PHYSICAL REVIEW B

The Poisson ratios along two principal crystal directions normal to a [110] uniaxial load are generally of
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opposite algebraic sign for fcc crystals. A theoretical basis for this behavior is revealed.

The initial Poisson’s ratios

VﬁoE—€1Io/€uo and Vg, =—€40,/ €450,

1)

along two natural principal axes of a cubic crystal
subjected to uniaxial [1 10] loading can be related to
the elastic moduli C?, of the unloaded crystal by the

expressions

V1= (R = 2CY,)/(R+2CY,),

TABLE 1. Elastic constants CY; (in 10'2 dyn/cm? and Poisson’s ratios v, and vy, (as cal-

culated from the CJ;) for fcc crystals,

and

Voo1 = 4C(1)2'Cg4/cg1 (R+2CY,),

where

R=C9,+C,(1- ZC?z/Cgl)'

Table I shows a compilation of experimental val-

ues of elastic moduli of fcc metals and rare-gas

Temperature
Crystal (°K) Reference cy, cs, cYy Vit Vgoq
Pd 0 1 2,341 1.761 0.712 0.010 0.745
50 2.336 1.768 0.707 0.005 0.753
100 2,319 1.768 0.701 —0.004 0.765
150 2.291 1.753 0.702 —0.015 0.777
200 2,270 1.743 0.706 -0.028 0.789
250 2,262 1.744 0.711 —0.038 0.801
300 2.271 1.761 0.717 -0.049 0.813
Th 0 1 0.778 0.482 0.513 —0.215 0.753
300 0.753 0.489 0.478 -0.223 0.794
Cu 0 2 1.762 1.249 0.818 -0.138 0.806
300 1.684 1.214 0.754 -0.136 0.819
Ag 0 2 1.315 0.973 0.511 -0.093 0.809
300 1.240 0.937 0.461 —0.096 0.828
Au 0 2 2.016 1.697 0.454 —0.029 0.867
300 1.923 1.631 0.420 -0.032 0.876
Al 0 2 1.143 0.619 0.316 0.267 0.397
300 1.068 0.607 0.282 0.272  0.414
Pb 0 2 0.555 0.454 0.194 -0.186 0.970
300 0.495 0.423 0.149 -0.209 1.033
Ni 0 2 2.612 1.508 1.317 -0.051 0.607
300 2.508 1.500 1.235 -0.055 0.631
Ne 4.7 3 0.0169 0.0097 0.0100 -0.13 0.65
24.3 4 0.0118 0.0074 0.0060 —-0.095 0.69
Ar 4 .5 0.0411 0.0190 0.0210 0.006 0.459
4.2 6 0.0367 0.0174 0.0234 -0.11 0.526
82.3 7 0.0238 0.0156 0.0112 -0.083 0.710
Kr 0 8 0.0506 0.0287 0.0273 —0.078 0.611
Xe 151 9 0.0303 0.0190 0.0156 -0.10 1 0.69
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solids. The moduli were used in Egs. (2) to cal-
culate the Poisson’s ratios v,;, and v,,,, which
also are given in Table I. In almost all cases, .
V11, 1s negative. (The only notable exception in
the table is Al; the positive values at low temper-
atures for Pd and Ar are probably smaller in mag-
nitude than the experimental error.) The values
of v,,, are all positive. The implication is that, in
general, when a uniaxial load is applied along a
[110] direction (a face diagonal) of a fcc crystal,
the strain €3, (i.e., along the perpendicular face
diagonal) will be of the same algebraic sign as the
strain €,, in the direction of loading and of oppo-
site algebraic sign to the strain €, along the other
principal normal (i.e., the [001] cube edge).

It is the intention of this paper to present insight
into the basis for the behavior described above.
An incidental objective is also to point up the util-
ity of studying relatively simple theoretical crys-
tal models at lavge strains as a means of obtaining
deeper understanding of the bases for elastic prop-
erties of real crystals in their vefevence or un-
strained equilibrium states. For these purposes,
we first consider “constructing” a fcc crystal ac-
cording to the following “thought experiment.”

Start with a bce crystal in its unloaded equilibri-
um (but not necessarily stable) state; the lengths
of the edges of the bc cell are b,, b,, and b,. Con-
sider a primary path of deformation to be defined
by the condition that the crystal be loaded uniaxial-
ly in the b, direction only; that is, the only force
is one acting normal to the 2-3 face of the bc unit
cell. Along this path, emanating from the bce
state, b,=b; #b,, in general. As recently shown
by Hill and Milstein,'° at the point at which C,,
=C,; (along such a path) there is a special “coor-
dinate invariant” bifurcation. The bifurcation is
coordinate invariant in the sense that it occurs at
the same point on the primary path, irrespective
of the choice of geometric coordinates ¢, used in
specifying the strain (assuming a “reasonable”
choice with regard to lattice symmetry); the strain
variables are used in the definition of the elastic
moduli, viz., C, =8w/8q,8¢,; w is the internal
energy per unit cell of the crystal. We can pre-
sume that the “C,,=C,,” state exists, in general
(with a possible exception being a case in which
the values of C,, and C,, remain parallel or diverge
in both compression and elongation). The nature
of. the bifurcation associated with this state is as
follows: all loads remain stationary (no loads
act on the 1-2 or 1-3 faces of the bc cell and the
uniaxial load remains dead''); the b, remain or-
thogonal; b, remains stationary (6b,=0); and b,
and b, vary according to 0b,=-0b, (the 6 symbol
indicates an incremental change). With no loss
of generality, we can assume the following: first,
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FIG. 1. (a) Portion of the lattice showing four body-cen-
tered (bc) cells and a face-centered (fc) cell contained
within the be cells. Lattice sites 7 and 8 are in the “cen-
ters” of two of the bc cells shown and on the faces of
the fc cell. (b) “Side view” (i.e., view normal to the
planes containing b, and b3) of portion of lattice shown
in Fig. 1(a), illustrating the “close-packed” relation-
ship at very high [110] uniaxial compression.

the bcce crystal is considered to be loaded uniaxial-
ly (as described) to the state C,,=C,,; second, at
this state, the crystal undergoes the indicated bi-
furcation (i.e., 8b,=0, 6b,=-0b,); and third, the
crystal then follows a new branch of the primary
equilibrium path, along which the loading contin-
ues to remain uniaxial and normal to the 2-3 plane,
and the b, remain orthogonal and vary in a man-
ner that b, #b, #b,, in general.

In order to be more definite about the “b, #b,”
branch, it is necessary to rely on specific theo-
retical calculations. However, the following work-
ing hypotheses are not unreasonable: (i) With ref-
erence to Fig. 1(a), a face centered cell is readily
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located within four adjacent body-centered cells.
Let us presume that this fc cell passes through the
fce configuration at some state of the equilibrium
“b, # b,” branch. (ii) Since the bifurcation leading
from the “b,=b,” branch to the “b, # b,” branch is
of such nature that the initial slopes 0b,/0b, and
b,/ 6b, are of opposite algebraic sign and of infin-
ite magnitude, let us presume that 6b,/0b, and
b,/ 0b, remain of opposite algebraic sign over a
large range of the “b, # b,” branch, and let this
range include the fcc state.

If hypothesis (i) is true, it follows, from consid-
erations of crystal symmetry and the nature of the
loading path, that the fcc state is stress free
(since the 1-2 plane is stress free) and further-
more that the branch of the equilibrium path under
consideration is identical to the primary loading
path of unconstrained [110] uniaxial loading of the
fce crystal. If, in addition, hypothesis (ii) is true,
it follows that the initial Poisson’s ratios, indexed
relative to the fcc unit cell, are such that v;;, and
Voo: are of opposite algebraic sign, in agreement
with experimental values for a wide selection of
fce crystals. If, finally, in addition, we make the
hypothesis (iii) that the “b, # b,” path proceeds in
the direction of decreasing b, (after branching from
the “b,=b,” path at state C,,=C,,), it then follows
that it is the Poisson’s ratio v,;, that is negative.

Detailed theoretical calculations have verified
hypothesis (i)-(iii) for a particular crystal model
(in which the strain energy comes solely from
pairwise interactions between atoms). The elastic
moduli were calculated,'? relative to the be cell,
according to C,; = 9%w/8b,9b,; the conditions of
equilibrium were specified such that the uniaxial
force F, = 8w/8b, and the remaining forces F, = dw/
9b;=0, ¢=2,3. In the present paper we relate the
Poisson’s ratios to the C,;, and examine the theo-
retical path dependencies of these ratios along the
“b, # b;” branch.

The quantitative details of the theoretical behav-
ior discussed in the remainder of this paper apply
to (i.e., “ have been verified for”) the particular
crystal model studied in Ref. 12. However, in
view of the generality of the conditions v,;,<0 and
Vg0, >0 for fcc crystals, we believe that the qual-
itative theoretical behavior has fairly general ap-
plicability.

The incremental Poisson’s ratios at any stage
can be written as

b, 6b b, &
=0 20 == 9 20
Viip= b, T, and v,y = 5, %, ° (3)

In the unloaded fcc state, Eqgs. (3) coincide with
Egs. (1). Also, at any stage, an incremental vari-
ation along the path satisfies 0F;~C,,;0b,=0 for
=2 and 3 (summation convention, j=1,2,3), from

which

0b,/0b, = (C,5Cz5 — C1,Cs3)/ D, 4)
and

8b,/8b, = (C1,Cs5— C15Cs2)/D, (5)

where D=C,,C,, — C3,. The right-hand sides of Eqs.
(4) and (5) are, of course, db,/db, and db,/db,, re-
spectively; the values of C,; calculated in Ref. 12
are used here in Eqgs. (4) and (5) to evaluate db,/
db, and db,/db, along the path corresponding to
[110] uniaxial loading. The results are shown in
Figs. 2(a) and 2(b). The stretches A, are defined
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FIG. 2. Principal stretches A, and A 3 (normal to the
loading direction) and infinitesimal incremental defor-
mationratios vs stretch A, (in the loading direction) for
the [110] uniaxial loading of a fcc crystal. (a) Region of
elongation; (b) primarily region of compression.
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as follows: if the lattice parameters of the bc cell
are b, in the current state and b} in the unloaded
fec state (3 =b3=b3/V2), then X, =b,/b%. (Al-
though the A; are defined at any state of loading,
in the particular immediate neighborhood of the
fce state, A, ~1+€,,,, A, ~1+¢€;3,, and A, ~1+€,.)
Figure 2(a) shows the region of elongation. As
A, increases, ), also increases, while A, decreas-
es. As the state corresponding to the invariant
bifurcation (connecting the “b, # b,” branch with the
“b,=b,” branch) is approached along the “b, # b,”
branch [shown in Fig. 2(a)], the following behavior
is found: C,, —~C,,; b, ~b; and hence C,, ~C,, and
C,, - C,; (this state occurs at about A, =1.18). The
denominator D and both of the numerators of the
right-hand sides of Eqgs. (4) and (5) approach zero;
however, D approaches zero more rapidly, and
db,/db, == and db,/db, ~-.

In the region of high uniaxial compression, as
A, decreases, C,,~0 and C,,~0; thus from Eqs.
(3)=(5), v,7,~0 and vy, ~0 (A, and A, approach
constant values); this behavior is seen in Fig. 2(b).
As A, became small, successive parallel crystal-

lographic planes normal to the direction of loading -

became arranged in a “close packed” manner.
This arrangement is illustrated in Fig. 1(b). As
A, increases along the path of [110] uniaxial load-
ing, the ratio b,/b, varies monotonically from v3
(at very small X,), through V2 (at X;=1, i=1,2,3),
to 1 (at the invariant “C,,=C,,” state). The limit-
ing geometric behavior of the lattice under high

uniaxial compression is therefore also very reveal-
ing of the bases for the elastic behavior in the
neighborhood of the stress-free fcc state.

Finally, we might mention a possibly interesting
connection between the results of the present stud-
ies and experimental investigations of martensitic
transformations. Gunton and Saunders'® have
associated the martensitic transformation (in in-
dium and indium thallium alloys), from a fcc
phase to a tetragonal phase, with a negative in-
stability of the Poisson’s ratio v3,; i.e., v, is
negative in algebraic sign and as the transforma-
tion is approached, the magnitude of this negative
quantity increases. In the present study, a stress-
free tetragonal state was found along the equilibri-
um [110] uniaxial loading path at A, ~1.170 (fairly
close to the invariant C,,=C,, state). However, in
the present crystal model, the stress-free tetra-
gonal crystal structure was mechanically unstable.
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