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Existence of a negative Poisson ratio in fcc crystals
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The Poisson ratios along two principal crystal directions normal to a [110] uniaxial load are generally of
opposite algebraic sign for fcc crystals. A theoretical basis for this behavior is revealed.

The initial Poisson's ratios

Vi70 —= &17o/Calo and Pood = &001/&xylo ~

along two natural principal axes of a cubic crystal
subjected to uniaxial [110] loading can be related to
the elastic moduli C'„. of the unloaded crystal by the
expressions

v,~, = (R —2C',,)/(R + 2C',,),

(2)

where

Table I shows a compilation of experimental val-
ues of elastic moduli of fcc metals and rare-gas

TABLE I. Elastic constants &;, (in 10 dyn/cm ) and Poisson's ratios &(-0 and &ppg (as cal-
culated from the &;,) for fcc crystals.

Crystal
Temperature

('K) Heference Ci-2 ~44
0

Vi10 ~pps

0
50

100
150
200
250
300

0
300

2.341
2.336
2.319
2.291
2.270
2.262
2.271

0.778
0.753

1.761
1.768
1.768
1.753
1.743
1.744
1.761

0.482
0.489

0.712
0.707
0.701
0.702
0.706
0.711
0.717

0.513
0.478

0.010
0.005

-0.004
-0.015
-0.028
-0.038
-0.049

-0.215
-0.223

0.745
0.753
0.765
0.777
0.789
0.801
0.813

0.753
0.794

0
300

0
300

1,762
1.684

1.315
1.240

1.249
1.214

0.973
0.937

0.818
0.754

0.511
0.461

-0.138 0.806
-0.136 0.819

-0.093 0.809
-0.096 0.828

Au 0
300

0
300

0
300

0
300

4.7
24.3

4.2
82.3

2.016
1.923

1.143
1.068

0.555
0.495

2.612
2.508

0.0169
0.0118

0.0411
0.0367
0.0238

1.697
1.631

0.619
0.607

0.454
0.423

l.50$
1.500

0.0097
0.0074

0.0190
0.0174
0.0156

0.454
0.420

0.316
0.282

0.194
0.149

1.317
1.235

0.0100
0.0060

0.0210
0.0234
0.0112

-0.029
0.032

0.267
0.272

-0.186
-0.209

-0.051
-0.055

-0.13
-0.095

0.006
-0.11
-0.083

0.867
0.876

0.397
0.414

0.970
1.033

0.607
0.631

0.65
0.69

0.459
0.526
0.710

Kr

151

0.0506 0.0287 0.0273 -0.078

0.0303 0.0190 0.0156 -0.10

0.611

0.69
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solids. The moduli were used in Eqs. (2} to cal-
culate the Poisson's ratios v,» and vpp] which
also are given in Table I. In almost all cases,
v, » is negative. (The only notable exception in
the table is Al; the positive values at low temper-
atures for Pd and Ar are probably smaller in mag-
nitude than the experimental error }T.he values
of vppy are all positive . The implication is thai, in
general, when a uniaxial load is applied along a
[110]direction (a face diagonal) of a fcc crystal,
the strain &,-„(t.e. , along the perpendicular face
diagonal) will be of the same algebraic sign as the
strain Eyyp in the direction of loading and of oppo-
site algebraic sign to the strain e~, along the other
principal normal (i.e. , the [001] cube edge).

It is the intention of this paper to present insight
into the basis for the behavior described above.
An incidental objective is also to point up the util-
ity of studying relatively simple theoretical crys-
tal models at large strains as a means of obtaining
deeper understanding of the bases for elastic prop-
erties of real crystals in their teference 'or un-
strained equilibrium states. For these purposes,
we first consider "constructing" a fcc crystal ac-
cording to the following "thought experiment. "

Start with a bcc crystal in its unloaded equilibri-
um (but not necessarily stable) state; the lengths
of the edges of the bc cell are b„b„and b, . Con-
sider a primary path of deformation to be defined
by the condition that the crystal be loaded uniaxial-
ly in the b, direction only; that is, the only force
is one acting normal to the 2-3 face of the bc unit
cell. Along this path, emanating from the bcc
state, b, =b, Wb„ in general. As recently shown

by Hill and Milstein, "at the point at which C»
=C» (along such a path) there is a special "coor-
dinate invariant" bifurcation. The bifurcation is
coordinate invariant in the sense that it occurs at
the same point on the primary path, irrespective
of the choice of geometric coordinates q„used in
specifying the strain (assuming a "reasonable"
choice with regard to lattice symmetry); the strain
variables are used in the definition of the elastic
moduli, viz. , C„,= 9'm/Bq„sq, ; w is the internal
energy per unit cell of the crystal. We can pre-
sume that the "C» =C»" state exists, in general
(with a possible exception being a case in which
the values of C» and C» remain parallel or diverge
in both compression and elongation). The nature
of the bifurcation associated with this state is as
follows: all loads remain stationary (no loads
act on the 1-2 or 1-3 faces of the bc cell and the
uniaxial load remains dead"); the b, remain or-
thogonal; b, remains stationary (&5, =0); and b,
and b, vary according to 5b, =-5b, (the & symbol
indicates an incremental change). With no loss
of generality, we can assume the following: first,
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the bcc crystal is considered to be loaded uniaxial-
ly (as described} to the state C» =C», second, at
this state, the crystal undergoes the indicated bi-
furcation (i.e., &b, = 0, &b, = —&b, ); and third, the
crystal then follows a nest branch of the primary
equilibrium path, along which the loading contin-
ues to remain uniaxial and normal to the 2-3 plane,
and the b,. remain orthogonal and vary in a man-
ner that by Sb2 Ab3 in general.

In order to be more definite about the "b, eb3"
branch, it is necessary to rely on specific theo-
retical calculations. However, the following work-
ing hypotheses are not unreasonable: (i) With ref-
erence to Fig. 1(a), a face centered cell is readily

FIG. 1. (a) Portion of the lattice showing four body-cen-
tered (be) cells and a face-centered (fc) cell contained
within the bc cells. Lattice sites 7 and 8 are in the "cen-
ters" of two of the bc cells shown and on the faces of
the fc cell. (b) "Side view" (i.e. , view normal to the
planes containing 52 and b3) of portion of lattice shown
in Fig. 1(a), illustrating the "close-packed" relation-
ship at very high I110] uniaxial compression.
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which

19

b2/&bi = (Ci3C23 —C,2C33)/D (4)

and

&bs/&b, = (C„C —C C )/D,1 12 23 13 22 7 (5)

whereD=C22C -C'. T33 23 The right-hand sides f Eo qs
( ) & & e, .of course, db, /db, and db /d
spectivel . the vy; e values of C&& calculated in Ref.

an 3 1 p
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110]uniaxial loadin .ing. The results are shown in
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as follows: if the lattice parameters of the bc cell
are b, in the current state and bo in the unloaded
fcc state (b', = b, = b,/W2), then X, = b,/b, . (Al-
though the ~, are defined at any state of loading,
in the particular immediate neighborhood of the
fcc state, &, =1+&»„X,=1+a,-,o, and &, =1+&,».}
Figure 2(a) shows the region of elongation. As

inc reases, &, also inc rease s, while ~, dec reas-
es. As the state corresponding to the invariant
bifurcation (connecting the "b, w b," branch with the
"b, =b,"branch) is approached along the "b, e b,"
branch [shown in Fig. 2(a)], the following behavior
is found: C„ C„; b, -b, and hence C„-C„and
C„-C„(this state occurs at about X, = 1.18). The
denominator D and both of the numerators of the
right-hand sides of Eqs. (4) and (5) approach zero;
however, D approaches zero more rapidly, and
db, /db, -~ and db, /db, --~.

In the region of high uniaxial compression, as
~, decreases, Cy2 0 and C~3 0; thus from Eqs.
(3)-(5}, v,-„-0and v~, -0 (&, and &, approach
constant values); this behavior is seen in Fig. 2(b).
As ~, became small, successive parallel crystal-
lographic planes normal to the direction of loading
became arranged in a "close packed" manner.
This arrangement is illustrated in Fig. 1(b). As
&, increases along the path of [110]uniaxial load-
ing, the ratio b,/b, varies monotonically from W3

(at very small &,), through W2 (at A& =1, i =1,2, 3),
to 1 (at the invariant "C»=C»" state). The limit-
ing geometric behavior of the lattice under high

uniaxial compression is therefore also very reveal-
ing of the bases for the elastic behavior in the
neighborhood of the stress-free fcc state.

Finally, we might mention a possibly interesting
connection between the results of the present stud-
ies and experimental investigations of martensitic
transformations. Gunton and Saunders" have
associated the martensitic transformation (in in-
dium and indium thallium alloys), from a fcc
phase to a tetragonal phase, with a negative in-
stability of the Poisson's ratio v, », i.e. , v]yp is
negative in algebraic sign and as the transforma-
tion is approached, the magnitude of this negative
quantity increases. In the present study, a stress-
free tetragonal state was found along the equilibri-
um [110]uniaxial loading path at &, = 1.1 t0 (fairly
close to the invariant C»=C» state). However, in
the present crystal model, the stress-free tetra-
gonal crystal structure was mechanically unstable.
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