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The behavior of the electron density of states in a Gaussian random potential is studied in the limit of low

energies using the Feynman path-integral method. Two diAerent impurity potentials are considered: the
Gaussian potential and the screened Coulomb potential. It is shown that the density of states deep in the tail,
in three dimensions, can be expressed analytically in the form proposed by Halperin and Lax,
p(E) = [A {E)/(]exp[ —B(E)/2$], where t' is proportional to the density of impurities and to the square
of the strength of the impurity potential. For a Gaussian potential with autocorrelation Iength L, we find

A(E) = (Ei/L)'a(v) and B(E) = E tb(v), where a(v) = [(1 + 16v)" —1]"[(1 + 16v)"
+ 7] "/2 "2'"sr and b(v) = [(1 + 16v)" —1]'"[(1+ 16v)'" + 7] "/2', with v being the energy below the

mean potential Eo in units of EL ——fi /2mL . For screened Coulomb potential with inverse screening length

Q, we find A(E) =- (EoQ)'a(v, z) and B(E) = E o(bv, z) where a(v, z) = (3/2z' p v)'"
/8sr2'"z exp(z '/2)D, (z) and b(v, z) = sr'"(3/2z' + v)'/ 2" exp{z /4)D, (z), with z satisfying the
equation D 3(z) = (z'/2)(3/2z'+ v)D 4(z), v being the energy below the mean potential Eo in units of
EQ ——I'Q '/2 m and D~ (z ) denoting the parabolic cylinder function. Numerical results and calculated
curves are presented. A detailed comparison with the minimum counting method of Halperin and I.ax is
given.

I. INTRODUCTION

In a previous paper, ' we presented a method
for calculating the density of states and the ef-
fective mass of an electron moving in a random
system containing a high number of impurities,
or equivalently, in a Gaussian random potential
using the Feynman path-integral method. ' 'The

technique used in the calculation is taken from
the Feynman theory of polarons. ' It was shown
that for the Gaussian impurity potentials, in three
dimensions, the. density of states deep in the tail
goes roughly as e n's' where B(E), a function of
the energy, is proportional to E" with n varying
from 2 for small autocorrelation length to 2 for
large autocorrelation length. This result is in
agreement with the numerical calculation by
Halperin and Lax4 and also agrees qualitatively
with experiment. Such a result was also obtained
by Saito and Edwards. ' However, both of these
calculations" dealt only with the exponent B(E)
of the density of states.

The purpose of this paper is to show that the
method presented in Ref. 1 can be used to ob-
tairied the density of states deep in the tail in
the form proposed by Halperin and Lax'.

p(E) = [A(E)/gs] exp[-B(E)/2g], (1.1)

where $ is a parameter proportional to the density
of impurities and to the square of the strength
of the impurity potential. In particular, we show
that the prefactorA(E) and the important exponent
B(E) can be expressed analytically in terms of
well-known functions. For a Gaussian impurity

potential, in three dimensions, we find A(E)
= (Ex/L)'a(v) and B(E)=Esx b(v) where Ex -ffs/
2mt ' with L denoting the autocorrelation length
and v= (E, —E)/Ex is the energy below the mean
potential in units of E~. The two dimensionless
functions a(v) and b(v) can be expressed analyti-
cally in terms of simple algebraic functions.
For a screened charged impurity potential we
obtain A(E) = (Eo Q)s a(v) and B(E)=Eso b(v),
where Eo =ffsgs/2m with Q being the inverse
screening length, v= (E,—E)/Eo is the energy
below the mean potential E, in units of E~, and
a(v) and b(v) are two dimensionless functions
which can be expressed analytically in terms of
parabolic cylinder functions.

The outline of the present paper is as follows:
In Sec. II we derive the density-of-states ex-
pression (1.1) for the cases of Gaussian impurity
potential and screened (:oulomb potential, respec-
tively. Numerical results and graphic repre-
sentations of a(v) and b(v) are presented in Sec.
III. Discussions and a detailed comparison with
the Halperin and Lax results are presented in
Sec. IV.

II. DENSITY OF STATES

2If=- Vs+ tt(X-at),
2m

(2.1)

Following the method given in Ref. 1, we con-
sider an electron moving among a set of N rigid
impurities or scatterers, confined within a volume
V, and having a density N=N/V. Such a system
is described by the Hamiltonian
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where t)(X- R&) represents the potential of a
single impurity at position R,. After averaging
over all impurity configurations and assuming
that the impurity potential v is weak but that their
density N is high so that Nv' is.finite we find that
the average propagator can be expressed in the
form

m-,S= ' dr —X'(v)-
2 "0

co the electronic dielectric constant of the pure
semiconductor, Ze the charge of the impurity, and

is the inverse screening length. The action
associated with the above autocorrelation function
is

R(X„X;,t) fr=a(X(t))v"'"'*; (2.2) t t ( t
+

2@
dr do exp[- Q I x(r) —X(o') I],

where S(X(r)) denotes the path integral with
boundary conditions X(0)=X, and X()t) =X» and

5, the action of the random system, is given as

m ~
dh —X (r) — i d7'Eo+ —gq

2 0 28'

t f t
x d~ do W(X(r} —X(o)).

~o ~o
(2.3)

Here we have taken the mean potential to be E,
and define the autocorrelation function by

W(X(v) —X(rr)) = J d Rv (X(t) —R) v (X(rr) —R) .

(2 4)
The quantity q in Eq. (2.3) is a parameter which
we have introduced in order to discuss more easily
the behavior of the density of states as a function
of the strength of the impurity potential. For an
impurity potential having the Gaussian form
v(X(r) —R) =u(vl') 'i'exp[- X(r) —R. '/l'I the
autocorrelation function can be written

W(X(r) —X(o))

=I'(vL') '"exp[- Ix(v) -x(o) I'/LR], (2.5)

where I.=2k denotes the autocorrelation length
and u is another parameter introduced in order
to take care of the dimension of the system. Sub-
stituting this expression into Eq. (2.3) we can
write

m%2S = dv' —X '(v') — dr ER
Jo 2

t
+—,', (. f ««vR(-~~X(r)-X(v)~I*I~'), (2 t))

0 ..0

where $1.=¹pu'/(wL')'~' has the dimension of the
energy square. The physical interpretation of
this quantity was given by Saito and Edwards. '
For an impurity'potential of the screened Coulomb
form

)l~(x(r) -R)=- Ze' exp[- QIx(r) -R I]/e, IR(&) -&
I

we can write

W(X(T) —X(Q)) =(2ve'Z'/QCRD} exp[- QIX(T) —X(~) I],
(2.V)

where g = e' with e denoting the electronic charge,

p(E) = dt G(0, 0; t) exp[ (i/h)Et ] ~ (2.9)

To obtain the density-of-states expression we
have to find an appraximate expression for G. To
do this we follow the procedure given in Ref. 1
by introducing a nonlocal harmonic trial action

t "
~ t

s, =
I d~ —x'(~) - „d~Ix(~) -x(~) I',

2 2t go

(2.10}

where v is an unknown parameter to be deter-
mined. Such a translationally invariant action
proves to be important for obtaining the correct
behavior of the prefactor A(E) in expression (1.1).
By rewriting Eq. (2.2) as

G(0, 0; t) = G,(0, 0; t)(exp[(i/k)(S - S,)])z (2.11)

and approximating Eq. (2.11) by keeping only the .

first cumulant we get

G,(0, 0; i) = G,(0, 0; t) exp[(i/K)(S —Sg ~ ], (2.12)

where the symbol ( ) z denotes the average with
0

respect to the trial action So. From Ref. 1 the
diagonal part of the zeroth-order propagator
G,(0, 0; t) can be calculated exactly, obtaining

S/2

(tr Rt) (tv(v( —' t)) '' (2.13)

This expression differs from the free-particle
one by the second factor [~t/2 sin(R&ut)]' and is
proved to give the correct behavior for the pre-
factor A(E). We note that earlier unsuccessful
derivations of the above expression were made by
Bezak. ' Correct derivations of this result were
also obtained independently by other markers. ' '

From Ref. 1 the average (S-S,) s, for the case
of a Gaussian potential is given by

(2.8)

where g() =2nZ'e'N/Qe', has the dimension of the
energy square. The density of states per unit
volume is then related to the diagonal part of the
average propagator by
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where

x dx[y' (x)] ' '- —i)t eet —-2),3 . ~t ~t
0

(2.14)

L N . &()x . (d(t —x)j~(x}= —+ sin sin
4 ~(d 2 2

utin--—
2

(2, 15)

For the case of a screened Coulomb potential
after writing 8' in terms of Fourier components
we have

i Qt [
'

( dk 4z k' i8 . &2)x . &2)(t-x) . &»)t(S —So)z =-E()t+~@ tQ) 2 J) dx) (2 ), k, Q, exp
2

n
2

n
2 2

3 . (ot t——sh —cot——&
2 2 2 (2 ..16)

Inserting the identity

((e'+Q') '=f dyyexp[-((e'+&X)y]
0

into Eq. (2.16) and performing the k integration,
we get

(s-s,), =-E,t+
t OO

x dx " dyyexp(- Q'y)[j, ( )x]
' '

0 0
(2.1't)

where

i@ . &0x . &0(t x}-
j„(x)= y+ sin —sin

QP 2
etc —

)
(2.18)

Equations (2.9) and (2.l3) together with Eqs.
(2.14) and (2.16) represent approximate density-
of-states expressions for the Gaussian potential
and screened Coulomb potential, . respectively.

To consider the ground-state contribution to the
density of states we let t -~. Then the density
of states becomes

~ ~

2/2 ' . 4@
(i&dt)&exp — i &dt ——(E,-—E)t—,t' 1+, (Gaussian potential)

p(E) =
00

-0 /2
t dt . (i&t)t)'exp — i&dt —(E—0 —E)-t —)Q)Qt' dyy exp(- Q'y)(y+@/2m0)) '

2zk „2mikt 4

(screened Coulomb potential) . (2.19b)

Using the formula'
il' = (2 eQ/2li ex)f dy y exp( —Q'y)(2 +2/pm le)

0

=2 p '1r1r p
p 'exp(-q'/sp')Dp(q/pr2), (2.20)

we obtain

p (E) =-,'(2' '/)])' '0)'(m/2z)»)'"

x p '/'exp(- q'/sp')D, /, (q/pt/2 ), (2.21)

where q = (» E~ + E0 - E)/ft, E~ = ft &t)y and Dp(z)
denotes the parabolic-cylinder function. For a
Gaussian potential,

P' =(1/2)»') (z(1+4Ez/E ) ' ' E =k'/2mLQ

and for a screened Coulomb potential,

Eq ——O'Q'/2m .
Having obtained the above density-of-states ex-

pressions, we now consider the density of states
deep in the tail. As pointed out by Halperin and
Lax, ~ one can reach the low-energy tail in two
equivalent ways, by letting E- ~(q-+~) or-
keeping E constant and reducing the magnitude of
the potential fluctuation by letting $ -0. Using the
asymptotic properties of the parabolic-cylinder
function, Dp(z), „exp(- »z')zP we obtain, for the
Gaussian potential,
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p, (E) =[(Ez/I)'/$z ]a(v, x) exp[ E-i b(v, x)/2)s],

(2.22)
where

(2.28) or (2.31) may be compared with the Har-
tree-type eigenvalue equation given by Halperin
and Lax.4

a(v, x) =(—,'x+ v)~/'(4+@)'/8~2gP (2.23) III. NUMERICAL RESULTS

and

b(v, x) = (—,'x+ v)'(1 +4jz)' ', (2.24)

with z=E„/Ez and v=(E, —E)/E~. Similarly for
the screened Coulomb potential,

p, (E) =[(E Q)'j5o']a(v, z)exp[-Eo'b(v, z) /25 ],
(2.25)

where

a(v, z) =(zz '+v)'/'/8vv"2zeexp( —,'z')D ',(z) (2.26)

b(v, z) =v v(zz '+ v)'/2@2 exp( —,'z')D, (z), (2.2'I)

with z =(2E&/E )'/'
The parameter co introduced in the trial action

So has not yet been determined. Following Hal-
perin and Lax4 we shall choose x or z so as to
maximize p,(E). The justification of this pro-
cedure was given by Lloyd and Best' based on the
variational principle. From Eq. (2.22) or (2.25),
it is clear that when $-0, the exponential factor
will become very sensitive to the choice of x or z
while other factors are much more slowly vary-
ing. Hence the best choice of x or z is that which
maximizes the exponential factor of Eq. (2.22)
or (2.25). For the Gaussian potential the best
choice of x is found to satisfy the equation (3.2)

Before considering the numerical evaluation of
a(v) snd b(v) let us first consider the limiting val-
ues of these functions. For the case of a Gaussian
potential, it is not difficult to see that when
v «1, a(v) = 32&2 v' /'/z' and b(v) = 16v'/' and
when v»1, a(v) = &2v'/m' and b(v) = v'. The
limiting values for the cage of a screened Coulomb
potential can also be evaluated analytically. For
strong screening v«1(Q- ~, or z- ~) Eq. (2.31)
has a solution z =(2 v) ' ' and consequently we ob-
tain a(v) = v' '/&2m and b(v) =2&m v'/' For a
weak screening v» l(Q-0 or z-0) we obtain the
solution z = [3(v/2)'/']'/'v '/' with the condition
z ' «v. In obtaining this solution the following
limiting values of the parabolic-cylinder functions
D,(z), —,

'
—,'v and D ~(z) —,

' have been used.
Such a solution gives a(v) = 2'/' j(9v') v'/' and
b(v) = v'. For intermediate values of v we have to
solve the transcendental equation (2.31).

Besides the two dimensionless functions a(v) and
b(v) other quantities of interest are the logarithmic
derivative of the exponent b(v), i.e., n(v)
=dlnb(v)/dlnv and the kinetic energy of localiza-
tion T(v). Both these quantities can also be ob-
tained analytically as follows: for the Gaussian
potential

n(v) =32v/[(1+16v)'. ' —1][(1+16v)' '+7], (3.1)

T(v) = ~x= —,(v'1+16v —1),
x'+x-4v=0. (2.28) while for the screened Coulomb potential

Since x is the ratio of the energy associated with
the harmonic oscillator and the energy of the
fluctuation, it must be.positive. Thus keeping only
the positive root, x = -,[(I + 16v) ' /' —1], of the above
equation and substituting into Eqs. (2.23) and
(2.24), we obtain

a(v) =[(1+16v)' ' —1]' '[(1+16v)' '+V]' '/2"2' '7P

(2.29)

b( v) = [(1+ 16v) &» I ]& /2 [I + I 6 v)& /& + 7 ]7 /2/28

(2.30)

For a screened Coulomb potential the following
equation is obtained:

D,(z) = —,'z'(zz '+ v)D 4(z) . (2.31)

The complete determination of Eqs. (2.26) and
(2.2V) requires the solution of Eq. (2.31)~ Equation

n(v) =2v/(-,'z '+ v),

T(v) = zz ', (3.4)

where z is the solution of Eq. (2.31). It is easy
to see that in both cases when v«1, n(v) - 2,
T(v)/v-3 and when v»1, n(v)-2, T(v)/v-0.

For intermediate values of v, we have computed
the dimensionless functions a(v), b(v), n(v), and

T(v) with v varying over many orders of magnitude
from v=10 4 to v=104 for the Gaussian potential
and from v=10 ' to v=10' for the screened Cou-
lomb potential. The results are presented in
Tables I and II, respectively. For the case of a
screened Coulomb potential we have used the nu-
merical Tables of parabolic-cylinder function
given jn Ref. 11. The numerical results of
Tables I and II are then plotted on a log-log scale
for the functions a(v) and b(v) in Fig. 1 and on a
semilog scale for n(v) and T(v)/v in Figs. 2 and

3, respectively.
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TABLE I. Numerical results of the functions a (v), b

(v), n(v), and T(v) for the Gaussian potential.

a (v) b (v) n (v) T (v)

104 7.717x ].0~ 1.061x 10 1.971 1.496 x 10

$io'
103

&10'

10

+2 102

10'

9.944x 10~ 2.719x 10' 1.959 1.057x 10

9.023 x 10~ 1.203 x 106 1.910 4.706 x 10

1.236 x 107 3.237 x 105 1.876 3.317x 10~

1.428 x 105 1.738 x 104. 1.745 1.463 x 10~

2.303x 104 5.335x 103 1.660 1.024 x 10~

4.660 x 102 4.523 x 102 1.391 4.383

&10'

10'

&10'

1.038 x 102

4.929

1.564

1.810x 10 1.250 3.000

3.168x 10' 0.9212 1.171

1.747x 10~ 0.8000 7.500x 10 i

10" 1 354x 10 5 731

+210"~ 4.884 x 10"2 3.828

10 4.523 x 10 1.624

+2 10-2 1.610x 10 3 1.140

0.6067 2.297 x 10

0.5614 1.281x 10 i

0.5143 2.889x 10 ~

0.5073 1.471x 10

10 3 1.448x10"4 5.067x10 ~ 0.5015 2.988x10 3

+2 10 5.123x10 5 3.580x10 ~ 0.5007 1.497x10 3

10"4 4.585x 10 1.600 x 10 0.5002 2.999x 10 4

From Fig. 1 it is easy to see that in both cases
the slopes of the important exponent b(v) vary
smoothly froxQ g for v&&1 to 2 for P&) 1. Such a
smooth varying behavior of b(v) is more evident
in Fig. 2 and clearly indicates that the n= 2 is
characteristic of a short-range potential while the
n =2 is characteristic of a long-range potential.
From Pigs. 1 and 2 it is interesting to note the

similarity between the two systems for the curves
a(v) and b(v). In Fig. 3 the kinetic energy of local-
ization in both systems becomes very large for
v«1 because of the short-range nature of the po-
tentials. This behavior becomes unimportant for
v» 1.

IV. DISCUSSIONS AND COMPARISONS

We have applied the method developed in our
previous paper to calculate the density of states
for an electron moving in a Gaussian random po-
tential using the Feynman path-integral method.
Two different impurity potentials are considered:
the Gaussian potential and the screened Coulomb
potential. We find that the density of states deep
in the tail in the first cumulant approximation
(in three dimensions) can be expressed analytically
as follows: for a Gaussian potential we obtain

p ( ) [(@L/&)'/h ' ]a( v) exp[- &' b(v)/2 ( ],

where

a( v) —[(I + I6 v) I /2 I ]3 /2 [(I + I 6 v) g /2 +p ]9/2/2 122 1 /2 ~ 2

(2.29)

b(v) =[(1+16v)' '-1]' '[(1+16v)' '+'I]' '/2'

(2.30)

and for a screened Coulomb potential

p, (&) =[(&o@)'/(',]a(v, z) exp[- &~b(v, z)/2&~],

(2.25)

a(v, z) = (3/2z'+ v)'/'/Bw 2'/'z' exp(z'/2)D', (z),
(2.26)

TABLE II. Numerical results of the functions n(v), b(v), n(v), and T{v) for the screened
Coulomb potential. The values within the parentheses are those of Halperin and Lax (Ref. 4).

10

10~2

10

0.1546

0.3308

0.7059

1.5009

3.2598

7.8762

22.7621

cr (v)

2.9455 x 10
(3.098 x 108)
1.8164x 105

(1.888 x 105)
2.6977 x 16

(2.197 x102)
6.8155x 10

(7 259 x10 )
7.7325 x 10

(8.906 x10
2.1363xl6 4

(2.834 xl6 )
7.0405x10 6

(eee)

1.4377 x 106

(1.444 x10')
2.1402 x 104

(2.150 x104)
4.7029 x 102

(4.716 x 102)
1.973 x 16i
(1.956 x16')
1.9232
(1.846)
3.9155x 10

(3.43 x16 ~)

1.1342 x 10
(oop)

n (v)

1.882

1.759

1.537

1.261

0.829

0.585

0.511

7'(v)

6.2758 x 10~

(6.560 x10 )
1.3807 x 16

(1.400 xlo )
3.6103

(3.03 )
6.6587 x 10

'

(6.59 x10-')
1.4116x 10

(1 358 x10 )
2.4180 x 10

(2.316 x 16
2.9104x 10

('")
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0.4-
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4

2
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J3
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0 4
I
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FIG. 3. Plot of the ratio of the kinetic energy to the
bindiig energy T/v vs the dimensionless energy v for
a Gaussian potential and a screened Coulomb potential.

5(v z) =p'&2(3/2z2+v)2/23~2exp(z2/4)D (z)

(2.27)

with z satisfying the equation

D,(z) =-,' z'(3/2z'+ v)D, (z) . (2.31)

4
IQ

-6
IO

/
s I l i I i 1 i I i l f I i l i l

-2 0 2 4
IO IO IQ IQ

FIG. 1. Plot of prefactor a(v) and exponent b(v) in the
density of states vs dimensionless energy v for a Gaus-
sian potential and a screened Coulomb potential.

The similarity in form between expressions (2.22)
and (2.25) indicates that L, the autocorrela-
lation length of the Gaussian potential, plays
the role of 1/Q in the screened Coulomb potential.

%e have also calculcated two other dimensionless
functions: n(v), the logarithmic derivative of the
of the exponent b(v), and T(v), the kinetic energy
of the localization. The results are expressed
analytically as follows: for a Gaussian potential
we obtain

n(v) = 32v/[(1+ 16v)'~' 1 I [(1+16v)'~'+ 7], (3.1)

T(v) = —,'[(1+16v)' '
],t, (3.2)

and for a screened Coulomb potential
2.0 n(v) = 2v/(3/2z'+ v),

T(v) = 3/2z2

(3.3)

(3.4)
1.6-

1.4-

1.2

8 1.0

o 0.8
0

0.6

04» i i i t a I I s I i I s 1

10 10 10 10 1 10 10 10 10

FIG. 2. Plot of logarithmic der ivative n(v) = d lnb(v)/
din v of the exponent b(v) vs the dimensionless energy v

for a Gaussian potential and a screened Coulomb poten-
tial.

Numerical results as well as limiting values of
these functions are given.

The above result was first obtained by Halperin
and La& using the minimum-counting method.
The result was obtained under the approximation
that all the eigenstates at a given energy have
the same shape, or equivalently, that all the cor-
responding potential wells have the same shape.
The density of states deep in the tail was then cal-
culated by counting the number of wells having a
particular ground-state energy. The best ground-
state wave function f(x) was obtained by maximizing
the density of states. This procedure leads to an
equation
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TABLE III. Comparison between the limiting values of a(p), b(v), n(v), and T(p) calculated
from the present method and the method of Halperin and Lax for the case of a screened
Coulomb potential. The values within the paretheses are those of Halperin and Lax (Ref. 4).

v&&1

(1/~2 ~)p3/2 fs P 23 p3/2( ~ P 4p3/2)

v»l
(~2//'g&3) p7/2 p,5x 1p 2p7/2( 1p-2vY/2)

b (p)

7(v)l p =3

=2 ~ v'/'=3. 54v'/' ( ~ 3pi/2)

(~X )

( ~ 3)

(=2)

(=o)

2 (x)f(x) —nf(x) f [f(x')] ]2 (x —x') r]x' = Xf(x),

(4.1)

which looks like the Hartree equation for a particle
bound in its own self-consistent field, with an in-
teraction —]u W(x -x'). The difference between
this equation and the Hartree equation is that p.

instead of E plays the role of the eigenvalue to be
found. This equation may be compared with Eqs.
(2.28) and (2.31) in the present approach. Using
the technique developed by Hartree for solving the
self-consistent equation, Halperin and Lax have
calculcated the above equation numerically. The
results are presented in the forms of numerical
functions for a(v), b(v), n(v), and T(v).
For comparison we reproduce some of their re-
sults in Table II. Using these numerical results
and the fact that the wave function associated with
each minimum is small compared to the mean

separation between minima, Halperin and Lax de-
duced that the limiting values for a(v), b(v)) n(v),
and T(v) must have the values given in Table III.
It is interesting to note that the present method
and the method of Halperin and Lax predict identi-
cal values for n(v) and T(v)/v but slightly different
values for a(v) and b(v).

For the Gaussian potential no such comparison
can be made because no result calculcated from
the minimum counting method is available. How-
ever, for one-dimensional Gaussian "white noise"
potential, Halperin and Lax have applied the
minimum-counting method and obtained an
analytical expression for the density of states
deep in the tail. They have compared their result
with the exact solution of Halperin. " We can also
derive such a result using the path-integral meth-
od. Following the procedure discussed in Sec. II
we readily obtain the approximate density of states
in the one-dimensional Gaussian potential

p, (E) =
il « — (2tr2 J 2slii 12 sin( —rn]))

1 'r' ' L' r'2 sin(-,' x) sin[ ,'sr(s —x)])—
(dt Z+ — —cot ——I +-Et

2 2 2 (I
(4.2)

where for simplicity we have set E, = 0 and re-
defined $ =Mr/2u2. The redefinition of $ is nec-
essary in the present case so as to avoid the
divergency in taking the white noise" limit. Let

. us now consider the ground-state contribution to
the density of states. Taking the "white noise"
limit L -0 expression (4.2) becomes

1 m i/2
o(E)= (d21/2lfl/2p-3/2

2~I- 2~I

where q =(2E„-E)/A and p'= $(m/2lfff)'/'(d'/'2'
Going into the tail region q -~ or P -0 and maxi-
mizing the exponent of E(I. (4.3), we obtain E„
,E. Substituting th—is result into expression (4.3)

yields

, (2) ((2s)")(2 (-2))

v 4' k ( E) (4 4)x exp ~ ~

x exp(-q'/Sp')D, /, (q/p~2 ), (4.3) This result may be compared with the Halperin and



19 EI EGTRON DENSITY OF STATES IN A GAUSSIAN RANDOM. . .

Lax' result

and the exact expression of Halperin"

(4.5)

....,
( ) (4 (-Z)) (,~2

)) (-E)'~*)

(4.6)

The agreement between p„p", and the exact
asymptotic form of p'""' is remarkably good.
The powers of E in the exponent and in front of
the exponential are correct. The numerical fac-
tor in the exponent of p" is exact. Our numeri-
cal factor in the exponent, however, differs from
the exact value by a factor of v'v/3 =1.0233. The
numerical factors in front of the exponential for
p,
""and p, are too small by factors of M5=2.236

and 6/v'2v =2.393, respectively. The difference
between the numerical factors calculcated from
the Halperin and Lax theory and the present
theory is quite small being 2/p and V/g for the ex-
ponent and exponential, respectively.

From the above discussion of the one-dimen-
sional Gaussian "white noise" potential, it is
shown that the numerical results obtained with the
present method are not as good as that obtained
with the minimum-counting method. The discrep-
g.ncies between the two methods are quite small,
especially the numerical factor in front of the ex-
ponent. The present method has, however, sev-
eral advantages over the method of Halperin and
Lax, which we shall discuss below.

(i) The calculation can be performed analytical-
ly by the introduction of a nonlocal harmonic trial
action S, . The use of a harmonic trial action is
equivalent to assuming that all the fluctuating po-
tentials have the same quadratic shape. The non-
locality of the trial action means that the harmonic
potential can be anywhere in space. The possi-
bility of using simple trial functions such as the
harmonic-oscillator function for simulating the
ground-state wave function f (x) was suggested by
Halperin and Lax as an alternative procedure for
solving Eq. (4.1), but no calculation was given. In
this respect our procedure is similar to that of
Halperin and Lax except that we formulate the
problem in terms of a Feynman path integral.
Since the calculation can be performed analytical-
ly, the labor involved in the present method is
much less than in the method of Halperin and Lax.
For example, the solution of the Hartree-type
eigenvalue equation in the one-dimensional Gaus-
sian "white noise" potential involves the con-
sideration of a nonlinear differential equation. In

1 2 2 f(E —Eo)tg exp —
2 $2t2+ (4.8)

where g =(4'/Q)'~'(Ze'/&, ). With the aid of Eq.
(2.20), the above expression can be written

the present approach such a solution involves the
maximization of the exponent of Eq. (4.3) and
leads to the solution E„=-,'E. Another example is
the screened Coulomb potential where the solu-
tion of the Hartree-type eigenvalue equation (4.1)
is reduced to just solving a transcendental equa-
tion (2.31) involving two parabolic cylinder func-
tions. As a result several limiting values of the
dimensionless functions can be easily obtained,
such as those given in Table III.

(ii) The calculation can be improved by going
beyond the first cumulant approximation. In the
second cumulant approximation, the average
propagator can be expressed

G,(x„x,; f) = G,(x„x,; f )

x exp((s s, ),, +-,'[((s s,)'),
—(s-s,); ]} . (4.v)

It is not hard to see that the above equation in-
volves the averages (x(r))~, , (x(v)x(v))~, and
(x(r)x(v)x(r')x(o')) ~,. These averages can be ob-
tained with the aid of the characteristic functional
given in the Appendix of Ref. 1. The second cumu-
lant approximation may be compared roughly with
the second-order correction discussed by Halperin
and Lax" where the difference between the actual
random potential and the average well shape is
treated as a small perturbation. Halperin and
Lax" have shown that the effect of the second-
order correction is to modify the prefactor but
not the exponent B(E) They find. that for the one-
dimensional "white-Gaussian-noise" potential the
second-order correction is to bring the numerical
factor in front of the exponential from 1/v 5 to
exp '-', /~5. The path-integral method also con-
firms their conclusion. Recently, Gross' has
calculcated the second cumulant correction to
the one-dimensional "white-Gaussian-noise"
potential and has found that the way to make the
correction is to change the numerical factor in
front of the exponent from Iw /3 to ))'64m/201
=1.00015, while the numerical factor in front of
the exponential becomes ~ v' v/3 1/~2.

(iii) The method can be used to obtain the density
of states at high and intermediate energies. For
high energies which correspond to allowing t -0,
the density of states for the screened Coulomb po-
tential becomes
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(4.9)

Since f-0 corresponds to IE —E,(-~, we obtain the asymptotic formulas

~2 (T 2@3
—

0

P2( s/2 E E 3/2
1/2 p

8v'ff'
(E E)-

2

E —Eofor ' « —1. (4.10)

N(N)= I N(N'}«' (4.11)

The first of these expressions is the free-electron-
gas result and the second is the well-known band
tail result of Kane." Note that for high energies
the unknown parameter (d disappears from the
density- of- states expression (4.9) . For inter-
mediate energies, we have to keep t finite in the
density-of- states expression. Although the den-
sity of states cannot be reduced to a simple form
as in cases of high and low energies, the calcula-
tion can still be performed with the aid of a com-
puter. The real difficulty in the present case,
however, is the unknown parameter & which cannot
be obtained by maximizing the density of states
because, as shown by Lloyd and Best, it does not
satisfy the variational principle. They showed that
the correct expression to be maximized is not
o(E) or Inp(E) as anticipated previously by Kane, "
Halperin and Lax, ' and Edwards, "but instead the
following functional:

where N(E') is the integrated density of states

N(N} —I 2(N }«' . '(4.12)

As E ——~ this variational principle is equivalent
to maximizing the density of state because p(E)
is dominated by its exponential decay. We note that
the method of Halperin and Lax cannot be used di-
rectly to obtain the density of states at high and in-
termediate energies because they have neglected
excited states in the potential well formed by the
fluctuating potential. The extension of Halperin
and Lax may be made by choosing the trial wave
function f(x) orthogonal to the previously obtained
ground-state wave function.

(iv) The method can be applied to the evaluation
of the density of states with general statistics
including the consideration of correlations among
the impurity centers. ""Then the average propa-
gator can be developed in a cumulant series. For
a completely random system the following average
propagator may be considered'.

1

G(x, x, ; t) = $(x(r)) exp —
( dv —x' (r)+N dR exp —— dvv(x(v') —R) —1

2) 5 0
(4.13)

One may proceed in the calculation as before for
the Gaussian statistics. The density of states
again can be expressed in terms of the prefactor
A(E) and the exponent B(E). Shklovskii and Efros"
have considered the exponent B(E) using the
generalization of the "uniform cluster" approxi-
mation of Kane." The path-integral derivation
of B(E) using a local trial action has been worked
out by Friedberg and Luttinger. However, both
methods cannot give the correct behavior of A(E)
because A(E) requires the use of a translationally
invariant trial action. The present method is
readily applicable to this problem.

The results obtained in this paper can be ap-
plied to physical systems, for instance the .

screened Coulomb potential can be used to study
the band-tail parameters in heavily doped semi-
conductors. The physical quantities to be studied

in this case are the Fermi energy, the optical
absorption, spontaneous and stimulated emissions
etc. This 'study was carried out by Hwang, "and
Casey and Stern." Hwang used the numerical
results of Halperin and Lax' interpolating with the
distorted parabolic band of Bonch-Bruvieeh, ~
while Casey and Stern combined the Halperin and
Lax result with the result of Kane." We may cal-
culate these band-tail parameters using the
analytical density of states expression obtained
in this paper. It is expected that a similar con-
clusion can be reached with much less computa-
tional effort. For a Gaussian potential the result
can be used to study the noncrystalline structures
such as polycrystallines and amorphous semicon-
ductors. Since one usually does not know the
detailed shape of the noncrystalline structures,
the autoeorrelation length can be estimated from
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experiment, such as from the radial distribution
function. A calculation along this direction was
considered by Stern. "
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