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A recently established phenomenological theory of dynamical light scattering from coupled
systems of acoustical lattice waves and free-carrier-density waves in unbounded opaque semi-
conductors has been extended to semi-infinite crystals. On the basis ovf a quasistatic two-wave
interference approximation, expressions have been obtained for the noncollinear real and ima-
ginary parts of the wave vectors of the forward-diffracted optical eigenmodes. The frequency
dispersion of the modes, the opacity broadening of the linewidths, the boundary kinematics, and
the reflectance have been analyzed. With main emphasis on the plasma dispersion relation in
the long-wavelength limit, the basic concepts have been applied to a study of dynamical diffrac-
tion from acoustoelectrically bunched conduction electrons in #-InSb at 80 K. -Numerical resuits
based on a Boltzmann-equation calculation of the free-carrier bunching are presented. A partic-
ular analysis is given of the anomalous transmission in the collision-dominated regime
(Q! << 1) of acoustoelectric interaction assuming the electron gas to be collisionless (w7 >> 1)

in regard to its optical properties.

I. INTRODUCTION

During the past decade significant progress has
been made in our understanding of the processes
which are responsible for the inelastic scattering of
light by coupled systems of acoustic phonons and free
carriers in semiconductors.!2

For crystals in the electronic ground state the cou-
pling of light and sound is macroscopically described
by (i) the direct photoelastic effect. composed of
Pockels’ contribution® = and the rotational contribu-
tion,® and (ii) the indirect photoelastic effect, that is,
the succession of the piezoelectric and electro-optic
effects.”® The microscopic formulation of the light-
scattering process,’ which must be applied when
studying resonance scattering effects with near-band-
gap light, is essentially based on a perturbation-theory
description where a photon incident on the crystal in
its ground state creates a virtual electron-hole pair.
The electron or hole then interacts with a phonon via
the deformation-potential coupling or the piezoelec-
tric coupling, and subsequently recombines emitting
the scattered photon. In extended theories of reso-
nant Brillouin scattering!®!! the strongly coupled sys-
tems of photons and quasilocalized electron-hole
pairs are treated as exciton polaritons, and the scat-
tering of polaritons!? by acoustic phonons is con-
sidered.

When the conduction band is partially filled the
free-carrier screening of the indirect photoelastic
effect must be taken into account.!'!>14 For nonther-
mal phonon distributions this has been done on the
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basis of a Boltzmann-equation calculation of the
phonon-induced self-consistent field arising from the
piezoelectric coupling and the deformation-potential
coupling.!516

The free carriers also scatter light directly, either as
single particles or as collective plasmons."!7 If the
conduction electrons are strongly bunched, as they
can be in the potential wells of an acoustoelectric
domain, the inelastic scattering from this non-equi-
librium free-carrier density modulation can be com-
parable in magnitude with the scattering from the lat-
tice.18.19

Historically, inelastic-light-scattering investigations
have been confined to transparent media. At the
moment, however, the studies are being extended to
photon energies above the band gap! and below the
plasma edge.” When the crystal is opaque to the in-
cident and scattered light the pseudomomentum con-
servation law breaks down and the inelastic scattering
becomes possible with excitations within a range of
wave vectors.!'2'22 Furthermore, interference effects
among the incoming and scattered beams must be
considered. This can be done by replacing the usual
kinematical theory of diffraction by a dynamical
one.?? Using a phenomenological dynamical model it
has been predicted?® that one can obtain sound-
induced anomalous transmission of light below the
plasma edge in piezoelectric semiconductors, an effect
which to some extent is analogous to the Borrmann
effect?® known from y-ray,?* x-ray,?-2°-28 peutron,?
and electron diffraction.®®

The purpose of this paper is, on the basis of a
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two-wave interference approximation, (i) to formu-
late a phenomenological theory of dynamical light dif-
fraction from a quasistatic fluctuation in the complex
optical dielectric tensor of a semi-infinite conducting
crystal, (ii) to determine the boundary transfer func-
tions, (iii) to study the frequency dispersion relations
of the optical eigenmodes, (iv) to consider the opaci-
ty broadening of the linewidths of the forward dif-
fracted modes, (v) to apply the general formulation
to a study of dynamical diffraction from acous-
toelectrically bunched conduction electrons in InSb,
and finally (vi) to discuss the diffraction in the limit
where the solid-state plasma is collisionless

(w7 >>1).

II. BOUNDARY KINEMATICS

In this section the reflection and transmission
kinematics of a plane electromagnetic wave impinging
from vacuum on a plane boundary of a semi-infinite
electrically conducting crystal is determined. It is re-
quired that the interaction of the transmitted wave
with a selected plane-wave component of the pro-
pagating dielectric disturbance is phase matched.
Furthermore, it is assumed that the dielectric excita-
tion travels parallel to the surface, and that the
scattering plane inside and the plane of incidence out-
side the crystal are parallel.

In complex notation the electric fields of the in-
cident (/) and reflected (r) optical waves are
described as follow:

E.(T.0) =Ep expli(K, T—wa)l, a=ir , (1)

where Ep is the complex amplitude of the mode, k,

is the wave vector, which is real in vacuum, and o, is
the angular frequency. By assuming that the time-
averaged intensity of the incoming wave does not
change in time, w; is a real quantity. The electric
fields of the transmitted (¢) and the Raman scattered
(s) waves, which are traveling through an absorbing
medium, are written on the form

Es(T,1) =E¢ expli(kp T—wpt) = 55T, B=ts,
B
(2)

where the complex wave vector of the mode has
been splitted into a real part EB, determining the
wavelength, and an imaginary part yg, characterizing
the amplitude attenuation phenomenologically.

Continuity of the tangential component of the elec-
tric field across the boundary implies that (i) the
components of the real parts of the incident, reflected
and transmitted wave vectors along the surface are
equal, i.e.,

K k=k k=K -k , 3

where k is a unit vector parallel to the intersection

line between the scattering plane and the boundary
plane, and that (ii) the planes of constant amplitude
are parallel to the boundary, i.e.,

Y= Ytﬁ , 4)

where 7 is a unit vector perpendicular to the surface.
Note that the four vectors k;, k,, k,, and %, are co-
planar.

In the following we consider a phase matched in-
teraction of the transmitted wave with a plane-wave
component

€(T,1) =€5expli(Q-T— Qg1 (5)

of the linear part of the relative complex dielectric
tensor at optical frequencies. The unperturbed rela-
tive dielectric tensor will be denoted by €. Since we
shall be dealing with bulk waves only it is assumed
that the Fourier amplitude € is independent of the
depth below the crystal surface. In a forthcoming pa-
per an investigation of the possibilities for anomalous
electromagnetic penetration below the plasma edge in
metals by modulating the free-carrier density of the
surface via coupling to acoustic surface waves will be
undertaken. For dielectric modes undamped in space
and time, the wave vector Q and the angular fre-
quency (g are real quantities. Note that the
unessential restriction 6 = Q« is imposed on the
analysis.

Phase matching in a first-order Stokes (minus sign)
or anti-Stokes (plus sign) scattering process requires
that the real and imaginary part of the wave vector of
the scattered field must fulfil the conditions

Es =l—(., * 6 ) (6)
and
7
Ys=7vsh . N

Energy conservation in the inelastic scattering
event implies that w; =w, + 5. However, since only
low-frequency excitations (g5 << ;) are of interest
in this work, we shall in the following sections
neglect the Doppler shifts. The angular frequency of
light will be denoted by .

The ratio of the magnitudes of the real parts of the
optical wave vectors involved in the scattering pro-
cess is given by

ks _ ns(w;, k)
ki nl(mtvEt)

w;

112—6—] , (8)

where n, and n; are the refractive indices of the two
waves. Deviations of the above ratic from unity
gives rise to optically anisotropy effects in the scatter-
ing geometry.. Here we shall neglect such effects aris-
ing from the inelasticity of the collision "directly" [last
factor in Eq. (8)],% the frequency dispersion,! and



the angular dispersion’? of the refractive index.
Thus, the treatment is limited to cases where « is
parallel to one of the principal dielectric axes of the
crystal, and where there is no change of light polari-
zation in the scattering process. With these restric-
tions one has | k,| =|k;| and | %,| =7,

In the isotropic scattering configuration the wave
vector of the reflected light is given by

kK =—(k;tQ) . &)
III. WAVE FIELD IN TWO-WAVE INTERFERENCE
APPROXIMATION

To determine the electromagnetic field inside the
crystal in the limit of quasielastic scattering one has
to solve the time-independent wave equation
2

— =

[vv —-1v2- [i‘c’—

[ +&(T, w)]] -E(T,0) =0,

(10)

where ¥ is the gradient operator, and T is the unit
tensor. Restricting ourselves to the important case
where the incident and scattered waves are polarized
perpendicular to the scattering plane, the electric field
can, in a two-wave interference approximation be
written on the form

E(T, 0) =4 xk[E (A T)exp(iK, -k k-T)
+E, (A -Fexplik,-kc-F)] , (1D

where it has been indicated explicitly that the com-
plex amplitudes £, and E; are functions of the dis-
tance from the surface only. Combining Egs. (5) and
(6) on isotropic form, (10) and (11) one obtains the
following coupled differential equations for determin-
ing E, and E;

) 2 2
12)
and
PEx) o). 02 wl.
T+ ol E(x) + - &E(x) =0 ,
(13)

where & and &z denote the appropriate components -
of the dielectric tensor. In addition we have intro-
duced x =7 ‘T, and utilized that & g==&;* As a trial
solution to Eqgs. (12) and (13) plane waves of the
form E,(x) =ET;! expl(ik —y)x] and E,(x) =E—k-s

x expl(ik —y) x] with k =K, - A =K, - A, are taken.
The condition that the determinant of the algebraic
equations in ET(-I and ET;S must equal zero implies that
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2
(& t]&gD - (14)

w

2
k+i 2=_Q_+
(k +1) 4 c

By solving Eq. (14) one finds that the two eigen-
values (+, —) of the wave vector components perpen-
dicular to the surface are given by

-2

2 1/2
+Reé + |é5| — L , (15
Q

212

Redy + || — |22

1/2
+ (Imeo)2]

2w
and
212 ) 1/2
yi=ﬂ|:l< Re& + |&5| - L +(Iméo)2}
c|2 2w
2 1/2
—Reé ¥ |&gl + -% >] ,  (16)

in a dynamical approach to light diffraction in a '
semi-infinite crystal. The quantities Re&, and Imé,
denote the real and imaginary part of €. The wave-
vector components of the plus and minus sign modes
parallel to the boundary are equal, and in magnitude
given by |k, k| =k, k| =Q0/2=0g5/(2V,), where V,
is the phase velocity of the dielectric wave. The
quasielastic dynamical diffraction kinematics of the
two eigenmodes and the boundary kinematics are
shown schematically in Fig. 1. )

The result obtained in Egs. (15) and (16) deviate
slightly from that found previously? for an unbound-
ed medium. This is due to the fact that it was as-
sumed there that the real and imaginary part of the
optical wave vector were collinear, whereas in this-
work we are dealing with inhomogeneous waves.

For Q —0 and |&;| —0 Egs. (15) and (16) are re-
duced to the well-known expressions for unperturbed
wave propagation at normal incidence in opaque
media. Note that the propagation constants of a
dielectric perturbed crystal can be obtained from the
unperturbed case by making the replacement

¥

>0

FIG. 1. Schematic diagram showing the quasielastic
dynamical diffraction kinematics for the two inhomogeneous
optical eigenmodes in an isotropic scattering configuration.
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Reé —Red + | & —

2
—Qﬂl . an
2w

According to Eq. (16) the condition for high trans-
parency of the crystal is

|Imé&,|

0< y <<1, (18)

Qc

Re& + |&5| - o™

in a two-wave interference approximation. A pheno-
menological determination of the frequency regions
of induced anomalous transmission of light through
absorbing crystals is accomplished by comparing Eq.
(18) with the condition ‘

[Im&|

0< <<1, (19)

Re €

for high transparency in dielectric undisturbed media.

The field eigenvectors corresponding to the wave
vector eigenvalues obtained in Bqs. (15) and (16) are
related by a phase factor ¢g given by

EX -

K, i Imea
—+=te¢ ¢, tan¢gg= , (20)
EE " Reiy

t

E(T.0) = T Ex A x Rexp(i ¢g/2)

. bg
x fexpli(k™h -T—wt) —y*h - T] cos[—2QK T+ TQ

The interpretation of Eq. (23) is quite obvious and
similar to that given previously?® for an infinite medi-
um. The field consists of two components propagat-
ing with phase velocities w/k* and w/k~ perpendicu-
lar to the boundary. The amplitude attenuation
coefficients of the modes are y* and y~, respectively.
The travelling waves differ in phase by the amount
/2 at the surface. Parallel to the boundary the wave
pattern for each of the two modes is standing. The
phase shift between the two patterns is /2.

IV. BOUNDARY TRANSFER FUNCTIONS

In this section the amplitude reflection and
transmission coefficients of the electric field at the in-
terface between vacuum and an absorbing crystal
where the optical dielectric constant exhibits a
sinusoidal spatial modulation are evaluated. It is as-
sumed that the bulk modulation determines the
reflectance and the refractivity, that the boundary
kinematics is appropriate for quasielastic Bragg
scattering in the crystal, and that the electric field is

for the anti-Stokes process. For the Stokes event the
phase factor is b g="%5

The solution of the system of coupled differential
equations (12) and (13), which satisfies the boundary
condition E,(x =0) = TLET(,. , T, being the amplitude

reflection coefficient for light polarized perpendicular
to the plane of incidence, and E,(x =0) =0 at the
surface, and the condition E,(x — o) = E,(x — o0) =0
at infinity, takes the form

E(x)= %ETQ {expl(ik* —y*) x]

+expl(ik™—yI)x]} , 1)
and
T,
E,(x) = —-2-—EY] lexpl(ik* -y x]
—expl(ik™ = y)xl} exp(igg) ,
(22)

or in short notation E, = E,* + E,” and
E,=(Ef—ED) exp(idg).

By combining Egs. (6), (11), (21), and (22) it fol-
lows immediately that the total wave field in complex
notation is given by

¢...
+ex Q.7+ %
P 2:( T+ >

ilk=h -T— t—l
I[ n'r—w 2

—y7h -T’] sin

3)

—

polarized parallel to the boundary plane (TE
geometry).

In the two-wave interference approximation to
dynamical diffraction the boundary conditions giving
the continuity of the tangential components of the
electric and magnetic field at x =0 are E; + E,
=E*+E ", and
(o/c)(E;—E) cos®,= (k¥ + iy Er+ (k™ +iy ) E,
where 6, is the Bragg angle outside the crystal. Since
ErY=E =E/2= (TL/Z)E;-i at the surface our ele-
mentary considerations show that the amplitude
reflection coefficient is given by

2 _Qzl/z | )
%) + N _
[7' —[2 l —?(k +k7) 2(7++'y)
R = 2 _Q21/2 ] ] ,
ol _ 24 Y+t +ym
[C] [2 +2(k++k)+2('y +y7)

and the amplitude transmission coefficient as

24)



fol-o]

12
+ %(k* +k0) + 3’():* +v7)

Tl= T 7

[£] -[¢

It follows from Egs. (15), (16), and (24) that
measurements of the reflectivity in principle enable
one to obtain the Fourier amplitude |&;| of the
dielectric excitation.

The formulas for R, and T, can be obtained from
the corresponding equations for a translational invari-
ant medium if (i) the component of the complex
wave vector perpendicular to the boundary plane is
replaced by the arithmetical mean value [(k* + k")
+i(y*+v7)1/2, and (ii) the angle of incidence is
chosen in accordance with the appropriate Bragg in-
terference condition.

The forward diffracted eigenmodes are character-
ized by the complex refractive indices nt=c(k?

+ i'yi)/ .

In the limit of vanishing dielectric perturbation,
ie., for 0 —0, k¥ —k, and y* —y, Eqs. (24) and
(25) are reduced to the well known expressions for
the amplitude reflection and transmission coefficients
for perpendicular incidence on an absorbing crystal.

It should be noticed that-Snell’s law for an absorb-
ing, periodic structure takes the generalized form

211/2
—C—Q] l singt (26)
2 .

where 6% are the angles of refraction for the eigen-
modes. Snell’s law for the unperturbed case is ob-
tained in the limit Q —0 and |&|—0.

(25)

sinf; = [(Ren Hry

V. DISPERSION RELATION OF FORWARD-
DIFFRACTED EIGENMODES

It is obvious from Eq. (15) that the two forward-
diffracted eigenmodes are subjected to a frequency
dispersion that differs substantially from that of an
electromagnetic wave in an unperturbed conducting
crystal. A qualitative study of the dispersion can be
achieved by comparing the magnitudes of the group
velocity Wt =9w/dk* and the phase velocity
W, =w/k™ of the optical modes.

Defining a two-dimensional vector

) 2
gi=(61i,62)=[Reéoi!E6|— %] ,Iméol , @7

of which the first component only depends on the
dielectric modulation, the frequency dispersion can
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be expressed in compact notation as follows

+ )2 + =+ 11!
wt 8§x . +
14 1‘7: ] [ 08 Ei_ 08 ]] )

+_ +
We =W, 2 dlnw dlnw

28)

At =t 4
where 8~ =87/87.
In the limit Imé& — 0, the deviation between the
group and phase velocities becomes on normalized
form

wasF
Wyt — Wit — dw (29)
Wt |8 |+ 6.

In the discussion of anomalous wave propagation in a
collisionless solid-state plasma (see Sec. VII) explicit
use is made of Eq. (29).

VI. OPACITY BROADENING OF LINEWIDTHS

In opaque crystals a broadening of the linewidths
of the forward-diffracted modes can occur in excess
of other broadening mechanisms. The broadening is
determined by the distribution of wave vectors which
is obtained by a Fourier transform of the exponen-
tially absorbed eigenmodes. Opacity broadening
effects somewhat similar to those predicted below in
connection with dynamical diffraction have been dis-
cussed and observed in Raman and Brillouin scatter-
ing studies on metals and semiconductors.!-21:22:33.34

The squared amplitudes of the spatial Fourier com-
ponents (denoted by the scalar index ¢) of the for-
ward diffracted field given in Eq. (23) are

| Bl =17, 2 () + C(g)+ A0 C0)

x [y (k*—¢q) -y+(k‘—q)l] ,

(30)

where the unnormalized Fourier spectrum of each of
the modes in absence of the other (8 =0, w/2) takes
the Lorentzian form

cos?d
o) =t _ )2 +y21-1
CHg)=[k* =)+ (y5 XLinz8 , (D
with 8= (Q/2);‘<-F+¢6/2.

If the conditions

2
Reao—[-zg£ >> &g >> [Im&| | . (32)

(0]

are fulfilled the modes are well-separated
(lk*—=k~| >> |y*| +|¥7|) and suffer weak absorp-
tion only (k% >> |y*]), so that one can neglect the
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interference term in Eq. (30). The conditions in Eq.
(32) lead to the separately normalized (N) Lorentzi-
an spectra

kO,yO kt

Cit(g) = , (33)

v (q) (ki)z(ki—q)2+(k°y°)2

if one uses the important general relations
kEyt=k%0 , (34)

which are obtained by combining Egs. (15) and (16).
The index O on the propagation constants refer to the
dielectric unperturbed case. Also in the case where
one mode is strongly damped Eq. (33) approximates
the spectrum of the other.

The wave-vector spread causes frequency broaden-
ings

Ac«)iz'ingi , (35)

in the perturbed opaque crystal. The ratios between
these linewidths broadenings and that obtained in an
unperturbed absorbing crystal are given by
Awi ~ Wgt Wpt
A wO WgO u/po

(36)

VII. DYNAMICAL DIFFRACTION IN A BUNCHED
COLLISIONLESS PLASMA

In this section the dynamical diffraction from a
nonthermal free-carrier-density wave in a collisionless
solid-state plasma!”-3 is considered. The two-wave
interference approximation is adopted, and it is as-
sumed that the scattering from the plasma dom-
inates.1315.16.18,19

For a parabolic band structure the appropriate
dielectric constant is given by

Y
%ﬂ] l , (37)

in the long-wavelength limit.2%3¢ The lattice contn-
bution to the dielectric constant is denoted by & Eo and
the appropriate plasma frequency by @,. Assuming
& to be real'> !¢ it follows that Imé =0. Naming the
ratio between the considered Fourier amplitude of
the space charge-density wave and the thermal equili-
brium density by 55, the perturbation of the dielec-

..Ll_

&§=¢

tric constant can be written!>-15-16
Ry
~ ~L| Wp x
~=—¢) |—| Ay . (38)
q - ] Q

By inserting Eqgs. (37) and (38) into (18) one finds
that the crystal becomes highly transparent for the
forward diffracted beams at frequencies

© = dgyp = [m,,(l+|A D+ 5 )m]' . (39)

if one neglects the frequency dispersion of EOL . Ina
forthcoming paper we shall investigate the dynamical
diffraction of phonon-polaritons in a plasma (i.e.,
plasmaritons in the limiting case of zero magnetic
field) by free-carrier-density waves.

The angular frequencies wdyn given above can be
considered as plasma frequencies for the eigenmodes
of dynamical diffraction in a plasma perturbed by a
quasistatic sinusoidal disturbance.

Combining Egs. (15), (16), (37), and (38).one ob-
tains in the region @ = agy, the following expressions
for the propagation constants

k C/(Go)l/2 l[ ]

_ C/(Eo)l/2
27,

1/2

2 n_‘z
[ﬁ] , (40)
wp

=0 . 41)

+
In the frequency range w =< @gyn absorption character-
ized by

and

k*=0 , (42)
and
+ p
y*= 17|85 - |
c/(&)'2 @,
12
~ L 12 2 O= 2
+[c/(eo) e @)
2V, @,
takes place.

The presence of the space-charge wave causes a
splitting of the plasma dispersion relation into two
branches as shown schematically in Fig. 2. It appears
from Eq. (40) that the eigenfrequencies at zero wave
vector are related to the free-carrier-density modula-
tion by

(o) — (G =2|45]a; . (44)

This means that the splitting opens up a possibility
for measuring the amplitude of the space-charge
wave. .

Since one always has @, < @gy it follows that the
minus-sign mode in comparison to the unperturbed
wave suffers enhanced absorption and has a higher
cutoff frequency.

For the plus-sign mode one obtams the cutoff
below the plasma edge, i.e., wdyn < @,, if the condi-

tion
2 2 :
~ /(@) Qg
A~ b AN By i
|Ag| > [ 2, ol I (5)



FIG. 2. Dispersion relations for dynamically diffracted
(+, —) and undiffracted (0) electromagnetic eigenmodes of
long wavelength in a collisionless solid-state plasma.
Neglecting band-structure effects the curves approach a com-
mon nondispersive w(k) relation (co) at high frequencies.
In the shaded region anomalous transmission takes place for
the plus-sign mode.

is fulfilled. Introducing the oyptical wave vector IZ,,,
corresponding to the freqlzency @, in an insulating
crystal, i.e., k, =&,/[c/()'?] the inequality (45) can
be written alternatively as
2
|56|>“n“4w=éw56=0)=tf;] . (46)

(4

where 6,(0=a,, 56=0) is the Bragg angle obtained
inside the crystal if the conduction electrons were re-
moved and the frequency of the incident radiation
was equal to the plasma frequency. )

It should be noticed that the factor [c/(z)!21/2V,
for a specific polarization of the disturbance varies
only little from one material to another.

If w< li');;,n both eigenmodes are strongly damped,
if @J;n < w < @gy, nearly free propagation takes place
for the plus sign mode, and finally if @ > wgy, both
eigenmodes travel almost undamped.

Utilizing Eq. (29) one obtains for the group veloci-
ties the result

_+ 2|12
+_ 4 __ | @dyn Ji =
Wg ———(‘E'OL) 12 [1 [—w ] ] , W > wdyn . (47)

The group and phase velocities of the modes are
linked via the simple relation

2
WEW,E=Wwowp l= [?;517] ] . (48)

The second equality in Eq. (48) is recognized from

R P=1-
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elementary analysis of electromagnetic wave propaga-
tion in homogeneous plasmas.

" The reflectance |R,|?, can be calculated by insert-
ing Eqs. (40)—(43) in (24). When o < @gyn, is
k*=0 so that

IRI?=1, @< agn - (49)

For &);yn < @ < Ggyn, One has k- =0 and y* =0, im-
plying that

2B*

2 Y ’
_| Qe 1o @ § x
1 [2(9 +2e0 -] |Ag |

(1+BY

Bayn < @ < Bayn (50)

where BY =k*/K;- i is defined as the ratio between
the wave numbers perpendicular to the boundary in-
side and outside the medium. When &4y, < , One
finds yi =(. This shows that R, is real and that

2

— +.— - —
2-B-B | <o &)

R/|*=
IR,] 2+B*+B"

It appears from Egs. (49)—(51) that it should be pos-
sible to determine in principle the free-carrier- density
modulation and consequently k* and yi by analyz-
ing the reflectance.

VIII. DYNAMICAL DIFFRACTION FROM ACOUSTO-
ELECTRICALLY BUNCHED CONDUCTION ELEC-
TRONS IN 7-InSb

In the following the formal considerations outlined
in Sec. II-IV are applied to a quantitative study of
dynamical diffraction of light from a nonthermal
free-carrier-density wave in n-InSb generated by
acoustoelectric interaction of conduction electrons
and piezoelectrically active sound waves.

A. Quasistatic perturbation of the
dielectric constant

Let us consider a piezoelectrically active shear wave
propagating along a [110] direction in a n-InSb crystal
(possessing the cubic zinc blende structure), and with
ionic displacement in the [001] direction. The phase
velocity of this pure TA mode is given by )
V, = (cas/po) /2, where c44 (in contracted notation) is
the appropriate component of the elastic-stiffness ten-
sor, and py is the average mass density of the materi-
al. Since the acoustoelectric velocity dispersion is
small in the III-V compounds where the elec-
tromechanical coupling is weak, it will be neglected in
the present investigation. Analyzing the variation of
the squared electromechanical coupling constant
K*(&, #) with the directions of the acoustic phase
propagation (k) and the polarization, given by the
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unit vector 7, it is found that the coupling exhibits a
maximum for the above mode. Furthermore, the
selection rule for the deformation-potential interac-
tion given as E=k- & - #, E being the deformation-
potential tensor, shows, that this coupling mechanism
is forbidden in the present case. We restrict our-
selves to scattering geometries which ¢coincide with
the (001) plane and assume that the incident light is
polarized parallel to the [001] direction (see Fig. 3).
The light scattering from coupled systems of
acoustical lattice waves and free-carrier density-waves
is generally composed of contributions from (i) the
direct photoelastic effect, (ii) the free-carrier screened
indirect photoelastic effect, and (iii) the free-carrier-
density modulation.'®'¢ In the present scattering
configuration it follows from the form of the photo-
elastic, electrooptic, and dielectric tensors that light
scattered via (i) and (ii) is polarized in the scattering
plane, i.e., changed 7/2 in polarization in relation to
the polarization of the unscattered light. A bunching
of the free carriers, expressed in terms of the devia-
tion, n (T,t), of the carrier density from the spatially
uniform equilibrium value ng, causes a quasistatic
modulation in the optical dielectric constant given by

Il

(s, = 4T )
€w

=3 (@ epli(Q-T- Qg , (52)
Q

where () is the free-carrier mobility tensor at the
optical frequency. Since the conduction band in indi-
um antimonide has spherically constant-energy sur-
faces, it follows from Eq. (52) that the light scattered
via the conduction-electron bunching has the same
direction of polarization as the incident light. The
facts mentioned above show that the dynamical
diffraction of light by the longitudinal polarized free-
carrier-density modulation is nat complicated by in-
terference effects with light scattered from the oscil-
lating ions [(i) and (ii)]. It should be realized that
the lattice contribution to the scattering, from the
present point of view, represents a damping mechan-
ism, which, however, compared to the free-carrier
damping is negligible for light frequencies below the
plasma frequency. Furthermore, the contribution
from the conduction-electron bunching tends to dom-
inate the scattering at low optical frequencies.!> 1819
The scattering triangle formed by the optical wave
vectors is isosceles.

To obtain the scattering from the solid-state plasma
one has to calculate the modulation of the free-
carrier distribution caused via piezoelectric coupling
by a single acoustic mode described by the ionic dis-
placement

FIG. 3. Schematic diagram showing the diffraction
geometry used in the present calculations on #-InSb. The
scattering takes place from a longitudinal polarized (#FC)
free-carrier-density wave propagating along the [110] direc-
tion. The two electromagnetic waves are polarized along the
[001] direction. The free-carrier bunching is obtained by
coupling to a piezoelectrically active sound wave with polariza-
tion along the [001] direction and wave vector along the
[110] direction. The scattering plane coincides with the
(001) plane.

ﬁ'(f’,t)=u0(06,6)ﬁexp[i(6-?— Qg . (53)

where ug is the complex amplitude of the mode. In
the following it is assumed that the sound amplitude
is sufficiently small that the linear theory of acous-
toelectric interaction can be adopted.’” In turn this
means that the bunching of the free carriers in time
and space is sinusoidal with an amplitude that in-
creases linearly with the acoustic strain. For the high
mobility III-V semiconducting compounds the elec-
trorr mean-free path can be comparable to or longer
than the acoustical wavelength, so that non-local
transport effects become significant.’” Restricting ~ur
treatment to acoustic wavelengths which are much
larger than the characteristic electron deBroglie
wavelength, the response of the electron gas to the
acoustic perturbation can be obtained on the basis of a
semiclassical Boltzmann-equation calculation of the
effective frequency- and wavevector-dependent longi-
tudinal conductivity tensor g(Qg, Q).*® For cubic
crystals one obtains, by using a drifted Maxwell-
Boltzmann distribution for the dc part of the electron
distribution and by assuming that an energy-
independent momentum relaxation time () approxi-
mation can be used, the following scalar expression
for the normalized conductivity>® 4
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Fenr( 06, 6 )

=2i(V,/ V) Q1 — 7' 2wF (w)]

%o TN 210+ (V,/ V)DL = PuF ) A= i (V,/ V) o) G4
r
. 1 = (+1)exp(=1)

: = dt . 58
with ImF (x +ip) B s e t (58)
1 ._,-_Vl_’_Ql In the set of Eqs. (54)=(58), G9=qnofio denotes the

"y Vr o (55) dc conductivity, y=V,/V, —1 is the drift parameter

3 s

oll1 +2i1 +~y)ﬁ(Q1)‘l
Vr

1 +i‘y£Q1
Vr
w= V 12 » (56)
Q1 +2i(1 +y)=2(QN!
Vr

and with the real and imaginary part of F given by
the integral representations*!

oo

_p
ReF(x+1y)=%f_ xexp(=t)_, x>0, (57)

(V, being the drift velocity of the free carriers),
Vr=QkgT/m*)"* is the thermal electron velocity,
and / = V7 is the electron mean-free path. The dc
mobility and the effective mass of the carriers are
named o and m* It is apparent from Egs.
(54)—(58) that /5o depends on the three dimen-
sionless parameters Q/, v, and V,/Vr only. To evalu-
ate G/ oo as a function of Q57 one has to make the
replacement Q/ = (V7/V,) Qgr.

On the basis of G/ G the free-carrier-density modu-
lation A6= n(-j/ ny, giving the ratio between the am-
plitude (ng) of the space-charge-density wave and
the thermal equilibirum density (ny), takes (numeri-
cally) the form!S:!

© x2+(y +1)?
12 . .
™ 2p0 | 2R (1 )" g
A N V| cege |1 5/ksT) —1
Cégey | In exp(#Qg/kp

where V is the normalization volume for the lattice
modes and &, &, ¢ and Q.= &o/efey are the ap-
propriate relative static dielectric constant, piezoelec-
tric constant, elastic-stiffness constant, and conduc-
tivity relaxation frequency, and //I, is the acoustic
intensity (/) relative to the thermal equilibrium in-
tensity (/) of the mode.

For a parabolic band structure the appropriate opti-
cal, low-field relative dielectric constant can be writ-

ten on the form?20-3
-2
. ~L WpT | —wT
=& |1+ —_ (60)
o= o 1+ (wr)? ]

in the energy-independent electron relaxation time
approximation. It follows from Eq. (60) that the per-
turbation of & caused by the space-charge density
wave numerically is given by

@

2
@271 + (012 A | (61)

legl= “
Equation (61) completes the set of formulas which
allow us to calculate, in the linear regime of acous-
toelectric coupling, the complex wave vector com-
ponents k¥, y*, and the reflectivity |R,|? as a func-
tion of one of the dimensionless "external" parame-
ters Qgr, w7, v, V,/Vr, or I/

]1/2 I&eff/6'0|

= , (59)
11+ (Ge/50) (/)|

B. Anomalous transmission in the collision-
dominated regime (Q! << 1) of
acoustoelectric interaction

To fulfill the phase matching condition on the
scattering kinematics given in Eq. (9) one must res-
trict the ranges of acoustical and optical frequencies
by the inequality ‘

g

=

w/c = 2, (62)
The frequency of maximum acoustoelectric gain is

given by Q,, = (0.0,)"2 for the collision-dominated

electron gas (Q! << 1) and by V3 (,, for the colli-

sionless gas (QI >> 1), Qp=(qV2/iiocksT) !> denot-

ing the appropriate free-carrier diffusion frequency.

Writing Q,, in the form

Q,=V2(V,/VDa, , (63)
the condition in Eq. (62) can be expressed as follows
Qs V.
¢ < p-T @ (64)
m ¢ &)p

Since the treatment in Sec. VIII A holds in the
nonrelativistic range of conduction electron velocities
only, and moreover since for practical temperatures
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Vr/c <1072 it follows from Eq. (64) that one has
05/ Q,, <1072 for optical frequencies around and
below the plasma frequency. This in turn shows that
the macroscopic Hutson-White theory of acoustoelec-
tric interaction can be applied when calculating |Ag|
for w/@, <10, an optical frequency range which
should be of primary interest for experimental inves-
tigations of sound induced anomalous transmission
effects in the III-V compounds.

In the collision-dominated region of acoustoelectric
coupling the normalized effective conductivity is re-
duced to

&e ff

oo

Q- -1
= 'y+iﬂ—Q], Ql<<1 , (65)
D

which implies that the free-carrier modulation be-
comes
12

l5“|= 2po € fio e 12
Q V| éée | In
1/2
Qs
x Q
exp(#Qg/kpT) —1
~ ~ 2}-1/2
O=
bed 'y2+ (}c ﬁ_*"'_()_] ] ,
nD Q’6 'Qm

Ql<<1 . (66)

Let us now consider microwave sound at not too
low temperatures so that h‘QG << kgT, and let us in-
troduce the approximation y* < Q./Qp, which usual-
ly is correct in the high-conductivity limit applicable
to semiconducting materials. Utilizing that
Qg << Q,, the charge-density modulation now takes
a form

e

y-12_K_ K Vr
Ith

1/2
|A6|— 1/2 V —_— —OT] , (67)

wp

where K = (8°/¢& e,)!2. Equation (67) indicates that
|Ag | increases linearly as a function of Q.

If the solid-state plasma from an "optical" point of
view is collisionless (w7 >> 1) it follows by combin-
ing Eqgs. (43) and (67) that the amplitude attenuation
coefficients are given by

o3 |[e/@)n](Dg)
Y C/(EOL)I/Z 2V, @,
- K _Vr
(Vl’lo)l/2 Vp Ith "’L
2
+1——j—"—] ,or>>1,  (68)
wp

FIG. 4. Schematic diagrams showing the squared ampli-
tude attenuation coefficients of the two eigenmodes as func-
tions of a reduced acoustical frequency. Figures 4(a) and
4(b) correspond to "high" and "low" free-carrier modulation,
respectively. The optical frequency is smaller than the plas-
ma frequency. In Fig. 4(c) is w > @,.

for w = a":dfn. To analyze the attenuation coefficients
as functions of the acoustical frequency, we have
plotted schematically (y*)? as functions of Q/é, in
Fig. 4. Parts (a) and (b) of the figure correspond to
o < @,, and part (c) to w > &,. In all plots (y*)? and
(y™)? are parabolic functions of Q/d,.

In Fig. 4(a) the degree of free-carrier modulation is
so low that no zeros occur for the damping of the
plus-sign mode. The attenuation of the minus-sign
mode increases monotonically as a function of
Qg/®,, whereas the attenuation of the plus-sign
mode passes through a minimum

1/2

v _ K Vr ’ A €0
min = /(z 0)1/2 w,, Vno C/(E()L)l/z Im fo
(69)

at Q'*/wp =2[K/(Vn)'1 (v, Vr/[C/(Go)m] Y /1,)'?
x(eo/eo)”z. For Qg/@,—0, y* and y~ both ap-
proach the unperturbed attenuation



Y= (&, — o)"2/lc/(&)"]. Itis apparent that y* is
less than y° for normalized acoustic frequencies in
the range 0 < Qg/, < 4[K/(Vng)'?]

x [V, Vrlle/ (@) 21N /1) 2 (e5/eP) 12,

In Fig. 4(b) the degree of free-carrier modulation
is so high that the attenuation of the plus-sign mode
goes to zero in a certain range of acoustical frequen-
cies, indicating the occurrence of a frequency band of
perfect anomalous transmission. Note that the condi-
tion for obtaining an exact zero of y* is that wr — oco.
In a realistic calculation (see Sec. VIIIC) a small at-
tenuation arising from the imaginary part of &,
remains.

For the higher acoustical frequencies both y* and
v~ are larger than 7°. This is due to the fact that the
scattering angles 6," and 0, (disregarding boundary
refraction) approach /2 for increasing Qg thereby
increasing the attenuation parallel to the acoustical
wave fronts towards infinity [see Eq. (34)].

The distinction between "high" and "low" free-
carrier modulation is made on basis of inequality

~ % 2 ‘G'L
ﬂ—] [—“—] , (70)
q €0
where W is the acoustical energy density of the mode
in consideration.. If the inequality holds we are in the
"high"-modulation region, else in the "low"-modula-
tion region.

In Fig. 4(c), y° is zero since o > &,. With regard
to the plus- and minus-sign branch the increase in
scattering angles with 06/6,, causes finite, monotoni-
cally increasing attenuation coefficients above certain
acoustic frequencies as shown.

It should be pointed out that the phase matching
condition in Eq. (62) sets an upper limit, Qg/a,
< 2(V,/c)(w/&,) on the accessible frequency range.
This we shall see more explicitly below.

2y
————22K > €oc?
-21_ 2
@y —

C. Numerical results

In order to obtain significant dynamical dil_’fraction
effects the degree of free-carrier bunching (Ag)
should be high, yet for the present work with the res-
triction imposed by our use of the linear theory of
acoustoelectric coupling.’’” In a forthcoming paper we
shall undertake a-study of dynamical light diffraction
in strong piezoelectric sémiconductors like ZnO and
CdS in the case where nonlinear free-carrier bunch-
ing effects are of importance. To achieve a large de-
gree of free-carrier modulation in a weak piezoelectric
crystal like InSb one has to use (i) samples of very
low free-carrier densities and (ii) large sound intensi-
ties. In the following numerical results for InSb cry-
stals having an excess n-type carrier density
no=3 % 10" m~3 and a corresponding Hall mobility
fio=1.2 x 102 m?/V sec at T =80 K are presented.
Indium antimonide crystals with approximately the
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above specifications can be produced by extensive
purification followed by controlled crystal growth.*?
The remaining data used in the calculations are:

K =23 x10% m/sec,” ¢4=0.071, C/m?,4

G =157,%&=1784 K’ =1.2x10,% and
m*/my=0.014.4 As derivatives of the above data we
take 7= fig*/q, cas=els /R & e, po=cas/ V2, and
@, =(noq*/é egm*)'%. As dimensionless "external"
parameters in the calculations we have the quantities
I/, v, Qg7, and w/®,. Referring the numerical
results below to a unit volume of normalization

(¥ =1 m%) for the lattice modes, the thermal intensity
I, approximates Iy, = (kT/V)V, =2.5 x107® W/m?
for #Qg << kpT. Thus choosing I/, =10% implies
that the acoustical intensity in our calculations is /-
=2.5 kW/cm? The peak shear strain corresponding
to this mode intensity is as high as 9.0 x 107, It ap-
pears from the approximate formula given in Eq.
(67) that the free-carrier bunching is almost indepen-
dent of the drift parameter in the present case. This
is confirmed by detailed numerical calculations based
on the complete expression for |Ag| [Eq. (59)].

¥ LI LAY | LILBLELRLA LI
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4.6

44

102y (m™ ) ——=

4.2
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961
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FIG. 5. Amplitude attenuation coefficients of the two
eigenmodes (+, —) as functions of a dimensionless acoustical
frequency with selected values for the "external" parameters:
the optical frequency, the drift parameter, and the sound in-
tensity. For comparison it is shown the attenuation
coefficient (0) corresponding to unperturbed wave propaga-
tion. The upper cutoff is at QU’ =8.6 x10™*. The material
data are given in the text. The insert shows the degree of
free-carrier modulation as a function of the (dimensionless)
acoustical frequency.
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FIG. 6. Bragg angle (9,) outside the crystal, and angles of
dynamical refraction (8%, 8,) as functions of a dimensionless
acoustical frequency. The upper cutoff is at Q=7-
=8.6 x107%. The parameter values and the material data

are as in Fig. 5.

Below we shall always take y =10. The following
calculations are all made using the complete set of
Egs. (15), (16), (24), and (54)—(61).

In Fig. 5 is shown y* and y~ as functions of the di-
mensionless acoustical frequency {157 at an optical
frequency w=0.9®,. For comparison is plotted the
attenuation coefficient (y°) for unperturbed wave
propagation perpendicular to the surface. The upper
limit for Qar, given by the phase matching condition
in Eq. (62), is ~8.6 x 10~*. The inequality in (70)
shows that we are in the "low"-modulation region,
and in accordance with this the plus-sign mode passes
through a minimum. The insert of Fig. 5 shows
|A5| as a function of Qgr. As expected from Eq.
(67) the bunching increases linearly as a function of
the acoustical frequency. Furthermore, the free-
carrier modulation is small (|Ag| <5 x107) in the
accessible acoustical frequency range. The Bragg an-
gle (6,) outside the crystal, and the angles of refrac-
tion 6, and 6, for the eigenmodes are shown as

0.8 T T T T T T 1777

Q=7 =05Xx10"
0.7 I vy=10 -1
I/Ith = 1025

10~ k*(m™)

0.0 1 1 1 | 1 1 1 1 1

FIG. 7. Dispersion relations for the dynamically
diffracted eigenmodes (+, —) for selected values of the (di-
mensionless) acoustical frequency, the drift parameter, and
the sound intensity. The material data are given in the text.

functions of the dimensionless acoustical frequency
in Fig. 6. Note that one always has 8; > 0,7, whereas
one can have 6, < 0, 0, <9, <0, or 6, > 0,

The dispersion relations [k*(w/ @,)] for the plus-
and minus-sign modes have been calculated for a
parameter value Qg7=0.5 X 107%. The results are
shown in Fig. 7. For optical frequencies w > @, the
propagation constants and the splitting of the plasma
dispersion relation follows closely the predictions
based on the theory of dynamical light diffraction in a
collisionless (w7 >> 1) electron gas [see Eq. (40)].
For frequencies above the lower cutoff frequency
»=0.53®, and below ~@, the contributions from
the imaginary part of & tends to determine the shape
of the branches of the dispersion relation. The at-
tenuation coefficients y* and y~, corresponding to
the propagation constants of Fig. 7, are shown, as
functions of the normalized optical frequency w/&,,
in Fig. 8. Below the plasma frequency the attenua-
tion coefficients, and thus the splitting of the unper-
turbed attenuation coefficient, are determined mainly
by the simplified expression in Eq. (68). Above the
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FIG. 8. Amplitude attenuation coefficients for the dynam-
ically diffracted eigenmodes (+, —) as functions of a normal-
ized optical frequency. "External" parameters and material
data are as in Fig. 7.

plasma edge y* and y~ tend to coincide for increasing
w.

The reflectance |R, |? calculated as a function of
/&, is shown in Fig. 9 for three values of Qg7.
With the vertical scale used in this figure the
reflectance for Qg7 =0.2 x 107 coincides with that
obtained for incidence on a crystal in the limit of spa-
tially uniform free-carrier density.

IX. CONCLUDING REMARKS

The Borrmann effect for x rays, neutrons, and
electrons originates in the interference of the incident
and Bragg scattered parts of the wave field. Since it
is a necessary condition for Bragg diffraction that,
roughly speaking, the wavelength of the incoming ra-
diation is smaller than the spacing of the set of

1.0 \ L 1 L T T

K y=10
\ 1/, = 107

IR 1

0.0 | 1 1 1 1 L

FIG. 9. Reflectance as a function of a normalized optical
frequency with the (dimensionless) acoustical frequency as a
parameter. The material data are identical to those of Fig. 7.

scattering lattice planes, anomalous transmission of
infrared, visible or ultraviolet light through strongly
absorbing crystals by natural dynamical diffraction is
impossible. However, as pointed out by the present
author, it should be possible to obtain a significant
induced Borrmann effect for light by creating a spatial
periodicity in the free-carrier density matching optical
wavelengths. The present theoretical work on n-InSb
shows that the possibilities for observing induced
anomalous transmission of light through piezoelectric
semiconductors below the plasma edge by modulating
the free-carrier distribution by an acoustical wave via
the piezoelectric coupling are promising even in weak
piezoelectric III-V semiconductors. Work on strong
piezoelectric II-VI compounds like ZnO and CdS are
in progress. Preliminary results for these noncubic
crystals show possibilities for a dramatic reduction of
the attenuation of electromagnetic waves below the
plasma edge.
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FIG. 2. Dispersion relations for dynamically diffracted
(+, =) and undiffracted (0) electromagnetic eigenmodes of
long wavelength in a collisionless solid-state plasma.
Neglecting band-structure effects the curves approach a com-
mon nondispersive w(k ) relation (c0) at high frequencies.
In the shaded region anomalous transmission takes place for
the plus-sign mode.



