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Deformation potentials of the direct and indirect absorption edges of GaP
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We present uniaxial-stress experiments performed on the direct and indirect exciton spectrum of GaP. Two
direct transitions (Eo and Eo+ 50) and three indirect phonon-assisted transitions (LA, TA, and TO phonon
modes) have been investigated at 77 and 4.2'K, respectively. Very-high-stress conditions have been
achieved in this work (X =.19 kbar) which correspond to an axial deformation Bl/l = 2 &(10, reaching
the elastic limit of the material. We have been able to determine all linear and nonlinear deformation
potentials that describe the stress dependence of the topmost valence bands (I 7 and I,) and of the lowest
minima of the conduction band (1 6 and X~). The stress splitting of the valence band is produced by (i) the
orbital-strain interaction, which is described by two deformation potentials b, and d„and (ii) the stress-
depehdent spin-orbit interaction which is described by two extra parameters b, and d2. We find b = b, + 2
b, = —(1.5+0.2) eV, b2 ——+ (0.2+0.2) eV, d = dl+2 d2 —— —(4.6+0.2) eV, and d, = +(0.3+0.2)
eV. The effect of hydrostatic deformation is again interpreted in terms of two deformation potentials a&

(orbital-strain interaction) and a, (strain-'dependent spin-orbit interaction). They combine with two
hydrostatic deformation potentials for the conduction band C, (at k = 0) and E, [at k = (2m/a) (0,0, 1)j to
give the net pressure coefficients. We find C, + a& + a, = —j9.9+0,3) eV, E& + a& + a2 ——+ (2.3 t-0.5) eV,
and a2 ———(0.4+0.3) eV. The shear deformation potential E, of the indirect minimum of the conduction
band has been obtained from the same series of measurements. We find E, = + (6.3+0.9) eV. Lastly, the
stress-induced coupling between the lowest minimum of the conduction band (X6) and the next higher
minimum (X7) has been observed, and is described by a single deformation potential E,. We find

i
E,

i

= 13+ 1.5 ev.

I. INTRODUCTION

Under application of a uniaxial stress the cubic
symmetry of standard semiconductors is reduced.
This has long been recognized as a powerful tool
to investigate the intrinsic properties of the un-
stressed crystals. ' For example, uniaxial-stress
experiments clearly demonstrate the (111) and
(100) character of the lowest conduction-band
minima in germanium and silicon, respectively.
More recently, uniaxial-stress measurements
performed on Ge and GaAs in the E„E,+ 4, inter-
band absorption region' have provided the first
conclusive evidence for the room-temperature
existence of the Coulomb electron-hole interaction
in this energy range. On the other hand, concern-
ing impurity states, they have been used to invest-
igate the nitrogen deep isoelectronic trap in
GaP. ' ' This level plays an important part in the
luminescent properties of GaP and GaAsi P llght-
emitting diodes (LED). From the quenching of the
deformation potentials associated with the lumi-
nescence line compared with those of the band
edge, we would expect to get information concern-
ing the admixture of I'-X character in the impuri-
ty wave function and/or the coupling of the impuri-
ty with the host lattice. This is the so-called dy-
namic Jahn- Teller effect. ' In order to get quan-

titative information, one needs accurate data con-
cerning the deformation potentials associated with
the band edges in undoped crystals. For GaP,
there is only one result reported. ' It deals with
the shift of the indirect energy gap under [111]
and [110]uniaxial compression, but no indepen-
dent study of the direct E, and E, + b,, transitions
has been given. Moreover, these data extend only
to 5 kbar and, in view of the low-stress value
achieved in that work, Balslev was not able to ac-
count for the highly nonlinear stress-induced coup-
ling between the topmost valence band (I', in Fig.
1) and the next spin-orbit split off band (I', in Fig.
1). Similarly, the stress-induced coupling be-
tween the two crystal-field-split X, and X, conduc-
tion-band extrema was ignored.

In this work, we report results obtained on a
high-purity GaP crystal for stresses ranging up
to 19 kbar. This corresponds to an axial compo-
nent of the strain tensor 5l/l=1. 9x10 ', reaching
the elastic limit of the material. %e present the
first extensive investigation of the E„E,+ A„and
E,.„~ transitions under static uniaxial cornpres-
sions directed along the [111],[001], and [110]
crystallographic axes. To date, a similar set of
data under very-high-stress conditions has only
been reported for the indirect absorption edge of
silicon, which is a prototype material. For ger-
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Sec. III, we set the theoretical background and
analyze the data. In Sec. IV, we discuss the ex-
perimental results.

X7

x,

FIG. 1. Schematic band structure of GaP. At low
temperature, the typical interband energies are S'p
[P. J.Dean, G. Kaminslgr, and R. B. Zetterstrom, Z.
Appl. Phys. 38, 3551 (1967)]=2.87 eV (1.6 K)and 2.86
eV (77 K); E;„q (Ref. 12)= 2.346 eV (1.6 K); Ap (this work)
=90 rneV; 0=&7-&6 (see Ref. 20) =0.5 eV.

manium and most III-V compounds, including
GaAs, all reported data have never exceeded 10
kbar.

In view of the large stress values achieved in
this work, we have been able to determine accu-
rately all deformation potentials of the direct and
indirect gap of GaP. From the stress-induced
displacements of the direct transitions E, and E,
+ A„we get the orbital (C, +a, ) and spin-dependent
(a,) hydrostatic deformation potentials of the low-
est conduction band and topmost valence band at
0 = 0, together with the orbital (b„d,) and spin-de-

. pendent (b„d,) shear deformation potentials of the
valence band. From the stress-induced splitting
and the shift of the E;„„transitions, the hydrosta-
tic deformation potential of the indirect gap, E,
+a, +a,) and the shear deformation potential (E,)
of the lowest conduction-band minimum X, have
been determined. We have also obtained the shear
deformation potential (Eg associated with the
stress-induced coupling between the two X, and
X, conduction bands. The orbital (b„d,) and spin-
dependent (b„d,) shear deformation potentials of
the topmost valence bands are independently ob-
tained from the set of indirect transitions ~nd
compare well with the first (E„E,+ b,,) determina-
tion.

,
This paper is organized as follows. In Sec. II

we briefly discuss the experimental conditions. In

II. EXPERIMENTAL

The single crystals used in this experiment were
n-type nonintentionally doped GaP single crystals'
grown by the liquid encapsulated Czochralski
(LEC) method in a MSR 6 puller from Metals Re-
search. Suitably pure starting GaP polycrystal-
line material was presynthesized by a gallium-
solution growth process giving a residual doping
concentration as low as 10"cm '. Undoped I EC
crystals pulled from this material had carrier
concentrations in the range of 10" cm ' and mo-
bilities higher than 150 cm' V ' sec ' at 300 K.
The central part of the ingots had a dislocation
density of 10 cm '.

All samples were cut from a single ingot after
x-ray orientation along the [111],[001], or [110]
directions. This resulted in small parallelepiped
samples of approximate dimensions 1 x1 x10 mm'.
In order to ensure good stress homogeneity, the
two narrow pressure faces were optically pol-
ished.

The indirect transitions (E;„~) were investigated
at liquid-helium temperature by using wavelength-
modulated transmission measurements. " The
experimental resolution was kept around 2 meV.
The direct transitions (E, and E,+n, ,) were re-
corded at 77' K from a differential Schottky-bar-
rier photovoltage method. " The Schottky barrier
was realized by sputtering a semitransparent gold
film on the sample surface. The photoresponse at
a metal-semiconductor interface is known to de-
pend mainly on the creation rate of free charge
carriers in the semiconductor depletion layer.
Provided this collection depth (W) is smaller than
the absorption length (n '), the change in photo-
voltage directly reflects the change in absorption
strength through the equation"

6V= CWAn .
The advantages of the method are twofold: first,
the sample itself acts as a good sensitivity photo-
detector; second, one can probe a much larger
range of absorption strengths without changing
the sample thickness. The absorption depth simply
defines the active part. Comparing with E,„~ mea-
surements, where the full sample thickness &s

used ("volume" measurements), the E, and E, + n, ,
measurements appear like "surface" measure-
ments —they provide a check on the stress homo-
geneity. Our stressing apparatus is a convention-
al one": a lever arm lowers a stainless-steel
rod which transmits the force to the sargple cham-
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valence band, the energy displacement of the I',
minimum is linear in strain and may be written

&C = C, (e„„+e„+e„), (2)

where e,, denotes the strain-tensor components.
For the total I'» valence band (I', +I', in Fig. 2)

the perturbation Hamiltonian is well knowni, s, is, i5

and may be written

JISO+ Hi+ II (3)

—~3d, [(L„L,+L„L„)e„,+c p ]. .
P, = —a, (e„,+ e„+e„)(L'o')

—3b, [(L„o„-—,'l. o)e,„+c.p. ]

(4)

~gd, [(L„o,+ L,o„)e„,+ c.p.], (&)

where I is the angular momentum operator, . o is
the Pauli matrix, and c.p. denotes cyclic permu-
tation with respect to the indices x, y, and z. The
quantities a„b, and d, (a„b, and d, ), already
defined, are orbital (spin-dependent) deformation
potentials.

1. /111 j' stress

The strain-tensor components e,-,. are

e„,= e„=e,„=,S4,X.
(6)

Sii S12 and 84, are the elastic compliance coeffi-
cients. Their values for GaP are, in units of 10 '
bar ' (Ref. 16),

S„=0.973, S„=-0.299, S„=1.419.

Taking the valence-band wave functions in the
~J, M&) representation and the quantization axis
along the stress direction, the Hamiltonian ma-
trix of Eqs. (4) and (6) becomes

2) 2 111

-aV -D
27 2 111 2p 2 111

where

-6V~+ D

-&0- &Ve

6V„= (a, + a,) (S„+2S„) X a(S„+2S„)X,
AVe ——(a~ —2a, ) (S»+2S~2) X=a'(S,~+2S~2)X,

D = (1/2 ~3) (d, + 2d, ) S~~X= (d/2 M3)S~~X,

where H,o and H, are the stress-free and stress-
dependent spin-orbit Hamiltonian, respectively,
and H, is the orbital-strain Hamiltonian.

It is known"" that H, and H, are given by

H, = a, (e,-„+e„+e„)—3b, [(L„'- ,'I.')e„„+—c.p. ]

D, =AD —D —2D' /(b, 0+D),

D, =A, +D,

D, =A,'+ 2D "/(&o+ D),

(8)

where

AD= AC+ EVe ——(C„+a,+a,) (S»+2S»)X,

Ao = 6C+ 4 V» ——(C, + a, —2a2) (S~~ + 2S,2)X,
Ao= 60 —AV„+ AV„'=4, —3a, (S„+2S„)X.

A, is the hydrostatic pressure coefficient of the
direct E, transition and A,' is the pressure coeffi-
cient of the spin-orbit split-off transition E,+ ko.
Their difference, A, -A,'=3a, (S»+2S»)X, gives
the hydrostatic part of the strain-dependent spin-
orbit interaction. All stress dependences are
listed in Table I.

The three transitions D„D„and D, are schema-
tically drawn in Fig. 2(a). Two of them, D, and
D„correspond to both E

~~
X and E &X polariza-

tions and should exhibit the quadratic behavior
predicted by Eqs. (8). The third one, D„ forbid-
den for E

~~
X polarization, displaces linearly ver-

sus stress.
In Fig. 3(a), we show typical experimental spec-

tra for X= 0 and X=19 kbar. The experimental
line shape at X= 0 is characteristic of the first-
order derivative of an E, direct excitonic transi-
tion. The spin-orbit split-off exciton is collision
broadened and was not resolved. We estimate the
spin-orbit splitting parameter 6, to be 90+ 5 meV.
At X=19 kbar, all three transitions D„D» and D3
are clearly resolved and well identified; D„which
corresponds to a pure P„state, did not appear
when the polarization was parallel to X. We note
the spectral resolution in Fig. 3(a); the larger
stress achieved in this work (X= 19 kbar) corre-
sponds to a strain component eiii 2 x10 ' and
reached the elasticity limit of the material. How-
ever, the spectral lines, even in these conditions,
were not strain broadened. Obviously this is a
very satisfactory check of the internal strain ho-
mogeneity.

Figure 4 shows the experimental stress depen-
dences obtained in both polarizations. We find
identical results by plotting independently either
the positive or negative singularities that appear
in Fig. 3(a). Accordingly, in Figs. 4-6 we plot
only their relative changes. The full line shows
the best fit obtained from Eqs. (8). The analysis

D' = (1/2M3) (d~ —d2) S ~4X= (d'/2~3)S44X.

Diagonalizing the above matrix, we get [with the
usual approximation, 8D" «(L, —V„+ V„'+ D)'] the

following expressions for the stress dependence of

the lowest direct transitions:
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of data was conducted as follows. D, corresponds
to the J = —,', M,. = 2 wave function (V, band in Fig.
2) and is linear through all the experimental
range. On the other hand, for low-stress condi-
tions we can neglect the quadratic terms in D,
and D, which reduce to a linear dependence. This
is shown as dashed lines in Fig. 4 and provides
all inputs needed for a computer fit. The nonlin-
ear dependence is then introduced and all parame-
ters optimized until we get D, and D, in full agree-
ment with experiment. We get in the [111jdirec-
tion (in units of 10 ' eV bar ')
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FIG. 4. Stress depen-
dence of the three direct
transitions originating from
the I'&5 multiplet for X

ll [111].Dashed line: lin-
ear component. Full line:
best theoretical fit as dis-
cussed in the text.
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All sets of experimental results are listed in Ta-
ble II.

2. (001J stress

The strain-tensor components are

e„„=e„=$»X,

e» =e„=e,„=0.

The hydrostatic parts (4V„AV„, and b, V„') re-
main identical, but the shear terms D and D'
change to"

B= (b, + 2b, ) (S„—S„)X=b(S„—S„)X,

B' = (b,
' — b)( S~ —S„)X=b'(S„,—S„)X.

The pressure dependence of the direct transi-
tions is identical to Eqs. (8), but with B and B' re-
placing D and D', respectively:

30

20

FIG. 5. Same as Fig. 4,
but withX ll [001j.

20

'IO

I

2
I I

6
Stress (k bar)
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FIG. 6. Same as Fig. 4,
but with X (I [110].
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I

10
I

12 14

Di =ho —B—2B' /(ho+ B),
O'=A +B,
D,' = AOI + 2B"/(a,'+ B) .

The three transitions, schematically drawn in
Fig. 2(b), obey the same selection rules as they
did in the [111]direction. This is illustrated on
the experimental spectra of Fig. 3(b) for E

~~
X and

E&X. The corresponding stress dependence is
displayed in Fig. 5. The dotted lines correspond
again vrith the linear low-stress regime. The
best theoretical fit, including the nonlinear quadra-
tic shift, corresponds to (in units of 10 ' eV bar ')

Ao 3 65) A.o 3 30) B 2 05) B 3 10

Let us note the very close agreement obtained
for the shear deformation of the valence band un-
der [111]and [100] compressions. This isotropic
splitting is further supported by our experimen-
tal results obtained in the [110]direction.

3. (llOJ stress

The strain-tensor components are

1e„„=4S44X, e„=e,„=0.

TABLE II. Experimental values (units of 10 eV bar ) of the different parameters. The signs are given for a com-
pression @& 0). The nonlinear terms have been obtained edith &o = 90 me V and & = 500 meV.

Transition Stress Ap Ap Ax

Eo
[111]
[001]
[11o]

3.70
3.65
3.81

2.00 2.21
2.05 3.10

1.95 2.60

Ep+Ep
[111l
[001]
[11ol

3.10
3.30
3.50

2.00 2.21
2.05 3.10

1.95

~ ~ ~

2.60

E.
[111]
[oo1]
[11o]

-0.76
-1.03
-0.75

1.79 2.25
1.80 2.35

1.98 2.40

~ ~ ~
. 9

-9 02
-6.92

average value
3.70,3.30 -0.85 1.90

+0.10 +0.20 +0.20 +0.10
2.25
0.10

1.95
+0.20

2.70
+0.40

1.96
+0.20

2.50 -7.95
+0.30 +1.1

9
+1

' Value measured from the stress dependence of the Ep structures.



H. M AT H IK U et ul.

When the stress was parallel to the [001] or [111]
direction, the choice of the quantization axis along
the stress direction led to a simple form for the
matrix Hamiltonian. This is no longer the case
when the stress is applied along a lower-symme-
try axis such as the [110]axis. In this case, the
matrix Hamiltonian is '"

B. Indirect transitions

Under uniaxial [001]and [110]compressions, the
degeneracy of the three equivalent X6 minima is
lifted. In the notation of Brooks,"the sum of hy-
drostatic (6X„) shift and interband (hX,) splitting
is given by

aX= aX„+aX,

2P 2 110 2» 110 2y 2 110

--,'M3(B- D) —,'M6(B'- D')

=E,(e„„+e,„+e„)
+Z,n[e —,'(e„—„+e„„+e,.)f]n, (13)

--,'MS(B-D)
'I —.'M6(B'- D') -~0 —a V„'

(12)

where F = —,'(B+ 3D) and E' = ~(B'+ 3D').
In other words, the stress-induced mixing coup-

les all V„V„and V, bands and should result in
a nonlinear behavior for the three direct transi-
tions. This is not the experimental situation for
Gap (see Fig.' 6). In this case, for nearly-stress-
isotropic crystals B=D and the matrix Hamilto-
nian of Eq. (12) reduces to a much simpler form.
If we further neglect the spin-dependent mixing.
introduced by the matrix element ,' M6(B' —D'), —

the solutions are given by the set of Eqs. (8), re-
placing D and D' by E and F', respectively. They
are listed in Table I, and we have worked under
this assumption.

From our preceding results (see, for example,
Table II), the approximation B=D is well justified,
but the neglect of the spin-dependent coupling term
could appear arbitrary. This contribution should
result in a nonlinear admixture of V, with V, and
in a small quadratic shift of V,. Neglecting all
stress-induced admixtures between the unper-
turbed wave functions, the magnitude of the qua-
dratic component is 6(B' —D')' j16a,. With B' = 3
x10 meV kbar ', D'=2. 21 meV kbar ', and b,0=90
meV, we compute a contribution: 4x10 ' meV
kbar '. This is below our experimental range of
accuracy, and completely justifies our approxima-
tion.

Figure 3(c) shows a typical experimental spec-
trum for X= 14 kbar with both polarizations, E

~~
X and E&X. This permits identification of the

transition D,". The stress dependences are dis-
played in Fig. 6 and, within experimental uncer-
tainty, show the linear behavior expected for D,".
This again supports the simplification of Eq. (12),
and confirms the stress isotropic valence-band
behavior already reported. The best fit is ob-
tained with the following values of the parameters
(in units of 10 6 eV bar ~):

gp 3 81
p gp 3 50) + 1 95~ p 2 60

~x' = -(z,e„„)'j6 . (15)

1. (111J stress
I

This is the simplest situation. The degeneracy
of the conduction band is. not lifted, and, referring
to the stress pattern for a direct transition, only
the small quadratic term will modify the linear
dependence expected for all transition originating
from the

~
—,', g valence band. From Eqs. (8)-(13)

and (15), we obtain for the stress dependence of
an indirect phonon-assisted transition (see Fig. 2)

I, =A~ —D 2D"j(40+D) +9 II' j'6, — —

I2=AX+D —+~II j5,
where

(16)

where n is a unit vector in the direction of the
band extrema in k space, 1 is the unit diadic, and

E, and E, are the hydrostatic and shear defoima-
tion potentials, respectively.

In addition to the linear effects, a nonlinear con-
ti ibutlon exists due to the stress-induced coupling
between the X, (X,) and X, (X,) conduction bands.
The strain symmetry which can couple Xj and X,
is only X, and, owing to the irreducible represen-
tations of the strain components in the T„symme-
try group (I', + I"»+I'») and the compatibility rela-
tions between T„' and D,„,we find that the only
components of the strain tensor which have X3
symmetry are the shear components e„„e„,and
e,„. Hence the nonlinear coupling between the
conduction bands will be related only to [111]and
[110]compressions. Introducing a shear deforma-
tion potential E„the 2 x2 matrix Hamiltonian be-
comes simply' "

(xg (x,&

0 E e„,

E,e„,
where 5 = X7 —X, is the energy separation between
the two crystal-field split minima. Diag onalizing
this matrix and expanding to first order, we find
for the nonlinear shift of the X, minimum
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Qi,
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X, (LA phonons). Thus the LA-phonon-assisted
transition (i) willbe strongest and (ii) will obey the
same selection rules as does the E, transition. This
is clearly seenon Fig. V for X=1.4 kbar. The transi-
tion I„allowed for E &X, is totally forbidden for
E II X The same isnottrue for ZandK. Involving
both 1 „+I"„andX,„+X,„intermediate states, they
obey different selection rules and are found-in both
polarizations. For convenience, we shall focus our
investigation mainly on the strong LA structure
whose identification is simpler.

In Fig. 8, we give the complete stress-depen-
dence pattern of the three phonon-assisted transi-
tions up to X=19 kbar. The full lines show the
best theoretical fit according to Eqs. (16), and the
dotted lines illustrate the linear components.
From the fit, we get (in units of 10 ' eV bar ')

A. =-0.76, a=1.79, D'=2.25, 0=9.
As expected from Eqs. (16), we find for this stress
direction a small but definite nonlinear dependence
of the transitions originating from the linear V,
valence band. This is in sharp contrast with the
result f'or the direct E, transitions, but would be
hardly noticeable for compressions below 10 kbar.

I

2.34
E nergy (eV)

2.38

FIG. 7. Stress-induced splitting of the three indirect
phonon-assisted transitions I, J, X at liquid-helium tem-
perature for E () X and EI X. Note the identification of
the I2 transition (LA-phonon-assisted transition) which
appears onlywhenE l X and follows exactly the selection
rules observed for the direct transitions O6 intermediate
state). The same is not true for the J2 component (TA-
phonon-assisted component) as shown at 1.4 kbar. This
component, which involves both 1'

f& and X$ intermediate ~

states, appears in both polarizattons E&X and X II X. At
X= 16 kbar, the sixlines appear well separated intwodif-
ferent series which originate for V~ and V2, respectively.

Ar = hXH + 6 Vs = (E, + a, + a, )(S„+2S„)X

and f5= E,S«X The complete stress pattern will
be characterized by a number of lines which is
twice the number of resolved phonons at X=O.

In Fig. 7, we show an experimental wavelength-
modulated transmission spectrum (X=0) which
displays three well-resolved phonon-assisted
transitions (LA, TA, and TO). For clarity, we
label I the LA-phonon-assisted transition, and use
J'for TA and Kfor TO. Under [111jcompression
the spectrum duplicates and becomes polarization
dependent. At 16 kbar, two well-resolved sets of
structures correspond with the splitting of the F,
valence band. It is interesting to note that the
transitions via the lowest direct conduction band
(symmetry 1,) involve only phonons of symmetry

2. /001 1 stress

This stress direction lifts the degeneracy of the
three (100) ellipsoids in the conduction band and
results in an intervalley splitting whose magnitude
is obtained from Eq. (13):

6X, = G =E,(S„—S„)X.

Depending on signs, one ellipsoid (001) moves down

by z3G, while the other two (100) and (010) move up
by —,'G. This situation is illustrated schematically
in Fig. 2(b}. For each phonon line, we get now four
different branches (primed transitions) which cor-
respond with two different valence bands and two
different conduction bands. The corresponding
stress dependences are obtained from Eqs. (8) and
(17) and are listed in Table I. Two branches I,'
and I4 originate from the 8= —,', M& = —,

' valence band
(V,) and are strictly linear. The two other ones,
I,' and I,', exhibit the nonlinear behavior character-
istic of the V, —V, intervalence band mixing.

Typical experimental spectra are shown in Fig.
9. From the three phonon lines (I,J, K) resolved
at X=O, we expect 12 branches. Only eight have
been resolved because of destructive interferen-
ces between the weak TA and TO phonon lines (J'
and K'} with the strong LA ones (I').

The, complete stress-dependent pattern is shown
in Fig. 10 for Xup to about 8 kbar. Note the
strong mixing of all experimental structures that
appears at about X= 2 kbar. The polarization-
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theoretical fit was obtained with (in units of 10 '
eV bar ')

A. = -0.75, P = 1.98, +' = 2.40, G = -6.92.

IV. DISCUSSiON

All parameters obtained from the fit of experi-
mental data are listed in Table II and averaged to
account for the experimental uncertainty. We have
obtained three independent determinations of the
hydrostatic-stress dependences A„A,', and A„,
and two independent determinations of the shear-
stress dependence of the valence band B, D, B',
and D' and of the lowest conduction band G. From
expressions listed in Table I, together with the
elastic compliance constant of Ref. 16, we obtain
the deformation potentials listed in Table III.

We find for the hydrostatic deformation poten-
tial of the direct band gap at k = 0: C, + a, + a,
=-9.9+ 0.3 eV, which corresponds to a pressure
coefficient

dEo' = —3(C, + a, + a,)(S„+2S»)

of 11.1+ 0.3 me V/kbar. Hydrostatic-pressure ex-
periments' give 10.7+ 1.1 meV/kbar, in excellent

agreement with our experimental finding. In view
of the strong similarities between all group IV
and GI--V compounds, "we can also compare with
the stress dependence of the direct band edge in
Ge and GaAs as obtained from recent uniaxial' and
hydrostatic" measurements. For Ge and GaAs,
Chandrasekhar and Pollak' report C, + a, + a,
= -10.6+ 0.8 eV and -8.4+ 0.8 eV, respectively.
On the other hand, for GaAs Welber et a/. report
dE, /dP =12.6+ 0.1 meV/kbar, which gives a defor-
mation potential C, +a, +a, = -9.8 eV. All these
values are in very good agreement with our experi-
mental result for GaP.

The indirect band-gap hydrostatic deformation
potential obtained is E, +a, +a, =2.3+ 0.5 eV. The
corresponding hydrostatic-pressure coefficient
is dE;„~/dP =-2.6+ 0.5 meV/kbar. This value must
be compared with (i) previous hydrostatic mea-
surements which give" "dE,„~/dP =-1.1+ 0.1
meV/kbar and (ii) uniaxial-stress measurements'
which give -4.5+ 1.5 meV/kbar. We have not been
able to resolve the discrepancy between the differ-
ent series of data, but we may compare it with re-
cent hydrostatic stress measurements performed
on the indirect band edge of silicon, "where the
pressure coefficient was dE,„,/dP = -1.41+ 0.06
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TABLE III. Summary of the deformation potentials obtained for GaP and comparison with previous experimental re-
sults reported for GaP, Si, GaAs, and AISb.

Transition .

Deformation
potentials (eV) This work

GaP
Previous works Sic QaAs d AlSb ~

Eo+~o

and

E II16 '

c&+a~+ a2

ci++~ —2g2

c(+Qg

Eg+ Qg +02

Eg+ay

= dg +2d2

=df

d1

d2

b =b, +2b,

b' =by-b2

b2

-9.9+ 0.3

-8.8+0.6

-9.5+0.4
-0.4 + 0.3

+2.3.+ 0.5

+2.7 + 0.8

-4.6 + 0.2

-5.5+ 0.2

-5.2+ 0.2
+0.3+0.2

-1.5 + 0.2

-2.1 + 0.3

-1.9+ 0.3

+0.2+ 0.2

-9.5+.1.0 '

+1 +0.] '
+3.7+0.6

-4.4 +0.5 b

-1.4+ 0.15

1.5 + 0.3

-4.85 +0.15

4.9 + 0.25

-0.05 + 0.25

-2.1 +0.10

-1.95 +0.15

-0.10+ 0.15

8.4 + 0.8

8 +0.6

-4.55+ 0.25

-5.5 + 0.4

-5.2 +0.2

+0.35+ 0.15

-1.7 + 0.1

-2.6 + 0.2

-2.35+0.15

+0.3 +0.1

-5.9 +1.2

2.2 +0.2

-4.3 +0.4

-1.35+ 0.1

E, +6.3+0.9

13 + 1.5
+7 ~0.5 -8.6 + 0.4

2(8 +3)

5.4 + 0.3

' Reference 19.
b Reference 7.' Reference 8.

Reference 2.
Reference 25.

b = -1.35+ 0.1 eV (Ref. 25) .
The spin-dependent deformation potentials a„b„

and d, have been obtained for the first time for
GaP. We get a, = -0.4+ 0.3 eV, b, = 0.2+ 0.2 eV,
and d, =0.3+ 0.2 eV. These results are in satis-
factory agreement with the- experimental values
reported for germanium, ' silicon, ' and GaAs, '
but all are an order of magnitude larger than the
theoretical estimates. "'"" From perturba-
tion theory Hensel and Suzuki"" show that differ-
ent terms contribute to a» b» and d, . They are
(i) a "kinetic" term which derives simply from the
scaling process in applying the Pikus-Bir trans-
formation' to the coordinates, (ii) a term which de-
pends on the change in crystal potential with
strain, and (iii) negligible higher-order contribu-
tions. Within the deformable-ion approximation
they estimate the kinetic contribution and obtain

a =-~A and b2=d2= 34O ~

With b,,=90 meV, this gives for GaP the values

a, =-0.020 eV and b, =d, =0.030 eV,

which are about an order of magnitude lower than

the experimental results.
We have attempted a rough estimate of the- con-

tribution which corresponds to the change in crys-
tal potential neglected in the deformable-ion ap-
proximation. This term, which depends upon the
strain-induced change of the crystal potential, can
be readily estimated using the empirical tight-
binding method. "'" The determination of the
tight-binding parameters is relatively simple in
cubic crystals, "'"and an explicit expression for
the spin-orbit splitting 4, at T' has been derived"

,'(r. + ~,) + (a, —~,)(z„-z„)/z-,',
where A„A„.E», and E» are the atomic spin-or-
bit values and p-state energies for the anion and
cation, respectively. Taking" 6, =0.067 eV, 4,
= 0.714 eV, E» = 1.28 eV, E» = 3.82 eV, and E, = 5.20
eV, one gets b,,=94 meV, in excellent agreement
with the experimental value 6,,=90+ 5 meV.

Let us assume that the contribution which domi-
nates the change in 6, comes only from a change
in the coupling parameter V„, which connects two

p states originating from different atoms. A
straightforward calculation gives
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d(&.) = --'l(&. —&,)(&,. &—„)/&,"]d(&,'),
where"

The change in V„„versus lattice parameter is ob-
tained from the standard rule"'" V„„-d ', which
gives for a hydrostatic pressure dV„= —2V„„Ed/d,
where d is the nearest-neighbor distance. The re-
sulting contribution to a, is then

which gives Aa, - 0.004 eV. This contribution is
again very small and cannot explain the discrepan-
cy between the experimental results and the cal-
culated values.

It is to note that the dependence of the spin-orbit
Hamiltonian on uniaxial stress (described by the
deformation potentials a„b„nad d, ) where intro-
duced by Hensel and Suzuki, "' to explain the
strain dependence of the hole effective masses in ger-
manium. More recently, Aspnes and Cardona"
indicate that the anomalous strain dependence of
the cyclotron hole masses observed for Ge by
Hensel and Suzuki are not due to a strain-depen-
dent spin-orbit interaction, as suggested by these
authors, but to orbital terms involving the higher
conduction bands. Their calculations show that the
splitting of the I'» valence band is not the only
term that contributes significantly to the dependen-
ces of the valence-band masses on uniaxial stress.
In fact, the stress dependence of these masses can
be viewed as resulting largely from third-order
perturbation terms involving the k p Hamiltonian
twice and the stress Hamiltonian once. Conse-
quently, the dependences of the effective masses
on stress is not a direct investigation of the evi-
dence of the strain-dependent spin-orbit interac-
tion. The evidence of a spin-dependent deforma-
tion potential derives primarily from the difference
in deformation potentials measured directly by

optical determination of the strain-induced shifts
of the F, and I', valence bands. Our results are
in agreement with a strain-dependent spin-orbit
interaction, but we cannot explain the discrepancy
between the experimental results and the theoreti-
cal estimated values. In order to clarify this-
point, more detailed calculations would be needed.

Lastly, coming back to the indirect transitions,
the stress-induced X, —X, mixing permits a deter-
mination of the ratio E3/(X6 —X,) Isee Eg. (5)].
The energy separation (X, —X,) has not been mea-
sured experimentally. However, from different
band-structure calculations"'" we can infer a
value -0.5 eV which gives E,=12.8~ 1.4 eV. This
is in satisfactory agreement with the corresponding
result 2$,*= 16 + 6 eV reported for silicon by Laude
e«& 8

V. CONCLUSION

We have accurately determined all the deforma-
tion potentials needed to describe the strain de-
pendence of the I', conduction band, the 1", topmost
valence band, the 1, spin-orbit split-off valence
band, and the X, lowest conduction band in GaP.
Our results include the separation of the orbital
and spin-dependent deformation potentials for the
valence bands and the measurement of the weak
stress-induced interconduction band coupling (X,
—X,). The spin-dependent deformation potentials
have been obtained for the first ti.me. The orbital
and hydrostatic deformation potentials are in good
agreement with previously published data. We
have not been able to resolve the discrepancy
quoted in the literature concerning the difference
in pressure coefficient for the indirect transitions
obtained from (i) pure hydrostatic pressure mea-
surements and (ii) static uniaxial-stress experi-
ments. We believe that new hydrostatic pressure
measurements should be undertaken.
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