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Ab initio self-consistent calculation of silicon electronic structure
by means of Wannier functions
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The Kohn variational method to study Wannier functions has been rewritten in a new form that makes it
suitable for numerical calculations. Thus, using a Wannier-function scheme, we have been able to perform
an ab initio self-consistent calculation of the charge density and band structure of silicon. The interactions

between the Wannier functions are calculated as well. The Hamiltonian has been built up with a local

approximation for the screening potential and a bare ionic potential taken from a fit to atomic properties.
Our charge density and band structure are in good agreement with previously reported pseudopotential

results. This is the first time that the Wannier functions for connected bands have been calculated. We have

verified that satisfactory results are obtained when starting with a simple trial set of localized orbitals.

I. INTRODUCTION

Localized-orbital schemes seem to be the most
convenient way to deal with the electronic prop-
erties of semiconductors. Nevertheless, the most
precise self-consistent calculations have been done
in terms of extended Bloch waves within the pseudo-
potential framework. " Some interesting attempts
have been made'~ to describe the covalent semi-
conductors by means of localized orbitals, but
they do not provide a self-consistent picture.

Conceptually, the most; useful set of localized
functions for studying the electronic states of a
crystal is made of Wannier functions (WF). The
direct calculation of the WF from the Bloch func-
tions presents two main difficulties: (i) The in-
tegration in the Brillouin zone gives a correct de-
cay of the WF only when several k points are used;
(ii) in the case of connected bands a complex com-
putation is necessary to obtain the WF.' Although
the general theory for obtaining this basis without
previous knowledge of the Bloch functions is well
established, ' the serious calculational difficulties
have precluded its use in problems where the WF
should be very adequate. ' The WF are determined
by a variational procedure. The main obstacle
arises because the computation of the necessary
spatial integrals is very difficult. This has con-
strained their use to cases with ovef simplified
band structures. ' We have used the variational
method by doing the minimization of magnitudes in
k space. We so elude the spatial integration as it
was done by Mauger and Lanoo' in a different
framework. The treatment is applied to covalent
semiconductors in a self-consistent form by intro-
ducing in the Hamiltonian the Hartree, exchange,
and correlation potentials produced by the charge
in the valence bands. The procedure automatically

includes the self-consistency within the minimiza-
tion, avoiding iterative loops which are time con--
suming. Thus, the method becomes useful and
has allowed us to perform the first self-consistent
calculation for silicon based on a description of
localized orbitals. As an indication of the power
of the method, the calculations reported here were
not time consuming (a minimization with two para-
meters took about three minutes with a UNIVAC
1110').

In Sec. II we briefly sketch the method. The self-
consistent scheme for covalent semiconductors is
presented in Sec. III. We apply this scheme to
silicon. The results for the bands, charge density,
Wannier functions, and the interaction between
them are given in Sec. IV. Section V contains the
conclusions and a discussion of some forthcoming
applications of this work.

II. FORMALISM

The WF have been invoked in. many theoretical
discussions, but the difficulty of their calculation,
already outlined in Sec. I has precluded the use of
this basis in quantitative computations. The bands
of actual solids are composite and, therefore, to
arrive at the WF from the Bloch states is a sub-
stantial endeavor. ' Nevertheless, a localized set
of WF can be obtained in an easier way by a varia-
tional procedure as has been shown by Kohn. ' The
method is based on the equivalence between the
resolution of the monoelectronic Schrodinger equa-
tions for a system of N electrons and the calcula-
tion of the stationary value of the functional

(2.1)

where 4 is an arbitrary antisymmetric function and
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the B,. are the N' monoelectronic Hamiltonians. By
means of the unitary transformation between the
Bloch and Wannier functions, Kohn has shown that,
in the case of simple bands, the WF a(r) must make
stationary the following functional:

(a(rq ~a ~a(r)&. (2 2)

When the bands are composite the result must be
generalized to include the m WF a„(r), m being the
number of connected bands. In this case, the ex-
tremum of the functional

r(g')=g (a (r) Irrla (r)) (2.3)

f (r)=f (r, P), m=1, . . . , m. (2.4)

These functions f„must have the adequate spatial
symmetry. Usually, physical applications almost
never deal with the lowest band of a solid. By
orthogonalizing each f to all core states, Eq. (2.3)
can be converted from an extremum to a minimum.
We must emphasize that this does not mean a mini-
mization of the total electronic energy. In order
to orthogonalize the functions f„, while maintain-
ing their symmetry, one constructs a set of Bloch
functions having the translational symmetry of the
lattice.

must be obtained.
The application of this scheme requires the cal-

culation in real space of the integrals contained in
(2.3). In actual crystals, the spatial configuration
of the WF makes this computation very difficult. .

Moreover, the use of a variational procedure im-
plies integration for many values of the variational
parameters. This problem can be avoided by writ-
ing e()id) in the reciprocal space. We are going to
sketch briefly the construction of a„(r) proposed
by Kohn' in order to clarify this point. One begins
with a set of localized functions, which are normal~
ized but nonorthogonal, depending on a set P of
variational parameters

At this stage Kohn proposes to obtain the trial WF,

a'(r)=- ~ Q y„„-(r,P), (2.8)
k

which are exponentially localized and orthonormBl-
ized. Hereafter, all the summations in k are over
the Brillouin zone. Substitution of a„„(r) in (2.3) and
minimization with respect to P allows one to cal-
culate .rather accurately the actual WF. Neverthe-
less, in order to simplify the numerical computa-
tion, it is preferable to make the minimization
with the set g;(r, P). Substituting in (2.3) from
(2.8) and using the translational invariance of the
Hamiltonian yields

m

'(~)=~ Q + (4..-(r @l&lt.;.(r, P»
m=1

(2.9)

g.(-, (r, P) =g g c&(k+g, P)G ' (k, P),

xe«" » ~/vÃ~, (2.10)

where 9 is the volume of the unit cell, , g is a re-
ciprocal-lattice vector, and

a,.(Erg, d)= Jdra "—"a"f,,„ (2.11)

Then, the inner-product matrix can be rewritten

G(k, P), „=P c„*,(k+ g, P)c„(k+g,P).

Defining

0;(k+g, P) = g c,(k+ g, P)G '"(k, P)„, (2.13)

we finally express the functional Bs

The translational symmetry of the functions P„„-(r,P',

enables us to write

X;(r,P)= —Qf„(r—n)e'"" (2.5) a(rr)=g~g P P d "(gag, d)g ("r(T', g)
'

m=&

n being the lattice vectors, and N the number of
cells in the crystal. By means of the inner-prod-
uct matrix

x (k+g ~H ~k+g')

G(k, P)„.„=(X &(r, P) jX „-(r,P)) (2.6)
=~ g P P 0„"(k+g,P)P„(k+g', P)

m=~

it is possible to build up a second set of Bloch or-
thogonalized functions

x [-,'-(k + g) 5& & + V(k + g, k + g')]

(2.14)

4.,„-(r,P) =P X„;(r,P)G '"(k, P)„.„.
m'

(2 7)
in a.u. .

The cumbersome spatial integrals in (2.3) are
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now replaced with the much easier summations in
reciproc'al space and the integration in the Brill-
ouin zone; the last summation can be done satis-
factorily by means of sets of special points. '""
In a local approximation only the Fourier compo-
nents V(g- g') of the potential are required. In
such an approximation V(g-. g ) is a function of the
electronic charge density p. Generally the calcu-
lation of p needs a previous resolution of the
Schrodinger equations. Therefore, we can only
get self-consistency by an iterative procedure. In
some cases this can be avoided, as we shall show
in Sec. III.

III. COVALENT SEMICONDUCTORS

The method developed in Sec. II takes its simpl- .

est form when we are interested in the calculation
of WF for the valence bands of covalent semicon-
ductors. We shall include the core electrons
through an ionic pseudopotential, which is equiv-
alent to making the valence states orthogonal to
the core states. As a consequence, the whole
charge in the system is in the valence bands. Since
there is a unitary transformation between the set
of functions )1)„~(r, P) and the valence eigenstates,
and the bands are fully occupied, we can write the
charge as

p(r, p)=2+ g 4„*„(rp)-4„;( rp)

m=&

4*(k+g, p)4 (k+g', P)
m=&

FIG. l. Atoms in the diamond structure. The first
neighbors are labeled according to the v m vectors
(see text).

It must be emphasized that this equation represents
a cleaner and more elegant way of doing self-con-
sistent calculations than the traditional procedure
of iterative resolution of the monoelectronic

I

Schrodinger equations with effective potentials ob-
tained from the charge of the previous solution.

In the diamond structure, the existence of two
atoms in the unit cell allows a choice of the WF
centered in the bond. "' With this origin, the four
WF a"„(r) belong to the identity representation of
the point group C,&. Therefore, in order to build
up the trial function we start with functions f which
are symmetrical combinations of the sP' orbitals
on each atom (see Fig. 1):

x e & (+ )' ~/g~ (3 1)

x(k+gIH(P, ) If+ g')) I
=0,

Bg Sy

or better,

Pg (k+g~a(p) ~k+gg
nts~ Cs+

(3.2)

x5, [q*0+g, p)|l (I+g, p)]=O. (3.3)

The local potential is a function of the ionic pseu-
dopotential and the variational' parameters P through
the charge density (3.1). Therefore, the paramet-
ers p in e()l') are contained both in g„(k+g, p) and
in the Hamiltonian. Nevertheless, the variational
procedure enables us to obtain the eigenfunctions
of a fixed Hamiltonian, and so it must not vary in
the process, though it must be self-consistent with
the resulting charge. In other words, the variation-
al equations can be expressed as

f„(r)=(1/4 )[Q (r)+Q& (r-, ~4av„)], m=1, . . . , 4

(3.4)

where a is the lattice parameter and the sp' orbit-
als are

Q-„(r) = (1/4)) )t) [E,(r, p) + p (v„r/z)E (r, p) ],
(3.5)

v being the tetrahedral vectors (1,1,1), (T, T, 1),
(T, l, P, (1,i, P, and E,(r, P) and E (r, P) localized
orbitals with symmetry s and p, respectively.

It is interesting to point out that the WF associ-
ated with the valence bands must be symmetric
with respect to the midbond"' and then, in (3.4),
there cannot exist a term containing an antisym-
metric combination of the functions @—the only
restriction on our trial functions consisting of the
form taken for the orbitals E, and F .

The angular part of the integrals contained in
(2.11) can be easily performed, leading to
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X/2-
c (k+ g) = — E,( ~k+ g

~
) —iP (

~

k+ g~ )~ " — +e "~ '&"v ' '
Ik+g I

k+ g +i& k+ g
l~+ g I

(3 6)

P,(q) =
Jl drr'j, (qr)F, (r), (3.7)

P,(q)= f &~'j, '(qr)F~(r),
0

(3.8)

j, and j, being spherical Bessel functions.
In order to solve the variational equations, the

first step is to obtain G by substituting (3.6) in
(2.12). We calculate G '~' by bringing G to diagon-
al form. Then Eq. {2.13) straightforwardly gives
the functions p„(k+g, p). The other element nec-
essary in the variational equat;ion is the Hamilton-
ian. The ionic term of the Hamiltonian can be
treatedby means of a pseudopotential for the ion
g" as we shall specify in Sec. IV. The
Hartree potential is directly obtained from the
Fourier components of the charge:

p'~'=0. 1676+ 5.0782p- 21.2564p' in a.u. (3.10)

This expansion is easily Fourier transformed
using

p'(&) = g p(g) p(g') 6(g+ g'- e (3.11)

With these approximations the electronic term of
the Hamiltonian can be expressed as a function of
p(&, P).

P(&, P) =ZZ g g 0*(k+g,P)4„(k+g', P)6o,q q .
t5& f gag

(3.9)
The exchange and correlation potential is usu-

ally" calculated using the Slater approximation
for the exchange potential with a coefficient fitted
to agree with the Wigner interpolation formula at
the average valence-electron density. This term
is proportional to [p(r, P)]' '. To obtain the Four-
ier components of this potential requires a trouble-
some integration in real space. In order to avoid
this difficulty we have adopted an approximation
which has given very good results for many semi-
conductors. " The charge density in covalent semi-
conductors varies spatially between 1 and 30 elec-
trons per cell. Within this range [p(r)]'~' can be
approximated by

We have now aQ the ingredients to solve the fun-
damental Eq. (3.3) and obtain the variational para-
meters. Once we have determined P, the Wannier
functions and a number of interesting magnitudes
can be calculated.

Finally, let us see the explicit form of the WF.
A tractable representation of these functions is
their expression in terms of the localized orbitals
f„(r—n) because this gives a picture of their shape
and extension. Substituting, (2.5)-(2.7) in (2.8)
yields

a {r)= g P f~(r - n)o.„,„(n),

where

n„. (n) = —g e'" ' G '~'(k)„,
JY

(3.13)

If the orbitals f are exponentially localized func-
tions, the matrix G '~'(k) is a smoothly varying
function of the wave vector. The spatial depend-
ence of o.„, (n) is given by the factor exp(ik n) in
the integrand. The fast oscillations of this factor
for la,rge n show that o(„,„(n) must vanish for high-
order neighbors. In the case of near neighbors the
smoothness of the integrand allows an integration
using special points.

F,(~) =c,r'e ~s", F~(~) = c~r'e V, (4.1)

IV. APPLICATION TO SILICON

Silicon has been widely studied both by linear
combination of localized orbitals' ' and pseudo-
potential"' approaches. Nevertheless, the self-
consistency has only been reached in delocalized
schemes. We are going to apply to silicon the
method developed above for two main reasons:
First, the existence of self-consistent calculations
allows us to test the method. Second, in order to
have a self-consistent description of this semi-
conductor in terms of localized functions.

In self-consistent-field atomic calculations the
Slater-type orbitals (STO) have given the best re
suits for minimal basis. '~ Therefore, to start the
calculation we choose the STO as a functional form
for E,(r, P) and F (r, P) which has the radial de-
pendence
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where

c,=(2P )'~'/M6l, c =(2P )'~'/M6!, (4.2)

TABLE I. Fourier components of the valence charge
density (in electrons per cell) and form factors of the
pseudopotential (in a.u.).

p, and p~ being the variational parameters.
All the results presented below have been ob-

tained with the trial functions (4.1), but we have
solved the self-consistent Eq. (3.3) with a better
description of the p orbitals,

F (r)=cr'(e ~'"+me 2"), (4.3)

where p„p„and n are variational parameters.
The numerical value of the minimum calculated
for the functional e(+) does not change significa-
tively (&2%) from that obtained for the simpler
set (4.1).

The simplicity of the choice (4.1) allows one to
perform analytically the integrals in (3.7) and
(3.8), giving

24c.(P: Pq')—
(4 4)

Hereafter, our calculation must be done numeric-
ally. In the equations, two types of sums are in-
volved: the sums which run over the reciprocal-
lattice vectors g and those over the wave vector
k. ' For the former, we have studied the converg-
ence by doing the computations successively with
2V, 59, and 169 g vectors. The results show good
convergence for the approximation with 59 vectors
which-includes the sets ((0, 0, 0)), ((1,1,1)),
((2 o 0)) ((2 2 0)1 03 1 1)) ~d f(2 2 2)) The
sums in which k runs over the whole Brillouin
zone have been calculated satisfactorily by means
of sets of special points. " In particular, for sim-
plicity, we have worked with the mean-value point
proposed by Baldereschi. "

The last point to discuss is the ionic pseudopo-
tential for Si". Very good ionic pseudopotentials
have been used in previous computations of the
silicon band structure. "' They contain parameters
adjusted to the bulk crystal properties within a
specific calculation. Perhaps their use in other
schemes is not well justified. Recently, Simunek"
has obtained a pseudopotential for Si"which is
fitted to reproduce the spectroscopic energy levels
and the outer part of the wave function in the atom.
Therefore, we have used this ion" which is the
most interesting for the analysis presented here.
However, in order to test the accuracy of our ap-
proach, we shall show as well the results obtained
by using the pseudopotential of Schluter et aE.'

The existence of two parameters in our trial func-
tions transforms the fundamental Eq. (3.3) in a
system of two nonlinear coupled equations where
the unknown quantities are P, and P~. By solving

g(a/2~)

(1,1,1)
(2, 2, 0).
(3,1,1)
(2, 2, 2)
(4, o, o)
(3,3, 1)
(4, 2, o)
(4, 2, 2)
(3,3, 3)
(5,1,1)
(4, 4, o)

-1.419
0.191
0.259
0.162
0.183

-0.044
0.0

-0.037
-0.016
-0.016
-0.003

a

-0.1134
0.0290
0.0417
0.0
0.0353
0.0283
0.0
0.0180

pb

-1.376
0.195
0.249
0.153
0.171

-0.040
0.0

-0.034
-0.014
-0.014
-0.001

-0.1037
0.0243
0.0391
0.0
0.0341
0.0268
0.0
0.0152

Results for the ion of Simunek (Ref. 15).
"Results for the ion of Schliiter eI; aE. (Ref. 2).

2I-

20-

FIG. 2. Valence charge density in silicon along the
bond direction. The dots represent the ions. Units are
electron per cell. The values of the e~rema are 10.8,
6.3, and 18.9.

the system we have obtained P, = 1.711 and P =1.269
for the Simunek's ion and P, =1.714 and P~=1.231
for the ion of SchlGter et a/. A self-consistent-
field calculation' for atomic silicon with a mini-
mal STO basis gives P, =1.634 and P~=1.428. From
these values it is straightforward to obtain the form
of the sp' orbitals noticing a spreading of these
orbitals when they are in the crystal. This result
can be physically understood. The overlap between
ions lowers the potential in the orbital tails region,
expanding the atomic "wave functions.

In Table I the Fourier components of the charge
density obtained from Eq. (3.9) are given in a sys-
tem where the origin is placed in the midbond. The
results with different ions are very similar and

compare satisfactorily with previous calculations. "'"
The spatial distribution along the direction which
joins two nearest neighbors is shown in Fig. 2 for
the Simunek ion. The other calculation gives nearly
the same result, the small differences being the
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E(eV)
20

10

FIG. 3. Band structure of Si obtained from the ionic
pseudopotential of Schluter et al. ref. 2). The origin
of the energy scale is taken at the mean value of the
crystal potential.

values of the two maxima and the minimum which
are 10.7, 6.4, and 18.5. In Table I the pseudopo-
tential form factors are also shown, where, in
consistency with our approximation (59 g vectors),
the components withg'&24(cP/4v') are not included.
There is a nonzero (2, 2, 2) Fourier component in
the potential, caused by a corresponding compon-
ent in the charge. Nevertheless, the Hartree po-
tential produced by it is much smaller than the
other components of the pseudopotential form fac-
tors. Th~ numerical values obtained for u(g) are
similar to those given in the literature. " The
meaning of this result is that we have a good
screening of the bare ions by means of the simple
functions (4.1). The small differences appearing
with respect to previous work must be clarified by
means of a band-structure calculation. Such a
calculation is very easy in our scheme, where we
have a basis formed by four Bloch functions, and
so the computation is reduced to the diagonalization
of a 4 x 4 matrix. Hitherto we have studied the val-
ence bands, but for a band structure it would be
interesting to have information about the conduction
bands. If the conduction bands were an isolated
set of four bands, one could build up a set of four
WF a "(r) belonging to the one-dimensional anti-
symmetric representation of the group C„. Never-
theless, these bands are connected with higher
bands and the application of the variational method
is somewhat questionable. Still, in order to cal-
culate a more complete band structure we shall
construct, as an approximation to the conduction
bands, a set of four "antisymmetric" functions in
a manner similar to our handling of the valence
bands. So we have a basis of eight localized func-

„(n) = (a, (r)
I
Jf

I
e - (r (4 6)

by using (2.8)

x(i-, +g lff I) +gg (4.6)

The results are shown in Table II (in a.u.). It is
important to notice that the third-bond-neighbor
interactions are not negligible. This is a conse-

E(eV)
20

16

14

12—

10

FIG. 4. Band structure of Si obtained from the
Simunek ionic pseudopotential (Ref. 15). The scale is
taken as in Fig. 3.

tions per cell in terms of the parameters P„P~
previously determined. The diagonalization of the
8 x 8 Hamiltonian in the corresponding Bloch basis
gives us the band structure which is shown in Figs.
3 and 4 for the different ions. The results are sat-
isfactory, not only for the valence bands but also
for the conduction bands. '~ We must emphasize
that only the valence bands are included in the vari-
ational procedure. Therefore, the good result ob-
tained for these bands was expected. On the con-
trary, the good agreement of the conduction bands
is somehow surprising.

The WF a„(r) for the valence bands are the most
important result of the method. As we have pointed
out in Sec. III, the WF can be expressed in terms
of the atomic orbitals. The results for o. ,„(n) are
given in Table II. They do not depend significative-
ly on the ion, and decrease rapidly, being almost
zero beyond the third-bond neighbors.

As an application of the WF we have studied the
interaction of the WF through the self-consistent
Hamiltonian
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TABLE II. Coefficients a of the expansion of a WF in terms of the localized orbitals f and
interactions & {in a.u.) between WF through the self-consistent Hamiltonian {see text).

Bond neighbors

First: parallel
nonparallel

Second: parallel
nonparallel

Third: parallel
nonparallel

0.8072
-0.0355

0.0186
-0.0136
-0.0186

0.0160
0.0173
0.0043

-0.0043
-0.0075

0.8125
-0.0387

0.0205
-0.0145
-0.0205

0.0173
0.0183
0.0046

-0.0046
-0.0082

0.1846
-0.0460

0.0055
-0.0031
-0.0055

0.0104
0.0135
0.0015

-0.0077
-0.0011

0.1979
-0.0462

0.0060
-0.0035
-0.0060

0.0$.08
0.0138
0.0015

-0.0077
-0.0014

Results for the ion of Simunek (Ref. 15).
Results for the ion of Schluter et al. (Ref. 2).

quence of the overlap between atomic orbitals.
From the integrals (4.5) general information about
the behavior of the Koster-Slater parameters could
be obtained.

V. CONCLUDING REMARKS

En this work the method developed by Kohn' to
build up the Wannier functions of connected bands
has been reformulated in such a way that it can be
used in numerical computations. We want to stress
the two innovations introduced here: First, is the
minimization of magnitudes in k space avoiding the
cumbersome integrations in real space; The second
is the possibility of obtaining, in the case of fully
occupied bands, a self-consistent solution by means
of the fundamental Eq. (3.3), which is a more ele-
gant way than the usual iterative procedure. The
method has been applied to the calculation of WF
for the valence bands of silicon. As a previous
test, both the charge and band structure have been
calculated for a well-known ionic crystal potential'
with satisfactory results even for the lower conduc-
tion bands, although they are connected with higher
bands. On these grounds we have done the first
ab initio self-consistent computation of the charge
density and band structure of silicon by using a
localized basis and an ionic noncrystalline pseudo-

potential. " The WF have been invoked in many
papers but they have only been obtained in simple
cases. ' Therefore, our more important result is
a set of WF for the valence bands of silicon. More-
over, we have calculated their interactions through
a self- consistent Hamiltonian.

We are working on the extension of the scheme
in three directions: (i) The application of the re-
sults here obtained to the study of problems in co-
valent semiconductors such as the dielectric func-
tion, optical absorption, etc. (ii) The study of other
materials where a localized scheme is the most
adequate, such as the d bands of noble and trans-
ition met@is. Two main difficulties must be solved:
the nonexistence of an ionic pseudopotential and the
charge-density calculation when the bands are not
fully occupied. (iii) The use of variational methods
for a quantitative study of localized problems such
as impurities, vacancies, surfaces, etc. , where
generalized Wannier functions must be introduced. "
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