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Ground-state properties of the electron-hole liquid in Ge under (111)uniaxial stress
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%e present a calculation of the ground-state energy E, density n, and electron and hole Fermi energy
EF(E), EF(H) of the electron-hole drop in (111)-stressed Ge using two different models for the exchange-
correlation energy. Good agreement is found with experiment, . The experimentally observed increase of the
electron Fermi energy with stress at low stress is explained by our calculation, and an interesting very rapid
and possibly discontinuous variation of n, E~(E), and EF(H) with stress associated with the emptying of the
hot conduction valleys is predicted.

I. INTRODUCTION

The band structure of unstressed Ge has four
equivalent conduction-band minima at the zone
boundary and a doubly degenerate valence-band
maximum at the zone center. When a (111)uni-
axial stress is applied to the crystal these degen-
eracies are lifted. The valence-band maximum is
split into two bands which are only spin degenerate
and one of the conduction valleys becomes lower
than the others. If the stress is very large the two
hole bands decouple and their constant-energy sur-
faces near to the zone center become simple el-
lipsoids. Thus in the limit of very large (111)
stress the calculation of the properties of the elec-
tron-hole 1'.quid (EHL) in Ge becomes much simp-
ler than in the unstressed case. This was noted by
Combescot and Nozieres' and Brinkman and Rice,'
and a sophisticated calculation of the electron-hole
drop (EHD) ground-state properties in the limit of
large (111) stress was made by Vashishta et al. '
who predicted that the EHD should exist in this
limit as well as at zero stress.

Partly in order to test the accuracy of this cal-
culation a number of experiments on the EHD in
uniformly (111)-stressed Ge have recently been
performed and many interesting experimental data
have been obtained. The ground-state properties
of the EHD have been measured. ' Chou and
Wong' have also been able to verify the density de-
pendence of the many-body enhancement of the
electron-hole pair correlation function g,„(0}in the
EHD which was calculated by Vashishta et al. ' by
interpreting the results of their stress-dependent
experiments. In addition, recently the presence of
nonequilbrium "hot" electrons (in the three conduc-
tion valleys which are raised in energy by (111)
stress) 'in the EHD has been reported. 7 '

In an earlier paper' we gave a calculation of the
properties of the EHD in which these electrons in
the "hot" valleys are assumed to decay very slowly
into the cold valley so that the hot and cold elec-

trons could be treated as separate species in ther-
mal quasiequilibrium, but usually having different
Fermi levels and chemical potentials. We pre-
dicted that at T =0 and certain values of stress
such an EHD would phase separate into two distinct
degenerate Fermi liquids.

In this article we consider the opposite limit to
that discussed in Ref. 10. Namely, we consider
the situation where the electrons in all of the val-
leys are in true equilibrium with each other so that
at T =0 either there are no electrons in the three
upshifted valleys or otherwise (if the stress split-
ting of the conduction band is small enough) the
pair chemical potential of the electrons in the high;
er-energy ("hot") valleys is equal to that of the
electrons in the lower ("cold" ) valley. This situa-
tion can be achieved experimentally either by wait-
ing for a sufficient time after the EHD is created
by a laser pulse in a perfect Ge crystal so that the
electrons in the hot and cold valleys have come into
equilibrium with each other by electron-electron
intervalley scattering, " or by using a very lightly
doped sample, since the presence of even a rather
low concentration of impurities in the crystal
greatly reduces the intervalley scattering time. '

Preliminary theoretical results. ,for this case,
which we will refer to as the equilibrium limit
(EL), at T =0 have been published by Markiewicz
and Kelso" and by Liu." Although it has been
possible experimentally to attain stresses large
enough that in the EL only one conduction and

one valence vaney. are occupied by electrons
and holes, respectively, these calculations
showed that the values of stress which have
so far been achieved are not sufficiently high for
the large-stress limit in the sense of the calcula-
tion of Vashishta et a&.' to apply because of the non-
parabolicity and warping of the stress-split val-
ence band. However, a systematic theoretical
treatment of the stress dependence of the EHD in
the EL and particularly of the low-stress region in
which there are electrons in both the hot and the
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cold valleys has been lacking. Markiewicz and
Kelso" did extend their treatment to low stress but
used a model in which only one conduction valley
is occupied by electrons so that effects due to the
presence of electrons in the hot valleys at low
stress were not included.

Here we present a detailed study of the depen-
dence on (111) stress of the ground-state energy,
density, and electron and hole Fermi energies of
the EHD in the EL at T =0 in Ge. The hole kinetic
energy is calculated including the nonparabolicity
and warping of both stress-split valence bands ac-
cording to the k p formalism of Pikus and Bir."
The electron kinetic energy is calculated including
the effects of populating both the hot and cold val-
leys at those lower values of stress for which this
is appropriate. The exchange-correlation energy
is calculated by using the near independence of this
quantity on details of band structure as discussed
in Ref. 10. Tmo models, which can be considered
as opposite limiting cases, are used for the ex-
change-correlation energy and good agreement is
found with the available experimental data.

A number of new and interesting features of this
system are revealed by our calculation. We find
that at very low stress both the electron and hole
Fermi energies increase initially as the stress is
increased despite the fact that the carrier density
in the EHD is at the same time decreasing. This
effect occurs because as the stress splitting of the
conduction band increases it is energetically favor-
able for some of the electrons from the hot valleys
to "spill over" into the cold valley as the hot val-
leys are upshifted by the stress, and similarly for
the two hole bands. For the electrons this calcu-
lated increase of the Fermi energy is quite strong
and has been observed experimentally. Another
new qualitative result is that as the value of the
stress is increased through the region in which the
hot valleys are emptied of electrons, the electron
and hole Fermi energies and also the EHD density
all decrease by a large fraction over a very nar-
row range of stress values, and possibly even
change discontinuously with stress. However, in
the range of stress values in which this is expected
to occur the presently available experimental data
is not accurate enough to test this prediction.

II. BAND STRUCTURE

Bir." For a (111) stress this can be written in the
form

where

p'(g, y) =B'+C'[-, cos'e+-, sin48

—(~/3) sin'g cosg sin3$], (2)

G(e) = (g2+ ~ C2} ~ (1 3 cos g)

The angles 9 and y refer to the (111) stress axis,
SH is the stress splitting of the valence band at k
=0 (note that the quantity b, used by Liu" is equal
to —,'3„), and A, B, and C a re constants (see Table
I) which have been taken from Hensel and Suzuki. '
The electron dispersion

(4)

is used for each valley where l and t refer to long-
itudinal and transverse components, respectively,
S~ is the stress splitting of the conduction band,
a, =0, and a„=l.

The EHD energy E depends on N„, N„N„N,
and V where V is the volume. We calculate the
electron and hole kinetic energy from the relations
(1)-(4) without any further approximations, the
hole bands E,(k) being treated numerically as ex-
plained below.

The exchange-correlation energy E„,for this
system would require an excessive amount of com-
puter time to calculate from first principles be-
cause of the strong nonparabolicity, warping, and
coupling of the stress-split hole bands in the re-
gion of stresses of interest and because of the
multicomponent nature of the system. Thus, we
prefer to exploit the fact that E„, is not sensitive
to such details of band structure as how the elec-
trons are distributed among a number of different
conduction valleys or the holes among valence
bands, or to band anisotropy, i.e. , E„, is sensitive
only to the total electron (or hole) density in the
EHD. As illustrated in Ref. 10, while these band-
structure features can affect the separate exchange
and correlation contributions quite strongly, the
effect on the sum E„,appears to be very weak.
While it is easy to demonstrate that the band-

The system which we are considering contains
iV, electrons in the cold valley, N„electrons dis-
tributed equally among the three hot valleys and
N, holes occupying the two stress-split valence
bands. We label the latter (+) and (-) according to
the hole energy-dispersion relation of Pikus and

A m, m( SE/SH

13.38 8.48 13.15 0.082 1.58 2.8 2.655 meV

TABLE I. Ge parameters used in the calculation. Valence-
band parameters A, 8, C taken from Ref. 14.
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Pl Plh + Pl Pg + Pg (5)

structure effects on exchange and correlation
should tend to cancel in the sum, the accuracy of
the cancellation found in practive is surprisingly
good. We know of no general theorem which-would
require such a detailed cancellation. It should be
noted as well that when Vashishta et al. ' calculated
the correlation energy for an electron-hole liquid
with simple, parabolic electron and hole bands
this was found to be insensitive to the electron-
hole mass ratio. Since the exchange does not de-
pend on mass, this is another example of the lack
of sensitivity of E„,to band structure. Thus, as
in Ref. 10, we mill ayproximate the exchange-
correlation energy of the EHD by choosing a simple
model system and using the exchange-correlation
energy for that model system as a function of the
electron density to represent the exchange-corre-
lation energy of the EHD in (111)-stressed Ge at
the same total electron or hole density n.

I

densities of states, Zh, g', Z', Z and Fermi ener-
gies E~, E~ EJ;, and E

Ep+ S@
h

E()(„,))., ))., )), v) =f Ez"(z)~
Sg

@C

+ EZ'E dE
0

E H
+ EZ'(E}dE

SH

g
+ EZ (E)dE+E„,(N, V).

0

Note that E~ is defined to be zero if N,. is zero,
i.e., the Fermi energy is measured relative to the
edge of the respective electron (h or e) or hole
(+ or —) band. Because of charge neutrality [Eq.
(5)], this system is described by four pair chem-
ical potentials which at T = Q are defined to be

where-n stands for N/V. We will use two different
extreme case models for this purpose. (a) An ex-
change-correlation energy E„,which corresponds
to a "zero-stress" model band structure with four
spherically symmetrical conduction valleys and
two decoupled spherical valence bands of equal
mass equally populated with electrons and holes,
respectively. [This is model I in the notation of
Bhattacharyya eI; al. ,

"and we use the numerical
correlation energies which they label SPH (self-
consistent particle-hole approximation). ] (b) An
exchange-correlation energy E„",which corres-
ponds to the limiting Ge band structure at large
(111) stress, i.e. , only one ellipsoidal conduction
valley and one ellipsoidal hole band are populated.
(For this model we use the numerical correlation
energy listed by Vashishta et al.' under "Ge (ill)
fully self-consistent anisotropic. ")

(BE
P)+-=I

s(~+ ), , t „*,=z, ~

=E ~~S+eE+~S+„+p, „,(n),

'dE
I(Lh- -=

Nh, N, N, (.V„+N =N +N )

=E~ + Ss +E„+g„(n),

BE
] c+=- -Bly"c V', Nh, N ( Nh+ N = N + N ~.

=E~+E~+S„+y„,(n),

BE
Nc 'Nh, N+ Nb+ Nc N+

=E~+E~+p„(n),

(8)

III. EQUILIBRIUM LIMIT

If one makes the above approximation that the
exchange-correlation energy (per pair) depends
only on the total electron density, the energy E of
the EHD relative to the stressed Ge band gap can
be written

E(N&, N„N„N, V) =E"(N„,V)+E'(N„v)

+E'(N„V}+E (N, V)

+E,.(N, v),

where E",E', E', E are the kinetic energies (in-
cluding stress splittings) of the particles in the
respective bands. Or in terms of the respective

&h+= &h- = &c+= &c- ~ (10)

If N„or N, or both are zero then only those equal-
ities of (10) hold for which all of the species in-

where

g„(n) =
(

and the derivatives in (8) are taken keeping the
number of holes of one type fixed and varying the
number of holes of the other type in such a way as
to always preserve charge neutrality. In the equi-
librium limit the hot and cold electrons are in
equilibrium with each other as are the holes of the
two bands. In the case when all bands are occupied
this implies that
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volved have nonzero populations. Then from (8)
and (10),

. E~ —S@, if N~ &0

F

~

~

0, otherwi. se;

E~ -S~, &f N+&0
E+

. 0, otherwise . (12)

Thus in the EL we will work in terms of a single-
electron Fermi energy E~(E) = E~ and a single-hole
Fermi energy E~(H) = E„; the connection with de-
scription in terms of two-electron and two-hole
bands via (11) and (12) will be understood.

It should be empahsized that although Eq. (10) is
exact in the. EL, Eqs. (11) and (12) are a conse-
quence of our approximation that E„/N depends
only on the total EHD density and not on the way in
which the electrons and holes are distributed
among the various bands. Consequently (11) and
(12) are also only approximately valid. This should
be born in mind in fitting experimental lumines-
cence spectra with Fermi-function convolutions.
For example, it may turn out to be useful to re-
place Sz and Ss in (11,) and (12) by Sz' and SH which

depend on the occupation of the various bands,
i.e., to introduce a many-body renormalization of
the conduction- and valence-band stress splitting.
However, we will not pursue that refinement in this
paper but will continue to use (11) and (12) and

Ez(E) and Ez(H) as defined above.
With the constraints (11) and (12), at 7'=0, the

energy per pair, E =E(N„,N„N„N, V)/N at a
given stress is a function only of the total density
z and its minimization gives the EHD ground state.
Given (ll), calculation of the electron kinetic en-
ergy contribution to e is trivial. Our numerical
evaluation of the hole kinetic energy is outlined in
the next section.

IV. HOI.E KINETIC ENERGY AND DENSITY

Vfe find it convenient to calculate the total hole
density n=n, +n and kinetic energy e" = [E (N, V)
+E'(N„V)]/N numerically as a function of E„(H),
and then by an interpolation procedure to obtain P
for any desired hole density.

To do this note that the hole energy-dispersion
relation (1) can be inverted to yield k as a function
of E, for any fixed t9 and y.

X', (E) = jm~+-.'CS„+ [(m~+-.'GS„)'-4(W2-F)(q'- —,'S'„)]"'j/2(X'-F), (13)

where y=E--,'S~ and the arguments 8 and y of F,
Q, and k, are understood; By setting E~(H) for E
in (13) the hole Fermi surface in k space is ob-
tained.

Then

e" =E~(H)f, (R'},

n= [E (H)]' y„(R},

where

R =E~(H}/S„.

(16)

(17}

(18}
2

n(E„(H)) =
(2 ),

I -~+(&&&»)
d k

+f d k
l&I=& (~g(»)

27r

sin8 dyd8PP, (8, y, E~(H))
7l p p

+ H(8, q, E,(H))];

(14)

E (E (H)) =
(2 ) ( @))(f E,(lT) d )

+ E k d'k.
l&l~& (E~(&))

(16)
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It is easy to show that & and pg can be written in
the form

FIG. 1. Hole energy and density scaling factors f, and
f„(in units of 10 m meV ') vs R=E+(H)/S~.
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SH
(meV)

n
(10'7 cm 3)

EO
XC

EF(E)
(Ry)

E, (H)
E oo

XC

n
(10'7 cm 3) (Ry)

0
0.25
0.50
0.75
0.95
1.0
1.15
1.2
1.5
2.0
2.5
3.0
4.0
5.0
6.0
8.0

10.0

2.53
2.48
2.32
1.99
1.43
0.69

0.67
0.64
0.56
0.47
0.42
0.34
0.27
0.22
0.14
0.12

-2.36
-2.14
—1.93
—1.75
-1.63
—1.61

—1.58
-1.54
—1.49
—1.45
-1.41
—1.36
—1.32
—1.30
-1.27
—1.26

1.0
1.17
1.32
1.40
1.36
1.05

1.04
1.00
0.91
0.82
0.76
0.66
0.57
0.50
0.36
0.32

1.54
1.57
1.55
1.45
1.23
0.83

0.86
0.88
0.90
0.90
0.90
0.89
0.87
0.83
0.70
0.66

3.52
3.47
3.32
3.05
2.70
2.57
1.99
0.90
0.87
0.80
0.71
0.62
0.53
0.45
0.38
0.29
0.24

-2.59
-2.37
-2.15
-1.95
—1.81
—1.78
—1.69
—1.68
—1.63
—1.57
-1.52
—1.48
—1.41
—1.36
—1.33
—1.28
—1.25
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density for various values of stress m Fig. 2,
where SH is given

'
SH

'
given in meV. As the stress increas- .

es, the minima of the curves shift to higher energy
~ ~

and to lower density. To locate the minima ac-
curately we oun i of d 't t be more efficient to look for
the zeros of p=-(BE/BV)„ than to use the equiva-
lent proce ure od of finding the minimum of e n di-

ds are therectly. The results from the two methods are e
same. epreR resentative numerical values are given
in Table II.

In Fi . 2, for stresses in a very. narrow range
b t S =1 meV the e(n) curve is almos a i
In Fig. , or s

ost flat in the
n e of den-vicinity of the minimum over a large range

sity values (this flat region extends over almost a
it 'j. Such a flattening is also found

for the model exchange-correlation energy E„",bu
in this case ath' at the value of stress corresponding to
„=1.2 meV. In both models the effect is foun a

lu of stress at which the hot valleys are just
reased.emptied of electrons as the stress is increase .

Also in ob th models the presence of a very
we ocaak local maximum in the energy was possible

ll in the "flat" region. The presence ofnumerically in e
such a local maximum twhich would imp y a ou
minimum in the c(n} curve] would be very interest-
ing since the density of the EHD would decrease
discontinuous y an y1 d b a large amount as the value
of the applied stress is increased through the
critical value a w ict h h the hot valleys are emptied.
However, any sucuch energy feature is too weak
for us to draw reliable conclusions about such a

Whether orp enomenoh enon from the present theory. e
ch dis-not a more detailed calculation would give such

continuous behavior, at least a very sharp change
in the EHD density with stress is to be expecte .

n

'0 5
S„(meV)

FIG. 4. EHD density n (10 cm vs S . The higher-
and lower-density curves correspond to E„"~and E„,

1 . Th dotted portions indicate the regionrespective y. e o
of very rapi or isd d continuous change of density wi

11 sstress w ic is ueh h d to the emptying of the hot va eys
~ ef. 4. ~,of electrons. The experimental data: 0, Re .

Ref. 5;0, Re.f. 6 The limiting value of Vashishta
et al. (Ref. 3) is,arrowed.

10
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' the evaluation of the correla-
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cise knowledge of the experimental valence-band
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d ore importantly of the exchange-
correlation energy.
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FIG. 5. Electron and hole Fermi ene gyr solid and
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E . Q Ref. 6) and (Ref. 5) are experimen
f 6 and 0 f 5)hole Fermi energies; 0 Qef. 6 an a e .

perimrimental electron Fermi energies.
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In Fig. 3 we show q, the ground-state energy per
pair of the EHD plotted against stress for the two
model exchange-correlation energies. Notice the
abrupt change in slope of the curves at the value of
stress at which the hot valleys are just emptied.

The EHD density is plotted against stress for the
two exchange-correlation energy models together
with the available experimental data in Fig. 4. In
addition to the already discussed abrupt change in
density at S„=1meV for the model E'„, (lower-
density curve) and at S„=1.2 meV for E„", (higher-
density curve) there is a sudden change in slope
which occurs when S„=E~(H), i.e., when N, be-
comes zero. Both models reproduce well the gen-
eral behavior of the experimental data, and the
model E„,gives good quantitive agreement with ex-
periment gt all stresses for which data is avail-
able. However, more detailed experimental re-
sults in the vincinity of 8„=1meV are needed to
test the theory in that interesting region. Notice
that the density computed from the large-stress
model exchange-correlation energy E„",which cor-
responds to only one electron and one hole band
populated remains significantly larger than the ex-
perimental values even when only one hole band
remains populated (S„)2.9 meV). This may be an
indication that valence-band nonparabolicity, warp-
ing, and coupling continue to have a role in the ex-
change-correlation energy in this region of stress
values.

The electron and hole Fermi energies for the
model E'„, are shown in Fig. 5. Note that at low
stress the calculated electron and hole Fermi en-

ergies both increase initially with increasing
stress and then decrease abruptly near S„=-1 meV.
As the stress increases further the hole Fermi
level continues to rise until the population of the
(+) hole band decreases to zero at S„=2.4 meV.
At that value of stress the slope of the E~(E)
curve changes, and further reduction of the cal-
culated electron and hole Fermi energies with in-
creasing stress is due to the decreasing influence
of valence-band nonparabolicity on the hole kinetic
energy.

The experimental data clearly shows the initial
rise of the electron Fermi level at low stress, and

also the near independence of the hole Fermi level
of stress in the region of intermediate stress
which is given by our calculation. However, in the
region near S~ =1 meV the discrepancy between the
two sets of experimental data (particularly for the
hole Fermi energy) is la, rge and at the present
time it is not possible to judge- whether the above
abrupt changes do indeed occur as predicted. A
more detailed experimental study of this region
would be very desirable.
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