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The temperature dependence of the thermopower and thermally activated conductivity is reflecting both the
statistical shift of the Fermi level- and the variation of th'e energy at which the transport mainly takes place.
In amorphous semiconductors the two components are of comparable importance. It is shown that these
contributions .can be separated from each other by taking advantage of a simple relation between
conductivity and thermopower, which has been disregarded so far. This discrimination allows us to extract
new and more detailed information on the conduction mechanism, on the density of states, and on the
position of the Fermi level from experimental data, In particular, the contribution to the. transport at any
energy may be obtained from a Laplace transformation of the temperature-dependent prefactor of the
thermally activated conductivity. The analysis of data from samples with different amount of doping, which
will be presented as an example, is of particu1ar interest because of the information on doping-induced
changes of mobility and density of states in the energy region where the transport takes place.

I. INTRODUCTION

One of the most remarkable differences between
transport in amorphous and in crystalline semi-
conductors is the contribution from hopping be-
tween localized states, which may involve the
whole range of energies of the mobility gap in the
case of amorphous semiconductors with a high gap
density of states. '2 As a consequence the energy
at which the dominant transport processes take
place ean vary drastically with tempeiature, as
opposed to relatively small changes of only a few
kT in the case of crystalline semiconductors. In
the current literature on amorphous semiconduc-
tors this fact has been taken into account in the
interpretation of experimental data in terms of
simple ad @0& models in which the contributions to
the total transport are split into thermally activated
hopping with lower and band conduction with higher
activation energy" ' (and, possibly, variable
range hopping near the Fermi level, ' dominating at
low temperatures or/and large density of states
near c~), A major difficulty with this kind of anal-
ysis arises from the additional temperature depen-
dence of the transport properties which originates
from the statistical shift of the Fermi level„and
which could not be properly separated from the
above-mentioned dependences in former work. Al-
so it appears somewhat unsatisfactory to start the
analysis from a rather crude model, which never-
theless involves assumptions which may be too re-
strictive to reflect the real situation.

The purpose of this paper is to show that it is
possible to separate the two components which de-
termine the temperature dependence of the trans-
port properties within the framework of a simple,
but nevertheless sufficiently general, model. This
possibility results from a simple relation between

conductivity and thermopower which had not been
taken into account so far. As a result not only
quantitative information on the temperature shift
of the energy of the dominant contribution to the
transport and of the position of the I"ermi level
may be obtained, but the analysis even yields the
differential conductivity o(e), i.e., the contribution
to the transport at any energy.

Doped amorphous semiconductors are of particu-
lar interest with respect to our approach. The dis-
tinction between transport changes due to a shift
of the Fermi level and those due to changes of the
density of states and of the mobility provides a.

deeper understanding of the effect of doping and al-
lows one to check the validity of assumptions
which are widely used.

In the theoretical part of this paper we derive the
expressions which relate the quantities which de-
termine the transport properties in our model,
such as density of states N(e), energy-dependent
mobility g(q), and amount of doping, to the experi-
mentally observed quantities, i.e. , conductivity
o(T) and thermopower S(T). In the second part we
analyze and discuss some experimental data as an
example.

II. MODEL ASSUMPTIONS AND THEORY

We want 4o use a model of an amorphous semi-
conductor which is as general as possible, whose
features are based only on a few assumptions, and
which includes currently used models as special
cases.

The first assumption concerns the density-of-
states distribution N(e) (see Fig. 1). We assume
that N(e) does not depend on the amount of doping
and that doping only shifts the position of the Fermi
level ez(T; nD „)according to the change of elec-
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N(c)
FIG. 1. Density-of-states distribution of an amorphous

semiconductor, schematically. The position of the Fer-
mi level is ez~(T =0) for the undoped material at zero
temperature and cz(T; An) for the semiconductor with
an effective donor concentration of dn at finite temper-
ature T. Eo is an arbitrarily chosen energy in the con-
duction-band tail used as reference energy instead of
E~, since the position of the mobility edge E~ is un-
known.

o(T; n~) = a, (T) exp f-P [E,—e~(T; n~)]}

with

(5)

e (Tl=e f deee(eln(elexp[-d(e —d )] .

In the following we will write the temperature-de-
pendent prefactor oo(T) in the form

pressions by the neglect of a statistical factor for
the final state of scattering processes, is justified
if the mobility is substantially different from zero
only at energies e —e~ »kT. In this case the final
states in the scattering processes which determine
the mobility p, (e}are practically always empty in-
dependently on whether scattering is between loc-
alized states (hopping) below, or between extended
states (band conduction) above the mobility edge

As the significance of the mobility edge for sep-
arating extended from localized states will not be
particularly important in the following we introduce
E as some reference energy in the density-of-0
states distribution N(q}. With our assumptions one
may rewrite (4) as

tron concentration by doping, which is o,(T) =o„exp[-PV(T}] (7)

~

~

nD, for n doping
an=

-n„, for p doping

where n and n are the concentration of effectiveD A

donors and acceptors, respectively. The position
of the Fermi level gz(T; gag} at a given temperature
and a given doping follows from

~n= deN e~ e —e~ T; ~n

for reasons which will become evident soon. The
purpose for writing a(T; nn) in a form as given in
(5) is a factorization into a part exp(- P [E,
—er(T; no)]} which depends on the position of the
Fermi level, and, hence is doping dependent, and
another one, oo(T), which is doping independent in
our model.

The corresponding expression for the Peltier
coefficient II (which is related to the thermopower
S by the Onsager relation II =eST) is' "

where

(+=0)
deN(e }, (2} -I)(T) = f de(e(e)p(e)[e —e, (T", n, )]

&& f(e- e~(T; no))/o(T; nn}.

n(T;n l=e f ( ) d( e(lfe( epee(Te;n )) . (4}

This form for o, which differs from familiar ex-

f (E —E~) = (exp[/(E —E~}]+ 1} (3)

is the Fermi-Dirac distribution function and
e'(T =0'I is the Fermi level at zero temperature inF

nn ]the undoped amorphous semiconductor [p =(kT) ].
The assumption of a doping-independent density-

of-states distribution N(e} is expected to represent
a good approximation for not too high doping levels.

Our second assumption refers to the transport
properties of the amorphous semiconductor. We
write the conductivity in the form'~' (in the fol-
lowing we consider only conduction by electrons;
the generalization to include holes is trivial)

In a similar way as before, (8) may be rewritten
in the form

Here the contribution

)p(T)= efde e((e)p(ei(e —d ) exp[-d(e —d )]Ye,(T)

(10)

to the total average energy transported per charge
carrier is again a doping-, independent quantity.

For -our analysis below it will be of great advan-
tage that W(T) and V(T) from (10) and (7) are re-
lated to each other in a very simple form. Using
(7) and (6) one verifies by differentiation that
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X(T)=ekT f ds'N(flu(E)[d)nil(()/dT]

& exp[-P(e —E,)]/o, (T) . (12)

From a qualitative picture for the temperature de-
pendence of I(, (e),'2 as shown schematically in Fig.
2 we expect a positive or negative sign of X(T) de-
pending on whether the increase of hopping mobil-
ity for energies below E, or the decrease of mobil-
ity in extended states above E, dominates.

It is well known that both the Peltier coefficient
II and the activation energy of the conductivity, de-
fined as the negative slope of Ino vs P = (kT} ' give
information about the distance between the energy
where the transport takes place and the Fermi lev-
el. There is, however, a difference between the
variation of the Peltier coefficient and of the acti-
vation energy with temperature.

In crystalline semiconductors this difference is

T=O

T2

T3

~ ~
~ ~
O

d(PV)ldII = V-(T)+II(dVldII) =W(T).

This simple relation results from the assumption
that the mobility p. (e) in (5) and (10) does not de-
pend on temperature. This approximation is prob-
ably justified at not too low temperatures in view
of the fact that the dominant temperature depen-
dence of the integrand in (5) and (10) comes from
the Boltzmann factor exp[-II(e —Eo}].

An additional term appears in the expression
(11}, if the variation of g(e} with temperature is
taken into account:

d(PV}/dp =V+P(dv/ZP) =W(T) +X(T}

with

rather small. In discussions of the Peltier coef-
ficient a linear W(T) of the order of kT, corres-
ponding to the average kinetic energy transported
by the Bloch electrons is usually included. The
temperature dependence of oo(T) which is related
to V(T) by (7), reflects the influence of the various
scattering processes.

In amorphous semiconductors one expects, de-
pending on temperature, dominant contributions to
II and o either from hopping in tail states quite far
below E, or from band conduction above E,.'3
As a consequence much larger shifts of the aver-
age energy transported per carrier are expected
than in crystalline semiconductors. Thus, large
changes of W(T) and at the same time also of cr, (T)
should result. The latter lead to changes of V(T)
comparable in magnitude, but opposite in sign to
those of W(T). From these considerations it is
quite obvious, that rather detailed information
about the transport processes in amorphous semi-
conductors may be obtained if W(T) and V(T) are
known as a function of temperature.

Of course, W(T) or V(T) cannot be deduced di-
rectly from measurements of II(T) or o(T), re-
spectively, since in both cases the energy is mea-
sured with reference to the Fermi level, which it-
self, also varies with temperature. This "statis-
tical shift" of the Fermi level, however, also con-
tains important information about the amorphous
semiconductor, namely, about its density-of-states
distribution l)I(e). Fortunately, however, the dif-
ferences between Peltier coefficient and activation
energy allow one to separate the statistical shift
de~/dT from W(T) and V(T). To the knowledge of
the present author no systematic analysis of this
possibility has been performed so far. Therefore,
we want to show in the following paragraphs how
the quantities &„(T), W(T), and V(T) may be ex-
tracted from II(T) and o(T).

From (5) and (7) we obtain for the differential
"activation energy" at a temperature T =(kP) '

-d Inc/dP = V(T) +ED —ez(T)+P (dV/dP —de+/@) .

(13)

This activation energy differs from the Peltier co-
efficient II, given by (9), by

energy E
FIG. 2. Mobility p, {e; T) of a carrier at the energy e

for different temperatures T3 &T2 &T& &0, normalized
to the value atE=E, , with a finite step of p, {e;0)
assumed for. e =E~, schematically. The increasing
electron-phonon interaction at higher temperatures

. stimulates activated hopping processes below E, , but
reduces the mobility in extended sites above E~ .

-dlno/dP + II = -P(de~/dP) = T(dc~/dT) (15)

if (11) holds. [Otherwise the quantity X(T) from
(11'), given by (12), has to be added on the right-
hand side of (15.).]

Thus, the difference between differential activa-
tion energy and the Peltier coefficient in this case

-d Ino/dP + 11 = V W+P(d V/d ) —([}-P(de~/d[3) . (14)

The expression (14) reduces to



2086 G. H. DOHI EB.

provides the shift of the Fermi level with tempera-
ture directly, independent of W(T) and V(T),
whence

e~(T; n, ) = e~(T„nD)
T

+ dT'[(d1nrJ/dp' —ll)/T'] .
I

(15)

Qn the other hand, we see that the difference be-
tween the negative logarithm of the conductivity and
the thermopower S in the appropriate scale eS/k
=II/kT provides, apart from the prefactor cr«[see
(7)] the difference between W and V:

Ing —eS/k = nI»o+P[W(T) —V(T)] . (17)

This is an important result since the difference
W(T) —V(T) is independent of the position of the
Fermi level. Hence, Incr —eS/k is a doping-inde-
pendent quantity and should be the same function of
temperature for a set of amorphous semiconduc-
tors which differ only by the amount of doping.
Therefore it allows us to test the validity of our
assumption that Ã(e) and g(e) is not influenced by
doping by comparing Inc —eS/k for different samp-
les. It should be pointed out that this possibility
does not depend on whether (11) holds or not.

In addition, we can obtain W(T) and V(T) sep-
arately after integration of dV/dP, if the condition
for the validity of (11) holds

V(T) = V(T )+f 88'( ()V(T.') —V(T )j/8') . '(18)
8O

We remember that the question whether rela-
tion (11) holds is equivalent to the question whether
the change of p, (e) with temperature, averaged over
al. l energies with the statistical weight
iV(c) exp(-Pe), as given by X(T) from (12), 'can be
neglected. With our present knowledge about
transport in amorphous semiconductors one can
hardly do more than speculate with qualitative
arguments resulting from a picture as shown in
Fig. 2. Experimentally, however, one may obtain
the answer from II(T) and o(T) if IV(e) is known
from some other experiments like field effect" or
capacitanc'e-voltage measurements '4 or from the
shift of e„as a function of doping. The knowledge
of N(e) allows a calculation of the statistical shift
de+/dT. If this statistical shift differs from the
result obtained from (15) this difference should
correspond to the term X(T) from (11') which has
been omitted on the right-hand side of (15).' Need-
less to say that one expects the same function
~(T) at different doping levels from our model as
~(T) is defined as a doping-independent quantity.
Going back to the definition of V(T) and W(T) as
given by (7) and (5) and by (10), respectively, we
remember that V(T) is directly related to the tem-

perature-dependent prefactor cro(T) of the conduc-
tivity by

o, (P) = o..exp( P-V)

dao e exp -P ~-E,

where we have defined the differential conductivity
cr(e) by

o(e) = eN(e)p (e) . (20)

The argument P instead of T has been used in (19)
in order to visualize that this prefactor cr, (P) is,
apart from a trivial shift of the reference energy
Ep the Laplace trans for m of the diff erentic al con-
ductivity cr(z), provided that the temperature de-
pendence of cr(e) may be neglected, and o(e) van-
ishes fast enough for e--~. Thus, backtrans-
formation of oo(P) gives o(e), i.e. , the full infor-
mation about the contribution to the transport at
each energy. It is unnecessary to emphasize that
the knowledge of cr(e) and possibly of its dependence
on doping may enable us to obtain a much deeper
insight into the transport phenomena in amorphous
semiconductors.

III. COMPARISON VfITH EXPERIMENTS AND CONCLUSIONS

Experimental results on both conductivity and

thermopower for a set of amorphous glow-dis-
charge silicon samples with different amount of pg

doping have been presented by the Marburg group. '
In Fig. 3 the curves Ino and eS/k vs T ' are

plotted together for their samples, numbered 1 to
7 corresponding to increasing amount of doping.
The two sets of curves are shifted vertically such
that the zero of eS/k coincides with Ino«. Thus,
it follows from (17), that the difference between
corresponding Incr and eS/k values gives directly
P(W- V).

The vat, ue of 0'Op was obtained from the P =0 axis
intercept of tangents to the low-temperature part
of the lno curves. The tangents at low tempera-
tures are chosen for two reasons. First, the sta-
tistical shift of the Fermi level may be neglected
at low temperatures. Second, one can see from
the equation for a tangent at P, =(kTO ) ':
lno = Incr»+Pa(dV/dP —der/dP)8

—[V +Eo —ez +p d( V —e z)/dp ]8 p (21)

that there is, in addition to the statistical shift
Po(dc+/dP)8 =-(de+/dkT)r another contribution
p', (dV/dp)a = (dV/dkT) to t-he p =0 intercept.
This contribution, however, can become zero, if
PD is chosen to coincide with the intercept of 1ng
with eS/k, which corresponds to W- V=O. Thus
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FIG. 4. W- V, defined by Eq. (10) and {7), obtained
from the set of experiments shown in Fig. 3. The re-
sults for different samples, apart from those for sam-
ple 1 agree reasonably well. For a discussion of sys-
tematic changes with increasing amount of doping see
text.

FIG. 3. Experimental results for the thermopower S
and the conductivity o for glow-discharge silicon from
Ref. 4 plotted together. The amount of n-doping was
estimated to increase from sample 1 to 7 from 0 to
10" cm '.

(PdV/dP)~ = 0, at least, if (11) holds, and the in-
tercept of the tangent (21) with the Inc axis really
corresponds to o«as define& '". (7).

Three observations should be pointed out: (i) The
temperature T, =(kP, ) ' for which W —V=O, should
be the same for all samples if our assumption of
N(e) being doping independent was allowed. Obvi-
ously, this is true only as an approximation. With
increasing doping T0 shifts from about 100 to 200
K. (ii) A common value of o«=10 (0 cm) ' is more
or less compatible with the data of all samples.
For samples I and 2, however, cr was too low for
measurements down to T„which introduces, of
course, a considerable amount of arbitrariness in
the determination of T0 by extrapolation of the
measured inc and eS/k curves (iii) The ta. ngents
to the eS/k curves also have approximately a com-
mon intercept with the P =0 axis, which corres-
ponds to eS/k =-7.5. Fr om the equation of these
tangents,

eS/k = [p'(dW/dp —da~/dp) ]8
—[W+Eo —a~+ p(dW/dp —dip/dp)]~ p, (22)

we identify this value with PmgdW/dP)z =-(dW/dkT)r
0 0since we assumed P, (de+/d'P)z to be negligible.

In Fig. 4 the 5 —V values, as obtained from the
difference between jn(o/o00) and eS/k in Fig. 3 are
plotted vs T. R" —V should be the same function of
T for all samples, as mentioned in Sec. II, if N(e)
and p. (e ) were independent of doping for the range
of relevant energies. The curves, indeed, agree
reasonably well (except for sample 1), but there is
clearly a tendency of increasing slope and increas-
ing T, at higher doping level. This observation in-
dicates that the assumption of doping-independent
N(e) and p. (e) does not apply strictly to actual
amorphous semiconductors.

To proceed further let us assume that the condi-
tion for the validity of (11) is fulfilled, i.e. , that
X(T) defined in (12) can be neglected. The most
convenient procedure to obtain the quantities W(T),
V(T), and ez(T) for the various samples is to de-
termine first e~(T) —ez(T, ) by integration of de+/
dT as obtained from the difference between the dif-
ferential activation energy dlno/dP and the Peltier
coefficient II =eST, according to Eq. (15).

The results for e„(T)—e~(T, = 620 K), presented
in Fig. 5, show qualitatively the behavior which
one expects: a rather small shift for the nearly
undoped and the weakly doped samples with e„ far
below E0; a particularly strong shift for inter-
mediate doping, where e~ presumably lies in or
close to a region of large changes dN(e)/de of the
density of states; and, finally, at high doping,
there is again only a minor shift, since N(e~) is
expected to be large, but [dN(e)/de], relatively
small.

In Fig. 6 the results for e~(T) —e~(620 K) were
used to obtain W(T) and V(T) from II(T) and

In[a(T)/o«] according to (9) and (17), respective-
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from V(T) in Fig. 6 that o,(T) increases, depending
on the amount of doping, by about a factor of 15 to
40 within the temperature range of the experiment-
al data. These results agree qualitatively with the
predictions of the above-mentioned models which
consider the transport as a sum of contributions
from hopping in tail states and from band conduc-
tion above the mobility edge, the former one dom-
inating at low, the latter one at high temperatures.

Our analysis, however, enables us to deduce
more detailed information on the transport from
the knowledge of oo(T). In connection with the ex-
pression (19}we mentioned that o,(p =(kZ'} ') is the
Laplace transform of the differential conductivity
o(e) =ep(e)N(e). Now we can calculate the latter
one by backtransformation. Fortunately, this task
may be performed quite easily, since an analytical
expression for V(T) can be obtained from the ex-
perimental results on W(T) V(T), s—hown in Fig.
4. These curves may be approximated within ex-
perimental error by straight lines

10—

t0 3

0'

E 10
V

40 ]0

W(T) - V(Z) =nk(T- T,) (26)
-100 0 ]00 200

with n ranging from about 7 to 9 and To from 100 to
200 K. Using (11) one can integrate (25) with the
results

V(T) —V(T()) =nkTO[ln(T/To)+1 —T/To) (26)

and

Eo me
FIG. 7. Differential conductivity a(c) =eN(e)p, (~) ob-

tained by Laplace backtransformation of oog) with V{T)
from the analytical fit shown in Fig. 6.

(27)W(T) —W(TO) = nkT, ln(T/T, ) .
The V(T) and the W(T) curves in Fig. 6 have been
obtained from (26) and (27) with the appropriate
Vo, n, and To values. The fit to the experimental
data evidently is very good.

The Laplace backtransform, given by

edge o(e =E,) are related to each other by the
Kubo-Greenwood formula

de o(e)[df(e —e~)/dPe]
~)~~=@,

=kTo(E,), (30)

e(e)=(Bee) ' J d))e"e„e '"

o;„=0026e'/ko=2. 00-300 (Qcm) '. (29)

dx exp(-n)7x/2)
n'k To

& cos [x(e + n Inx- 1}]
with x=P/P, and q = P, (e —Vo), and computed nu-
merically with the respective Vo, n, and To values
from above is shown in Fig. 7 for the whole set of
samples (with exception of sample 1). We notice
that o(e) shows a steep increase over several or-
ders of magnitude within a range of about 200 meV
before it tends to saturate at a value of about 10'
(0 cm eV) '. It is interesting to note that this value
corresponds rather exactly to o(e) as deduced from
Mott's expression for the minimum metallic con-
ductivity'

o(e) = X(e)e'yR'/6k T . (32)

8 is the phase coherence length for extended
states, and a mean hopping distance in the case of
localized states. y is assumed to be of the order
of an electronic interatomic hopping frequency

which yields

o(E,) =o;„/kT=(0.8 to 1.2) &&10' (0 cm eV) ' (31)

at room temperature.
Another important observation concerns the re-

gion of lower energies in Fig. 7 in which o(e) de-
creases over say about 4 orders of magnitude. In
spite of this strong drop it appears still reasonable
to assume rather smail phonon energies in the hop-
ping processes between those localized tail states.
This can be seen easily if we consider a diffusion-
type expression for conduction in extended and lo-
calized states as well, "

o;„and the differential conductivity at the mobility y"=10'4 to 10" sec ' (33)
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for conduction in extended states.
With N(E, ) =10" cm ' eV ', e.g. , a value of R

=10-30 A follows from o;„. For hopping between
localized states i and j, y has the weIl-known
form' "

)",,'J = y„'"exp(- , ) —P ~ e(; i ) . (34)

If cV(e) decreases by a factor 10 within the energy
range considered, it follows that yA should de-
crease by a factor 10 '=e '. There is some con-
troversy about the magnitude of yp It seems
reasonable, however, that y",'"(R"„'~„,„„,»„)'., at
least should not be larger than y Aei Thus an ex-
ponent of —7 in (34) is sufficient. It follows that
the average phonon energy for hopping is less than
2kT, even at the lowest energies considered, since
P i e,.~ ~

on the average contributes only 4 to this ex-
ponent in a random distribution of localized states. '
Similarly one can see that the average value of the
exponent does not change drastically with tempera-
ture in the range T =200-600 K. The former ob-
servation shows that our use of the Kubo-Green-
wood expressions (4) and (8) for the transport
quantities was allowed, the latter one justifies our
approximation introduced by -neglecting the temper-
ature dependence of g(e).

It is instructive to visualize how the different en-
ergies contribute to v, (T) at different tempera-
tures. As an example the integrand
v(e) exp f-P(e —E,)] from (19) is shown in Fig. 8 'to-

gether with the corresponding values of W(T) —E,
for some temperatures for sample number 7.

Though the results on g(e) for the different
samples resemble each other qualitative1. y, Fig. 7
reveals a clear tendenc'y that the decrease of v(e)
becomes less steep with increasing amount of dop-
ing. This observation can be interpreted as the ef-
fect of enhanced hopping mobility due. to additional
localized states in this energy range introduced by
the substitutional doping. One might speculate
whether the decrease of v(e) which appears at high-
er energies is due to an erosion of the density of
states in this range as a result of conservation of
the total number of states. However, one should
be cautions, bearing in mind, that the Laplace
transform involves contributions from energies
for which our analytical fit to the experimental da-
ta possibly no longer represents adequately the
real physical situation.

Finally a few remarks concerning the statistical
shift should be made. We have learned from our
analysis that the temperature dependence of 5' in-
creases with increasing amount of doping (see Fig.
6). As a consequence we deduce a statistical shift
ez(T), which is less pronounced at high and more
pronounced at low doping level in comparison with
the corresponding shifts, shown in Fig. 4, in the
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FIG. 8. Differential contribution to oo (T) at the ener-
gy c for sample 7. The distribution function broadens
and shifts to higher energies with increasing tempera-
ture. The peak is close to W (T)+Eo, as indicated by
the arrows.

work by Beyer et aI,.' We recall that the latter
analysis was based on an ad hoc model for a rea-
sonable W(T), which was assumed as doping inde-
pendent, in contrast to our W(T) directly deter-
mined from experiment.

Of course, it mould be an interesting test to com-
pare the results on e~(T) for the various samples
with the statistical shift calculated from N(e) ac-
cording to Eq. (2), provided that reliable informa-
tion on N(e) from field effect" or C vs fJ measure-
ments' exists. Such a comparison, in particular,
could provide evidence on whether the neglect of
the temperature dependence of the differential mo-
bility dp, (e)/dT, indeed, is justified.

In our discussion following expression (18) we
mentioned that the difference A(T) Idefined by (12)]
between the true statistical shift and our result
should be a doping-independent quantity according
to our initial assumptions. Although we found that
N(e)y. (e) actually does change with doping, we still
expect that X(T) should show a qualitatively similar
behavior at different doping levels. Indeed, we
note that all our e~(T) curves (see Fig. 6) flatten
at higher temperatures, in contrast to ez(T) as
calculated from simple models for N(e). Beyer
et a/. 4 postulated a doping-dependent peak density
of states below e~ in the N(e) curve in order to ob-
tain agreement between calculated and experiment-
al cz(T) curves. As an alternative one might spec-
ulate whether the apparent flattening, which is
common to the results at all the doping levels,
should be attributed to the neglect of the tempera-
ture dependence of y, (e) and the resulting neglect
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of the term X(T) from (12) on the right-hand side
of (15) and in the integration in (16).

The quantities which determine X(T) are known
from our analysis except for ding(e)/dT. Actual-
ly, from (12) we see that X(T) can be interpreted
as an average

X(T)= kT'(ding(e)/dT) . (35)

The weighting function in the averaging procedure
is just the expression N(c)p(e) exp[ p(-e —E,)] al-
ready shown in Fig. 8 for different temperatures.

According to the expected qualitative behavior of
dp, (~ )/dT as indicated in Fig. 2 we should find that
X(T) is positive at low temperatures when hopping
dominates since increasing temperature stimulates
the hopping mobility. X(T) should decrease at
higher T and finally change sign if the main contri-
bution to (30) comes from energies above E„since
increasing temperature lowers the mobility for
conduction in extended states.

The apparent flattening of our e~(T) curves in
Fig. 5 would correspond to positive X(T) at high
temperatures, and it may be interpreted as an in-
dication that hopping still dominates the transport
even at temperatures of the order of 600 K, pro-
vided that the flattening is not due to some peculia-

rities in the density-of-states distribution. A de-
cision on this point can be made only once the ac-
curate shape of N(e) is known.

The purpose of this paper, however, was not an
unambiguous interpretation of experimental data,
but rather we intended to show that our analysis
provides a lot of new information and may help to
a better understanding of the transport properties
of amorphous semiconductors and of the influence
of doping.

In conclusion we would like to point out three
major results. First, we were able to deduce the
energy-dependent differential conductivity p(e) for
an amorphous semiconductor. Second, we have
found that the density-of-states distribution N(c)
and/or the mobility p, (e) change appreciably with
doping. Third, there are indications that the dom-
inant transport mechanism in amorphous silicon
is always hopping below the mobility edge, even in
glom-discharge samples and at temperatures close
to the recrystallization point.
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