not account for
such a large change. The large repulsive core of
the H-H2 potential is one factor contributing to
this large distortion. Another arises because of
the more accurate ground-state expectation values
obtained in this study compared with previous cal-
culations. ~' ~~ Many of those calculations were
based on Nosanow's ' cluster expansion techniques,
but as pointed out by Hetherington, ~ the deficiencies
of the method were the weakest point in his study.
In fact an application of the techniques of this study
to a He matrix containing a 3He defect shows a
nearest-neighbor bond-length distortion of more
than 3/p around the ~He atom.

Figure 1 contains plots of the single-particle
distribution function for a hydrogen molecule in
an all-molecular lattice and for a hydrogen atom
in a similar lattice. For purposes of comparison
this figure also contains the single-particle dis-
tribution function for He and 4He. The coordinate
x is in units of o, which is chosen to have a value
of 2.958 A for all of these plots. The single-par-
ticle distribution function for H is only slightly
wider than that for H2, a result consistent with
the calculated root-mean-square fluctuations of

I.O
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FIG. 1. Single-particle distribution functions for H
in H» He, and He.
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FIG. 2. H-H2 and H2-H2 interaction potentials.

0.785 and 0.730 A, respectively. At first this re-
sult appears surprising. With the much lighter
mass and shallower interaction potential, it might
be expected that the single-particle distribution
function for H would be much wider than for H2.
A look at Fig. 2, which contains the interaction
potentials for H-H2 and H2-H2, indicates why this
does not occur. The relatively narrow H-H2 po-
tential well acts to localize the H-atom impurity,
thus counteracting an opposite tendency induced by
the zero-point energy. The small change in root-
mean-square fluctuation is also consistent with
Varma's'. conclusion for defects in quantum crys-
tals, which was that "the force-constant changes
act to screen the impurity. " Specifically for his
study of 4He impurities in 3He he states that "the
mean-square displacement of the 4He atom is
brought closer to that of the 3He atoms. "
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The most significant finding of this study is that,
even with a root-mean-square fluctuation about
equilibrium comparable to that of an H2 molecule,
the atomic-H impurity causes a significant strain
field to develop. The large distortion in the near-
est-neighbor bond is felt to be due primarily to
the relatively wide repulsive core in the H-H2
potential compared with the H2-H2 potential, and
of course to the lighter H mass. Any studies in-

volving a significant concentration of H in the H2

will be quite complicated owing to the necessity
of including these large distortions around the H
defects.
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