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Coupled coherent and incoherent motion of triplet excitons: Infiuence on the ESR line shape
of pairs of differently oriented molecules
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The ESR line shape of triplet excitons, moving in a coupled coherent and incoherent manner within a pair
of differently oriented molecules, is calculated. The dynamics of the electronic degrees of freedom is
described by the Hamiltonian of the Haken-Strobl model, which consists of a time-independent part,
determining the coherent exciton motion via the exchange-interaction integral J between the molecules, and
of a stochastically-time-dependent part. The latter part takes into account the influence of the phonons by
fluctuations of the energy of the localized excitation {strength yo) and of the exchange-interaction integral
(strength y&) and represents the incoherent part of the motion. The spin Hamiltonian constains the Zeeman

energy of the spin in an external magnetic field and the fine-structure terms of the two differently oriented
molecules. The eigensolutions of the Liouville equation for the density operator are calculated using
parameter values fitting the naphthalene AB pair; their dependence of yo and y, is discussed. From linear-

response theory the ESR line shape is determined using the eigensolutions of the Liouville equation. It is
shown that from this model the ESR line shape is obtained not only for the cases of the completely coherent
and the purely hopping motion of the exciton, as well as for the case of its complete localization on the A

and 8 molecules, but also for all cases in between depending on the relative magnitude of the exchange-
interaction integral J and of the strengths yo and y, of the local and nonlocal fluctuations.

I

I. INTRODUCTION

In recent years, a series of experimental amd

theoretical papers has been concerned with the
question of whether excitons' in molecular crys-
tals' move coherently or incoherently. Various
experimental methods have been applied to a num-
ber of systems in investigating this problem.

Meanwhile, there is no question that ESR mea-
surements at triplet excitons in single crystals of
naphthalene' ' and anthracene' '" at room temper-
ature have to be interpreted' in the incoherent pic-
ture. In these materials triplet excitons move
predominantly in the a-b plane of the crystal via
a hopping process with an effective hopping rate, '
which is also influenced by the coherent part of
the exciton motion.

Whereas in naphthalene and anthracene the ex-
citon motion is two dimensional, in some salts
of tetracyanlluinodimethane' (TCNQ) the hopping
of the excitations occurs in one dimension. Also
for 1,4-dibromonaphthalene it has been shown by
optical' "and ESR measurements" that triplet
excitons move mainly along linear chains of mol-
ecules oriented in the same way. Furthermore,
below i6 K the exciton motion is assumed to be
coherent. ""~ In single crystals of 1,2, 4, 5-tetra-
chlorobenzene thy exciton motion is also one di-
mensional, and optically detected magnetic reso-
nance (ODMR) and optical measurements at low
temperatures have been discussed in the coherent-
exciton model. "" In these papers the theoretical
results of Sternlicht and McConnel" have been

generalized by taking into account the selectivity
of the spin-orbit coupling. "

Pairs of translati. onally equivalent molecules of
1,4-dibromonaphthalene-h, in the perdeutero host
have been investigated optically with ODMR by
Hochstrasser and Zewail" and pairs of 1,2, 4, 5-
tetrachlorobenzene-h, in the perdeutero host by
Zewail and Harris' '" at a temperature of about
1.5 K. The results of these experiments have also
been interpreted within the model of the coherent-
exciton motion with the help of the selective spin-
orbit interaction, and relations between the pa-
rameters of the two-molecule system and those of
a linear chain of molecules have been derived.
Only recently, in crystals of naphthalene-d, doted
with naphthalene-h, triplet excitons in pairs of
translationally equivalent molecules of naphtha-
lene-h, (AA pairs) have been observed both op-
tically" and by magnetic resonance. "

In the sam. e system triplet excitons in pairs of
translationally inequivalent naphthalene-h, mole-
cules (&8 pairs), formed by the two differently
oriented molecules in the unit cell of naphthalene
crystals, have been detected by Schwoerer and
%olf"'" using ESR, soon after the identification
of the long-lived excited state of single naphthalene
molecules in a durene matrix as a triplet state by
Hutchison and Mangum. " The ESR results of
Schwoerer and Wolf have been discussed" using
the hopping model of the exciton motion. From
optical measurements'"" at such doted naphtha-
lene crystals it has been conjectured"'" that ex-
citons in the && pair should possibly be described
within the coherent model. The final confirmation
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that the coherent description applies has been de-
rived by Botter et al."from ODMR and spin-echo
measurements using a model of van 't Hof and
Schmidt' for the interpretation of their results.
Recent ESR measurements of Hinkel" at the same
system have been discussed~ in the coherent mod-
el of the exciton motion taking into account an in-
homogeneous distribution of the energy levels of
the pair.

For the theoretical description of the exciton
motion in molecular crystals, Haken and Strobl" "
developed a model, which takes into account the
influence of the phonons in a stochastic manner.
This model allows not only to discuss the limiting
cases of the completely coherent" and completely
incoherent"'" exciton motion, but also the whole
range inbetween. '"" A microscopic treatment of
the exciton-phonon coupling is given by Haken and
Reineker" considering the phonons as a heatbath,
and by Grover and Silbey ' taking into account the
major part of the exciton-phonon coupling by a
canonical transformation. Generalized rate equa-
tions for the exciton motion are derived by Kenkre
and Knox,"" eliminating the nondiagonal elements
of the exciton density matrix by a projection for-
malism. " The relation between these different
treatments has been investigated by Kenkre, "and
some of the theoretical results in connection with
the exciton motion have been reviewed by Haken
and Reineker"'" and by Silbey. " Along the same
lines as the treatment of the triplet exciton mo-
tion proceeded that of its influence on the ESR
line shape. The ESR line shape of incoherent ex-
citons may be calculated using the methods of
Anderson" and of Hudson and McI achlan. " The
influence of the coherent motion of triplet excitons
on their ESR line shape has been investigated by
Sternlicht and McConnel, "Harris and Fayer, "
and recently by Berim and Kessel. " On the basis
of the Haken-Strobl model the influence of the
coupled coherent and incoherent exciton motion
has been investigated numerically" and analytical-
ly'"' for excitations with spin-g moving within
molecular pairs.

In this paper the ESR line shape of triplet exci-
tons, moving according to the Haken-Strobl model
in a coupled coherent and incoherent manner with-
in a pair of differently oriented molecules (AB
pairs), will be discussed as a function of the
strengths of the local and nonlocal fluctuation
parameters of the model. To that end in Sec. II
the Hamiltonian of the model and the equation of '

motion for the density operator is given In Sec. .
III the eigenvalues of the problem and ESR line
shapes are represented in dependence of the
strengths of the fluctuations parameter. These
results are discussed in Sec. IV.

II. HAMILTOMAN OF THE MODEL AND EQUATIONS OF
MOTION FOR THE DENSITY OPERATOR

A. The Hamiltonian

The Hamiltonian for our model, describing the
dynamics of triplet excitons in a pair system of
two differently oriented molecules, consists of
two parts. One part describes the electronic de-
grees of freedom, the other one, the degrees of
freedom of the spin. Both parts are coupled owing
to the different orientation of the molecules in the
pair.

For the excitonic part we use the Hamiltonian of
the Haken-Strobl model""" for the coupled coher-
ent and incoherent motion of triplet excitons. The
Hamiltonian describing the coherent motion is
given by

H,„,= &,b,b, +e,b,b, +Z(b~b, +b2~b, ). (2.1)

b~ and b& are creation and annihilation operators
for an electron-hole pair localized at site i
=(1,2). &, and &, are the electronic excitation en-
ergies of the two noninteracting molecules and 4
describes the interaction between them; for triplet
excitons 4 is mainly determined by the exchange
interaction integral. The coherent motion is dis-
turbed by the phonons, and in the Haken-Strobl
model their influence is taken into account in a
stochastic manner by letting fluctuate the energy
of the excitons and the exchange-interaction inte-
gral, resulting in the Hamiltonian

(2.2)

Mathematically, it is assumed that the fluctuating
quantities b„„gt) are given by a ~-correlated Gaus-
sian process with disappearing mean value. The
nondisappearing correlation functions are given by

(2.8)

(2.4)

y, is the strength of energy fluctuations (local
fluctuations) and y, is the strength of the fluctua-
tions of the interaction integral (nonlocal fluctua-
tions).

The spin Hamiltonian contains the Zeemari en-
ergy of a triplet spin S in an external magnetic
field H and fine-structure terms having their ori-
gin in the interaction of the two electron spins
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~b = b~~b, —b~~b, , (2.7)

the spin Hamiltonian may be written in the form

H, =gp~H'S+ S'M'S+ hbS'D'S. (2.8)

This form of the Hamiltonian explicitly shows that
the different orientations of the two molecules in-'
troduce a coupling between spin and excitonic de-
grees of freedom.

In the derivation of an equation of motion for the
density operator, however, H~„and H, , will be
used in the following form:

H, =Q &„b~b„+Q (1 —5 .)Jb„'b„,, (2.9)

H, ,= g H. S.+g g b)b„S.S..Z.(.".).
CsO

(2.10)

r, r'=(1, 2j denote the site of the two molecules
and o, o'= (a, b, c') denote the crystal axes of the
host, in which the pair is imbedded. In (2.10) en-
ergies are measured in units of gp~. The total
Hamiltonian is then given by the sum of the fol-
lowing various parts:

forming the triplet state

H, ,=gp, H. S+b,'b, S S'» S+b,'b,S Z'» S.
Sap

(2.5)
E"' and E ' are the fine-structure tensors of the
two differently oriented molecules. Introducing
the sum and difference of these tensors by

—(P(1)+ Q(2)) D —(+(1) f1 (s)) (2 6)

and the operator 4b for the difference of the ex-
citonic occupation numbers at the two molecules
by

B. Equation of motion

The equation of motion for the density operator
is given by

p~= i[H, p] = i[H„p] i[H,(t), p] . (.2.12)

Gn account of the fluctuating part H, (t) of the Ham-
iltonian, p still contains fluctuations. Finally,
however, for the calculation of expectation values
and correlation functions, we are interested in the
density operator p, which has been averaged over
the fluctuations

p=(p&=PS. (2.13)

In this expression we have denoted the time-aver-
aging procedure by the projection operator P,
which projects out the fluctuations. Applying this
operator, the equation of motion for the density
operator becomes

p= -i[H„p] -iP[H, (t), p]. (2.14)

+ 2 nn' g ) ln" nlPn"s, n"s'

?P (2.15)

with

The calculation of the second commutator in this
equation is somewhat lengthy, because fluctua-
tions are contained in H, (t) and in p. Therefore,
this calculation has been carried through in Appen-
dix A with the result given in expression (Al. 21).
Taking matrix elements between states ~n, s&,
where n=(1, 2] denotes the site of the excitation
and s = fa, b, c') zero-field functions" of a triplet
spin quantized in the crystal axes system, we
have

-i(P[H, (t), p] j „...= 2rp

H = Hn+ H, (t),

H, (t) = H,„,(t),

(2.1la)

(2.11b)

(2.11c)

~=3'p+r) . (2.16)

The commutators with the two parts of Hp give the
following expressions:

-(([s,pl) ..= -( (a p „.—e„p , +„P„. (,1 —1 )zp.„.„p(1—)z„p,„,„,
s o1 p])ns, n's' s( sss" pns", n's'+ ss's"pns, n's")

fyslt s"&&s) s"(&s)

(2.1V)

E&n') ~ E&&)
S S ~flSsfl S ~ S S tLSsNS

s"(4$') s"(&s')
(2.18)

In deriving (2.18) we have used

s.(s'&=i g ~...,.~s"&, (2.19)

which is valid for the zero-field states introduced
above; &&» is the completely antisymmetric ten-
sor of Levi-Civita.

With (2.15), (2.1V), and (2.18), the e(luation of
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motion for the density operator may be written in
the following way: Ba Bb

p=Lp. (2.20) B= Bc Bd

(2.21a)

[Note that I includes a factor (-i) as compared to
the Liouville operator of Eq. (A2. 2) of Appendix
B.] The operator L may be written as a 36 && 36
matrix, if the matrix elements of p are arranged
in a linear way. To that end we have chosen the
following ordering:

p, = &]al plla& p2= &2a
I
pl2a&

p. = &1a
I p I

2a&

0 0

Ba„=Ba1 = -H, -il,q1,

Bg =Bg24= -H —jE &,
Bb =Bb* = H gE ~~,

Bb„=Bb,*,= H, S& i,
Bc= Ba,

(2.24)

p„. . . , p, : a-b,
pg, . . . , p1, : b c.

(2.21b)

(2.21c)

Bd»-Bd42-H +~Eaa ~

Bd33 —Bd44 = Hc ~+go

p», . . . , p~: b-c, c-a. (2.22c)

With this notation the matrix L has the following
structure:

The last two expressions mean that p„.. . , p, and

p„.. . , p» are obtained from p„.. . , p4 by cyclic
permutation of {a,b, c):

p-= p.*.=&1alpl»&, p-= p.*.=&2alpl2b&,
(2.22a)

p», . . . , p„: a-b, b c,

Matrices C and D have the following structure:

0 0 (Dc D

C= Ca Cb, D= 0 0

Cc Cd Da Db

The submatrices of C and D are determined from
those of B by cyclic permutation of the indices
a, b, c' of H and E"'.

A, B C D

B~ E E G

C~ Et H I
D~ -G~ -I~ K

Ba Ca Da, Bb Cb Db,

Bc Cc Dc, Bd Cd Dd.

The block matrix E is given by

/Ea Eb)
} Ec Ed)

(2.26)

i.e. , it is given by 16 block matrices with the in-
dicated relations, and each of the 16 blocks con-
sists of several 4X 4 matrices.
4 has nine' such 4 && 4 matrices; only the three

on the diagonal, called a, are different from zero
and these three are identical and symmetric:

(2.26)

Ea13 a24= &a» = Ea42 = 2y, ;

Ed„=Ed,*,= 2r+i(F.".& Fg') -i(~, ~,),
Ed„=Ed* = -2I'+i(F"' —F,",') -i(&, —&,),

a 0 0

A= 0a 0

00a
11 22 +12 34 2yl

Ed14 = Ed23 = Ed,2 = Ed = 2Y, '

Eb11 = Eb14= Eb22- Eb23- Eb31

= Eb34= Eb-= Eb43=&~~

(Ec),.„=(Eb)„(i,k = 1, . . . , 4) ~

(2.28)

(2.29)

a = aqua=
-2I' -i(6~ —E ),

g1 = Q14= 0 = Q24=$

(2.23) The block matrices H and K follow by cyclic per-
mutation of a, b, and c'.

E-H- K, cyclic permutation
B consists of six 4 x 4 matrices, two of which are
zero. For the matrices Ba, Bb, Bc, and Bd, only
elements different from zero are given:

of {a,b, c'J. (2.30)

The remaining blocks are somewhat simpler:
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Ea O

E, o EKEj
TABLE II. Angles between molecular axes of molecule

1 and crystal axes.

Eaj 2
= Fa~i = Ed = Fd24 = Hq +jE (2.31)

and the nondisappearing matrix elements of the 4
x4 matrices Ea and Fd are given by

a
b

C

115.97'
102.14'-
29.06'

71.29'
29.33'
68.26'

32.87'
116.26'
71.68'

Ea34 Ea43 Ed' Ed42 HQ +$E (2.32)

I follows again from cyclic permutation. G has
the same structure as E and I, and its nonzero
matrix elements may be written in the following
way:

(4)E, , ~Z 3D 7

E~ ~
= -Z= 3D.(4)

(3.2)

Gai2 = Ga~i = Gd~i = 42= -H, —iF~,', (2.33) The numerical values for the fine-structure pa-
rameters are"

Ga 4= Ga4, = Gdi3= Gd,*4= -H, -iF~", . (2.34)

With the ansatz p(t) = e~'p the differential equation
(2.20) for the density operator transforms to a 36-
dimensional eigenvalue problem, which will be
solved in Sec. III. From the eigensolutions of Z
then the correlation functions describing the ESR
line shape may be calculated.

III. SOLUTION OF THE.EIGENVALUE PROBLEM AND

CALCULATION OF THE ESR LINE SHAPE

A. Parameters of the model

J=1.20 cm ~ =1.28x10 G. (3.1)

We assume that the excitation energies &, and &,
of the isolated molecules are equal, and this value
is normalized to zero.

The fine-structure tensors E"' and E"' are di-
agonal in the principle axes system fg„'g&, L&} of
the respective molecule and are given by (i = 1, 2)

TABLE I. Direction cosines of the two inequivalent
molecules vrith respect to the crystal axes.

a
b

C

cosg
icos/

COB&&

cosx
icos/'
cosa'

COS)(

icos/"
cos~

The parameters of our equations are the ex-
change interaction integral J, the fine-structure
tensors E"' and E"' of the two differently oriented
molecules, the components of the external mag-
netic field H, and y, and y„describing the
strengths of the local and nonlocal fluctuations,
respectively. In our calculations we use values,
valid for the naphthalene-h, pair embedded in the
deuterated host. The exchange interaction integral
J is known from optical measurements""

D = 1063.3 G = S.9387 x 10 ' cm

E= -164.7 G=-1.534x 10 ' cm ' (3 3)

B. Eigenvalues of the matrix L

In order to solve the eigenvalue problem of the
density matrix p,

g pi (3.6)

the non-Hermitean matrix I. has been transformed
into a nonsymmetric real form by a unitary trans-
formation. In the computer evaluation of this
eigenvalue problem a modified version of a pro-
gram of Grad and Brebner" has been used. The
numerical calculation' proceeds in three steps.
First, the real nonsymmetric matrix is trans-
formed to upper Hessenberg form by similarity
transformations. In the second step, the eigen-
values are calculated by an iteration procedure
called "Q-8 double-step method, " a modification

[The D used here should not be mixed up with that
of (2.6), which is the difference of the fine-struc-
ture tensors. ] The orientations of the principle
axes systems ($„q„t,}of both molecules with re-
spect to the crystal axes system (a, b, c'}are de-
termined by the direction cosines .of Table I and
the angles of Table II." The strength of the mag-
netic field is assumed to be

iHi =4000 G=0.3"t388 cm '. (3.4)

In all subsequent calculations H is oriented in the

y~ z~ pla-ne of an axes system Q~, y&, z~} and forms
an angle of +60' with the y~ axis. The system
(x~, y~, z~} is defined by the tensor I of (2.6) being
diagonal. In naphthalene crystals the y& axis co-
incides with the b axis of the crystal; the angle
between the +z& axis and the +a axis is +22.4 .'"'

In Sec. IIIB the eigenvalues of the matrix Z and
ESR line shapes are pictured as a function of the
strengths of the fluctuation parameters p, and p, .
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TABLE DI. Energy eigenvalues E; of the Schrodinger
equation (3.5) describing the AB pair in the unit cell of
naphthalene crystals and transition energies &E for &m
= 1 and 4m = 2 ESR transitions.

For comparison with these eigenvalues of the
density matrix equation, in Table III the energy
eigenvalues &, of the Schrodinger equation

&E(&m =1) (0) &E(4m =2) (0) (H „0+H 0)z/i)
—E,.g), (3.6)

E, : 17015.00
12418.15

8 977.89

4596.85
3440.26

8037.11

E,: -8590 49
-13192.24

&6. —16 628.32

4601,.75
3436.08

8037.83

TABLE IV. Energy eigenvalues Ez; and E~; of the
Schrodinger equation (3.5) for the isolated A and B mole-
'cules (J=0) in the unit cell of the naphthalene crystal.

E (cm ~) AE(4m =1) (cm ) &E(4m =2) (cm )

E~g. 0.3818
EA2' 0.0066
Egs. —0.3752

0.3884
0.3686 0.7575

0.4071
E». —0.0657

—0.3414

0.4728
0.2757

0.7485

of the "Q-R method, "which works better for ma-
trices with complex eigenvalues.

The 36-dimensional eigenvalue problem results
in 36, generally complex, eigenvalues R;. The
real and imaginary parts of these eigenvalues have
been pictured separately in the following figures
as a function of the strength of the local fluctua-
tions y, for a fixed value of the nonlocal fluctua-
tions y, and as a function of y, for a fixed value of
y, . The real and imaginary parts belonging to the
same eigenvalue R,. are denoted by the same num-
ber. Between six and 12 of the 36 eigenvalues are
purely real, and the remaining ones occur in com-
plex conjugate pairs. Therefore we have between
21 and 24 different real parts. In the second case
the three additional real parts are denoted by 4',
5', and 6'.. The eigenvalue for the stationary
eigenstate is always denoted by. 21, i.e. , R» = 0.
Because the complex eigenvalues occur in com-
plex conjugate pairs, only half of the imaginary
parts has been shown, and their total number is
obtained by reflection of the figures at the y axis.
Finally, we should mention that the eigenvalues
R represent the total exponent; therefore, their
real parts describe relaxations and their imagi-
nary parts, oscillations. The relation between R&

and the eigenvalues R,- introduced in Appendix B
is given by R,. = -iR, .

descr'ibing the case of the coherent exciton mo-
tion"'" with y, =y, =0, for the upper (E„E„E,)
and lower (E„E„E6)Davydov components are
given in the first column. The second column
gives energy differences && for 4m = 1 ESR tran-
sitions in the upper and lower Davydov compo-
nents, and the third one, transition energies with
4m= 2. Table IV gives the energy eigenvalues
E„& and Es; of (3.6) for J=O, i.e. , the energy
eigenvalues of the isolated & and 8 molecules in
the unit cell. In this table energies are measured
in units of cm ' (1 cm ' =1.069 86 && 10 G).

Figures 1(a) and l(b} show the imaginary and
real parts of the eigenvalues R, for y, = 10 ' G as
a function of y, . Note that in Fig. 1(a}, on the
vertical axis, several different scales are used.
The comparison of Im(R) for small values of y,
((0.3 G) with the values of Table III shows that
Im(R;) with i = 1—6 and 13—15 coincides with en-
ergy differences between the upper (E„E„E,) and
lower (E„E„E,) Davydov components. Im(R, )
and Im(R, ) describe Am = 2 transitions within the
lower and upper Davydov components, respective-
ly. Again from Table III we conclude that Im(R;)
with i = 9 and 12 and with i = 10 and 11 correspond
to ESR transitions with 4m = 1 between energy lev-
els within the lower and upper Davydov compo-
nents, respectively. With increasing values of
y, up to y, = 3 G, the imaginary parts of the eigen-
values describing transitions between levels of the
upper and the lower Davydov components remain
constant. The imaginary parts of the eigenvalues
R; describing corresponding ESR transitions be-.
tween levels within the upper and lower Davydov
components, however, move together with increas-
ing y„and for large enough values of y, they final-
ly coalesce. For eigenvalues 7 and 8 this happens
at y, = 0.3 G, for 9 and 10 at y, = 2.4 G, and for 11
and 12 at y, =2.1 G.

The real parts of the eigenvalues, except those
ones corresponding to ESR transitions, increase
with increasing y, . The real parts of the eigen-
values 7 and 8, 11 and 12, and 9 and 10, however,
split into tw'o different values for the same values
of y„ for which their imaginary parts coincide.
One of these real parts of each pair increases
(8, 10, 12) with increasing y„ the other one first
decreases {V,9, 11) and then increases again.

This increasing behavior of all real parts of the
eigenvalues continues up to y, =2.4 cm ' (= 25000
G). This may be seen in Fig. 2(c), where the real
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Sm(e) (G)

3x10

y =10 G
1 -Re(R) (G)

10 =

=10 G
(b)

4-6 4-6
10 —.

2xl 04

8038
803' -.~
4602

9

4600

4598
10

4596

7, 8

9, 10

1

10 -.

10 -.

-1
10 -.

19
7
20

3440 -
11

3438
12

3436
T 16-21

13- 1.8xl0
-2.090 - 14

2.2xl0
15

2

11, 12

16-21
I

13 3

15

q (G)
0

10 -.

-3
10 =

-410-

10

10 10 10 10 1O q rG)

FIG. 1. (a) Imaginary parts of the eigenvalues R; of the density-matrix equation for pp between 0.1 and 3 G and for
y&

=10" G. From the total number of 36 eigenvalues, six are purely real (16—21), the remaining 30 occur in complex
conjugate pairs. Only 15 of the 30 different imaginary parts are shown, the second half is obtained by reflection at the

pp axis. (Exchange interaction integral: J = 12 800 G, fine structure parameters: D = 1063.3 G, E = —164.7 G; strength
of the magnetic field, which lies completely within they&-s& plane: ) H )=4000 G; angle between H and the y&-z&pl. ane:
)H~ =4000 G; angle between H and the y& axis: o =+60'). (b) Real parts of the eigenvslues R; for values of y0 between
0.1 and 1000 G and for y&=10 G. The other parameters are the same as in (a).

parts of the eigenvalues have been pictured for y,
= 10 ' cm ~ again as a function of y,. (Note that we
have now changed to units of cm '.} For y, = 2.4
cm the real parts of the eigenvat. ues 1-6, 4'-6',
and 13-15 split into two groups 1-3, 4'-6' and

4-6, 13-15, the first of which increases with in-
creasing y„ the second one decreases. From
what we have learned in the discussion of Figs.
1(a}and 1(b), we now expect that at this value of
yo the imaginary parts of these eigenvalues coin-
cide. This behavior shows Fig. 2(a), where the
imaginary parts of the pairs of eigenvalues 1 and
13, 2 and 14, ' 3 and 15, 4-6 and 4'-6' coalesce.
(The imaginary parts of 4'-6' have not been pic-
tured according to our convention above, because
these eigenvalues are complex conjugate to 4-6.)

For y, increasing further, now the real parts of
the eigenvalues 8» and 8», B, and R,4 coalesce .

(y, =30 cm ') and we now expect, the other way.

round, the imaginary parts to split. This splitting
shows Fig. 2(b), where the imaginary parts are
shown for.values of p, up to 100 cm '. When p,
increases further, the imaginary parts of the
eigenvalues split step by step, and for very large
values of p, we again arrive at 15 pairs of complex
conjugate eigenvalues and six purely real ones.
The dashed lines give the eigenvalues for y,
= 10000 cm '. The comparison with Table IV
shows that the imaginary parts of the eigenvalues
A, now describe the differences in the energy
eigenvalues of the two differently oriented non-
interacting naphthalene molecules in the unit cell
of the deuterated crystal. [The growing together
of the real parts of the eigenvalues, accompany-
ing the splitting of the corresponding imaginary
parts, cannot be observed in all cases on account
of the scale used in Fig. 2(c).] Furthermore, we
conclude that A, and R» describe 4m=1 ESR tran-
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FIG. 2. (a) Imaginary parts of the eigenvalues R; for
values of yo between 0.5 and 4 cm" and for y&

-—10 cm
IExchange interaction integral J=1.20 cm ~; fine-struc-
ture parameters D= 9.9387 &&10 cm, E=-1.535 X10 2

cm t; strength of the magnetic field
~ H~ = 0.87888 cm ';

orientation of H as in Fig. 1(a).] (b) Imaginary parts of
the eigenvalues R& for yo between 3 and 100 cm ' and for
p f = 10 cm . The dashed lines give the values for yo
=104 cm ~. The other parameters are the same as in (a).
(c) Real parts of the eigenvalues R,' for yo between 5 and
10 cm and for y&=10" cm . The other parameters
are the same as in (a).

sitions at the B molecule and 8» and B,4 at the
& molecule.

The following figures show the eigenvalues of
the density matrix equation for fixed values of the
strength of the local fluctuations y, as a function
of y, . In Figs. 3(a) and 3(b), the value of y, is
0.1 G. The comparison if Figs. 1(a) and 3(a) shows
that the imaginary parts of the eigenvalues do not
change up to y, = 10' G. When y, increases further,
the imaginary parts of the eigenvalues 8, (i
= 1, . . . , 6; 13, . . . , 15)describing energy differences
between the levels of different Davydov compo-

nents remain unchanged, whereas the imaginary
parts of the pairs of eigenvalues denoted by 7 and
8, 9 and 10, and 11 and 12, describing ESR tran-
sitions move together. From Fig. 3(b) we see that
the real parts of the eigenvalues, describing en-
ergy differences between levels of different Davy-
dov components increase continuously with in-
creasing y, . The real parts of the eigenvalues B,
to 8» and the purely real eigenvalues Ry6 B20
first increase up to values of y, between 10' and
10' G and then decrease with y, increasing furth-
er. A closer inspection shows that the real parts
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parts of the eigenvalues R; for values of y& between 10
and 10~ G and for yo -—0.1 G. The other parameters are
the same as in Fig. 1(a).

of the eigenvalues B, to 8» separate themselves
at those values of y„at which the corresponding
imaginary parts coincide.

Figures 4(a) and 4(b) give the imaginary and
real parts of the eigenvalues for y, =0.1 cm"'.
Figure 4(a) shows that the imaginary parts for
this value of y, are nearly independent on y, . The
real parts of the complex eigenvalues B„R„,
and 8» and the purely real eigenvalues +g6 to
are also independent on y, . The real parts of the
complex eigenvalues R„B„andR» and the real
eigenvalues A» and 820 first increase with in-

. creasing y, ; for ye~0 5 cm ' they decrease again.
The real parts of the complex eigenvalues 8, (i
=1-6; 4'-6', 13-15), whose imaginary parts de-
scribe, for small values of y, and y„ transitions
between the levels of different Davydov compo-
nents, continuously increase with y, becoming
larger.

In Figs. 5(a) and 5(b) we have the imaginary and
real parts of the eigenvalues for yo 20 cm-i The
comparison with the imaginary parts of the eigen-
values of Fig. 2(b) for y, = 20 cm ' shows that
Im(B~) fori =1, V, 8, and 13, for f=2, 9, 10, and

14, andi =3, 11, 12, and 15 is unchanged when

y, increases. The imaginary parts of the eigen-
values 4' and 16 and of 5' and 17 split off from
zero for y, =10"' cm '. This behavior may be com--
pared with that of the imaginary parts 4' and 16
and 5' and 1V in Fig. 2(b) for increasing values of

y, . In contrast to the behavior of these eigenval-
ues for increasing y„ in the case of increasing y,
their imaginary parts again decrease to zero for

0 1 cm '. Starting from the real parts of the
eigenvalues for y, = 20 cm ' in Fig. 2(c), we see
from Fig. 5(b) that the real parts of the eigenvalues
1 to 3, 4' to 6', 8, 10, 12, and 16 to 18 are prac-
tically independent of y, in contrast to their strong
dependence on yo. The remaining real parts (V,
9, 11, 19, and 20) decrease with increasing y, .

Figures 6(a) and 6(b) show the eigenvalues for
y, =1000 cm '. For small values of the nonlocal
fluctuations (y, =10 ' cm ') in Fig. 6(a) we have the
15 different imaginary parts of the eigenvalues
shown in Fig. 2(b) for large values of y, . In con-
nection with the discussion of that figure we re-
marked that these imaginary parts describe the
differences between the energy levels of the non-
interacting molecules sitting substitutionally in
the unit cell of naphthalene. With increasing val-
ues of y, these eigenvalues move together in pairs,
and for very high values of y, we remain with only
three imaginary parts, which are different from
zero. In Fig. 6(b) we may again observe that for
those values of y„where two imaginary parts
finally coincide, the real parts begin to split. One
of the two real parts' of such a pair increases, the
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FIG. 4. (a) Imaginary parts of the eigenvalues R~ for
values of y& between 1O and 10 cm and for go=0.1
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2(a). (b) Real parts of the eigenvalues R; for values of
y& between 10 3 and 10 cm ~ and for go= 0.1 cm ~. The
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FIG. 5. (a) Imaginary. parts of the eigenvalues R& for
values of y& between 10" and 1 cm and for y&= 20 cm
The other parameters are the same as in Fig. 2(a). (b)
Real parts of the eigenvalues R& for values of y& between
10 and 1 cm and for y&=20 cm . The other parame-
ters are the same as in Fig. 2(a).
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other decreases. In Sec. IIIC, in which the ESR
line shapes are considered, we shall observe that
these decreasing real parts are responsible for
their widths.

t . ESR line shapes
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In linear approximation in Appendix B the re-
sponse of an observable & on a perturbation & has
been calculated for systems, whose time develop-
ment is determined by a non-Hermitean Liouville
operator. In the high-temperatur e approxima-
tion, ' which is consistent within the Haken-Strobl
model, the ESR line shape is determined by the
imaginary part of the magnetic susceptibility ac-
cording to (A2. 18):

X"(~)= P|d dv(M„, e 'M„) cos&uv, (3.7)
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(A, J3) = Tr(AtB) . (3.3)

x"=~ Q (n', M„p')(n', M„p')
(d + B& (d —A~

(3.9)

In writing (3.V) it was assumed that the micro-
wave field is parallel to the x axis and perpen-
dicular to the magnetic high field. , Using the
eigenvalues R, and eigenvectors p' of the operator
L as well as the eigenvectors g' of the adjoint op-
erator I-~, we have, from (A2. 20),

3-15 8 =iR~=o)~ -iy~. (3.10)

10 =

p' and g' are the stationary solutions of L. The
normalization constant N is determined from

((d) d(d = 1 . (3.11)

10 =
4-6

7 9, 11

13-15

With the help of the eigensolutions of the density
matrix equation it may be calculated according to
(A2.29):

10 = 20
19
7

N= Q (q', M„p~)(qi, M„p')( iA~)-

10 —. -In(~&+ y~&)+ 2i arctan —' . (3.12)
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FIG. 6. (a) Imaginary parts of the eigenvalues R; for
values of p& between 10"3and 1 cm and for pp —1000
cm ~. The other parameters are the same as in Fig.
2(a). (b) Real parts of the eigenvalues R& for values of
y& between 10 and 1 cm" and for yp=1000 cm" . The
other parameters are the same as in Fig. 2(a).

ESR line shapes calculated in this way are pic-
tured in Figs. 7 to 15. In all figures the exchange
interaction integral, the fine structure param-
eters and the strength and orientation of the static
magnetic field have the values of Sec. IIIA; As in
the discussion of the eigenvalues in each figure
either the strength of the local fluctuations y, or
the strength of the nonlocal fluctuations y, is
varied, while the other parameter is fixed.
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Figure 7 gives the ESR line shape for fixed y,
= 10 ' G and for values of y, between 0.1 and 1000
G (=0.1 cm '). On account of the large &u scale in
this figure only the lines corresponding to transi-
tions between levels &, and E, and between &4 and
E, (compare Table III) in the upper and lower
Davydov component are pictured. The positions
of these two lines is given by the imaginary parts
denoted by 11 and 12 in Fig. 1(a). The positions of
the ESR lines corresponding to transitions between
E, and E, and between E, and &4 are determined
by the imaginary parts denoted by 10 and 9, re-
spectively. With increasing values of y, the lines
of Fig. 7 broaden and move together. For values
of yp& 2 G, we have only a single line which nar-
rows with increasing y, . This behavior of the ESR
line is reflected in Figs. 1(a) and 1(b) for the
eigenvalues. With increasing values of y, the two
imaginary parts 11 and 12 move together, and
for yp&2 6, they coalesce into a single value in
the middle between the original ones. For the
same value of y, the real parts 11 and 12 split,
and it is obvious that the narrowing of the ESR
line is described by the real part of eigenvalue
11. For yp& 50 G, this real part increases again,
which results in the broadening of the ESR line
for yp& 50 G. The position of the line, however,
remains -unchanged.

A completely analogous behavior shows the ESR
lines determined by the eigenvalues R, and Ryp
and stemming frorp transitions between &, and E,
and between E, and E„respectively. These ESR
transitions have also been taken into account in
Fig. 8, showing the ESR spectrum for larger val-
ues of y,. The position of the line shown in Fig. 7
is at a =0.32 cm '. With increasing y, the real
parts of the eigenvalues R, and R» increase [see
Fig. 2(c)] giving rise to the broadening of the ESR
lines in Fig. 8. At yp 30'cm ', these real parts
coalesce with those of the eigenvalues A,~ and B»,
and the imaginary parts of +9 +i~ and ~ii and +&5
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FIQ. 8. ESB line shape for values of yo between 1 and
5000 cm and for y&=10" cm . The other parameters
are the same as in Fig. 2(a).

split [see Fig. 2(b)]. When y, increases further
the real parts of these eigenvalues decrease. For
large enough values of y, we arrive at four narrow'

ESR lines w'hose positions are determined by Table
IV, and which describe 4m =1 ESR transitions in
the noninteracting A and B molecules.

The following figures give ESR line shapes when

y, is held fixed and y, varies. In Fig. 9 we have

yp 0 1 G. For small values of y, we again have
the narrow ESR lines just pictured in Fig. 7 and
determined by R» and R» of Fig. 1(a). These lines
broaden with increasing y, and coalesce into a sin-
gle line for y, = 5000 G (=0.5 cm '). For still
larger values of y, a narrowing starts. The cor-
responding behavior of the imaginary and real
parts of the eigenvalues is shown in Figs. S(a) and

S(b); for y, &5000 G, the imaginary parts of R»
and B» have moved together, and their real parts
decrease. The behavior of the lines determined
by R, and R„ is analogous.

In Fig. 10 for y, = 1 G, the ESR lines for small
values of y, are much broader than the corre-
sponding lines of Fig. 9 because of the larger val-
ue of y,. From the comparison with Fig. 7 this
broader initial line is expected. When y, in-
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FIQ. 9. ESR line shape f» values of y& between 10
and 10 Q and for F0=0 1 Q. The other parameters are
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FIG. 12. ESR line shape for values of y& between 10"
and 5 cm and for yp-—0.1 cm . The other parameters
are the same as in Fig. 2(a).

creases, the lines become first broader and then
smaller for y, &5000 G.

For y, = 1000 G (= 0.1 cm ') in Fig. 11 we have
for small values of y, a single ESR line, stemming
from the transitions between the energy levels E,
and E, and between E, and E,. This line may be
compared with that in Fig. 7 for y, =1000 G. With
increasing nonlocal fluctuations the line broadens
up to y, = 5000 0; for still larger values of y, the
narrowing sets in. From Fig. 4(a) we see that the
imaginary part of the eigenvalue 8, and thus the
line position are independent of y.„whereas the
real part of this eigenvalue in Fig. 4(b) first in-,
creases and then decreases.

In Fig. 12, in addition to the line stemming from
the transitions between E, and E, and between E~
and E„ the line originating in the transitions be-
tween E, and E, and between E, and E4 also are
shown. The width of both lines first increases up
to y, =0.5 cm ' and then decreases. The eigenval-
ues belonging to this case are given in Figs. 4(a)
and 4(b).

The ESR spectrum for y, = 20 cm"' shows also
only two lines (Fig. 13), which are relatively
broad for small values of y, . With increasing val-

ues of y, the widths of the two lines become small-
er The. eigenvalues R, and 8» in Figs. 5(a) and
5(b) describe this situation.

Additional structure shows the ESR spectrum in
Fig. 14 for y, =100 cm"'. From Fig. 8 we know
that for this value of y, and small values of y„
four ESH lines begin to appear. This may also
be seen from Fig. 2(b) for the imaginary parts
of the eigenvalues. With increasing values of y„
the four lines become broader, merge into two
lines, and finally the two lines become smaller.

This behavior is still more distinct in the spec-
trum of Fig. 15. For yp 1000 cm ' and small val-
ues of y, we have four narrow ESR lines, a situa-
tion which is also pictured in Fig. 8. he position
of these lines is determined by'the differences of
the energy eigenvalues of the noninteracting mole-
cules in the unit cell. When y, increases these
lines become broader until for y, = 0.02 cm ' they
merge by pairs into two lines which narrow when

y, increases further. . This behavior is reflected
in the y, dependence of the imaginary and real
parts of the eigenvalues in Figs. 6(a) and 6(b).
For y, = 0.02 cm ' the imaginary parts of A, and

B,~ and those of B» and R» merge into two values
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this case it is obvious that 2Z, is the hopping rate
between the two molecules in the pair. From (4.2)
we see that the density-matrix equations in the co-
herent-state representation decay into two sepa-
rate sets of equations for the diagonal and non-
diagonal elements. [The coupling between the two
sets is introduced by the spin-orbit interaction in
the Hamiltonian of (2.8).] Equations (4.2a) and (4.2b)
then show that y, is the hopping rate between the
states of the upper and lower Davydov components.

After these preliminary remarks we consider
Fig. 7. For small values of y, we have two &m=1
ESR lines (besides the other two at &o= 4600 G) at
co, = 3440 G and at v, = 3436 G corresponding to
transitions between E, and E, and between E4 and

E, in the upper and lower Davydov components.
With increasing values of y, the'two lines broaden
and coalesce for y, =2 G, i.e. , 2y, =~, —~,. For
still larger values of y, the single line becomes
smaller. This situation may be described as a
motional narrowing, where the spin does not move
between different sites, but is scattered between
the two Davydov states with a scattering rate y,
as described in (4.2a) and (4.2b). This limiting
case of our model has been treated by van't Hof
and Schmidt. ." However, in this motional narrow-
ing picture the broadening of the ESR lines and the
splitting into four lines for still larger values of

y, (Fig. 8) cannot be explained; in order to discuss
these effects, the whole 36& 36 density matrix has
to be considered.

The other limiting case of the completely inco-
herent exciton motion is shown in Fig. 15 for y,
=1000 cm '. For very small values of p, we have
the four ESR lines corresponding to &m = 1 transi-
tions in the A and B molecules (see Table IV). If
4y, = 0.08 cm ' and thus equals the difference in
the line positions of corresponding ESR transitions
in the two molecules, the lines merge into a single
line which narrows when y, increases further.
This is exactly the usual case of motional narrow-
ing, where the excitation hops between the two
molecules as described in (4.1a) and (4.1b), if the
nondiagonal terms p» and p» may be neglected.

The situation is similar in Figs. 13 and 14,
where y, »2J and the exciton motion is therefore
incoherent. In Figs. 9 to 12, however, yo«2J,
and if y, is small too, we have the coherent exciton
motion. With increasing values of y, the damping
parts of the eigenvalues S, and S, in (4.3) increase.
For y, = 0.5 cm ' (=5000 G), i.e. , 4y, = 2 cm ', the
Qamping part of the eigenvalues has the same mag-
nitude as the oscillatory part, and we have now the
situation that previously has been denoted as over-
damped. When y, increases further, the narrowing
of the ESR lines starts.

In our calculation we have described the exciton

motion within the Haken-Strobl model, which takes
into account the influence of the phonons in a sto-
chastic manner. This has the consequences that
in the stationary state of the model all energy
levels in the upper and lower Davodov components
are populated with the same occupation probability,
whereas in the real crystal we have a Boltzmann
distribution. Taking this into account, we expect
for kT(2 J the contribution to the ESR spectrum of
the transitions between E, and E, at 3440 G in the
upper Davydov component to be weaker thanthat of
the transition between E4 and E, at 3436 G in the
lower Davydov component (see Fig. 7). The details
of the transition in Fig. 7 from the two lines to the
single averaged line will therefore depend on how

y, and the Boltzmann-factor increase with temper-
ature. For QT &2J, however, the calculations
should directly apply to experimental situations.
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APPENDIX A: EQUATION OF MOTION
FOR THE DENSITY OPERATOR

p = r IH ~ pl = &Lp i— (A1.3)

the Liouville operator L may be split into two
terms in the same way as the Hamiltonian (Al. l):

L =Lo+L, (t).

Introducing the interaction picture by

p(t) =e "o'p, (t),

(A1.4)

(A1.5)

we arrive at the following equation of motion for
P r(t):

pr(t) = iLa(t)Pr(t), - (A1.6)

Here we give a concise derivation of the equation
of motion for the density operator of a system,
whose Hamiltonian consists of a time-independent
part H, and of a stochastically time-dependent
part H, (t),

H =H, +H, (t). (A1.1)

In the Haken-Strobl model for the coupled coherent
and incoherent motion of excitons H, (t) is given by

H, (t) = Q h„„.(t)bt b„, , (A1.2)
n n'

0~

where h„„,(f) is a 5-correlated Gaussian stochastic
process with disappearing mean value, and b~ and
b„are creation and annihilation operators for an
electron-hole pair localized at site n.

The equation of motion for the density operator
p may be written in the following way:
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with

L (t) —e&~o[L (t)(p o

The solution of this equation is given by

t

p, (t) = T exp (-i dt' L„(t'))p(0),
0

(A1.7)

(A1.8)

a(t), the equation of motion (A1.6) may be written

p, =2[6/6a(t)]p, [a(t), t] ~, &,],. (Al. 10)

We are not interested 'in the quantity p(t) containing
the fluctuations, but in quantity p(t) averaged over
the fluctuations. Denoting this averaging proce-
dure by the operator I', projecting out the fluctua-
tions, . we have

where T is the time-ordering operator. We now
introduce a generalized density operator by

t

p [a(t), t]= T exp (-i dt' a(t') 1.„(t'))p(0),
0

(A1.9)

and using the functional derivative with respect to

p(t)=J'P(t)=e '"'&p (t)=s '"'p (t) (Al. 11)

From (A1.10) we arrive at the equation of motion
for pr(t):

pr(t)=I'pr=2[6/6a(t)]&prfa(t), t]~ «]-, . (A1.12)

Using the properties of the stochastic process
k„„e(t), the density operator in the interaction pic-
ture (A1.9) may be written

t t

apt[ a(t)t) =TP exp ,(-i dt a(t')L, t(t )'p(0) = T e'xp —— dt,
0 0

t
dt, k, (t„ t)a(t)a(t, ))p(,0), , (Al. 13)

where the cumulant k, (t„t, ) is given by

k, (t„t, ) = PL,r(t, )L,r(t, )= 2 P g A(n, n', n", n'") 6(t, —t, )L,r„„.(t,)L,r„t „„,(t, ) .
n f1»~At

(A1.14)

In the last part of Eq. (A1.14) the explicity expression for L, (t), i.e.t,p for H, (t) according to (A1.2), has
been used. Carrying through the functional derivative with respect to a(t) in (A1.13), we have

dt, k, (t„t, )6(t —t, )a(t, ) +

1x exp
2

Applying the time ordering operator and using (A1.14) we arrive at

dt.k.(t„t.)0(t —t, )a(t,))
t
dt, k. (t„t, ) a(t, )a (t, )) p(0) .

(Al. 15)

Pr Q Q 2 A(n n n n )[Lkln tt (t)Lkr (t) + L krtttt. (t)L,r„„„,(t)]p(t) .
yt, n' n», n»

In the Haken-Strobl model for A(n', n', n", n'") the following expression has been used:

A(n, n', n", n" ) = y]„„][6„„6„,„+6„„6„,„„(1—6„„.)] .

This expression fulfills the symmetry relation

A(n, n', n", n"') = A(n", n"', n, n'),

(Al. 16)

(Al. 17)

(A1.18)

and with it, the equation of motion may be written

(Al. 19)pr=-P g A(n, n', n", n"')L„„„.(t)L„„„„,(t)p, (t).
gg» g»I

Going back to the Schrodinger picture, we obtain the following equation of motion for the density operator:

P(t) = rLop(t) —g g A(n, n', n-', n")L,„„,L,„.„„,p(t). (A1.20)
~» ~t»

This equation consists of a commutator describing the coherent motion and of adouble commutator stemming
from the fluctuating part of the Hamiltoniandk In the Haken-Strobl model, where n denotes the localization
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of the electron-hole pair, (A1.20) may be written in the following matrix notation:

p„„,=-i[H, p]„„,—21'p„„,+25„„.Q y(„„(p„,„+2(1-6„„.)y(„„.(p„„, (Al. 21)

(A1.22)

In the two-molecule model, n, n', n" = 11, 2] and I" = y, + y, .

APPENDIX B: CORRELATION FUNCTION
FOR THE ESR LINE SHAPE

L„we may expan. d L„p, according to

We consider a system described by the Liouville
operator L„which generally also contains damping
terms. The influence of an external time-depen-
dent perturbation is taken into account by the Liou-
ville- operator L~:

with

(A2.9)

(A2.10)

L~Q= [H~, Q]= —[A, Q]F cos(dt = L„QFc-os&et.

(A2. 1)

The equation of motion for the density operator
of the system is

Inserting this expansion into (A2. 8), the suscepti-
bility is given by

sp=LP

with

(A2. 2) (A2.»)

L=L +Lp,

and its solution may be written in the following

way:

p(t)= T exp (-i L(t")ttt") p( — ). (A2.4)

Expanding this expression up to linear terms in

L~ and assuming that p( —~) = p, describes the equi-
librium, we arrive at

p(t I= p t (Ff i e' 't.'t„ptppxpt(t t)
0

(A2.5)

L,Q=L,Q+ L,Q= [H„Q]+L,Q, (A2. 12)

where Ho describes the state of equilibrium and

L, the relaxation into that state. Explicitly, we
assume that po is given by

p, =e '"o P =(kT) '. (A2.18)

Using this expression for p„ from (A2. 8), we get,
in. the high- temperature approximation,

In the following we wish to derive a high-tempera-
ture version of (A2. 8). To that end we assume
that the Liouville operator of the system L, con-
sists of two parts:

The expectation value of an observable B,

(B(t))= TrBp(t) = TrBzp(t) =—(B,p(t))

is then given by

(A2. 6)

y" (u&) = —zp d~(B, e ' "L„H,) sin&f7 (A2.14)

d7 (B,e '~&'A) —sin&f7
d7

(A2. 16)

d7(B, e '~p'(L, A —L,A)) sin(t)7,

dz (B,e ' s'L„p,) cos(t)(t —7).
(A2.7) d7(B, e '~p'L, A) sinco7, (A2.16)

From this expression we obtain the imaginary
part y" of the susceptibility y, describing the re-
sponse of an observable B on a perturbation A:

dz(B, e '~p'A) tcos(d~

d7(B)e ' "L,A) sin(d, ~. (A2.17)
y" (&u) = i dz(B, e '~p'L„p, ) sin(d7. (A2.8)

Denoting by R, and p' the eigenvalues and eigen-
operators of L, and by g' the eigenoperators of '

Generally, L, consists of two parts Lyy and Ly2,
from which the first one describes relmation
within the electronic degrees of freedom''and the
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second one relaxation within. the spin system, If
the operator A contains only spin degrees of free-
dom, the contribution from L» vanishes exactly;
if furthermore the relaxation rates in L» are
small enough, the second term in (A2. 17) may be
neglected, and y" ((d) is given by

x"(te)=~ g(n p''n, ')(rl'an, ')(,„—p ).
(A2.20)

The normalization constant N is determined from

dT(B, e 'ip'A) cos(uT. (A2.18)

In the Haken-Strobl model the eigenoperator p'
describing the stationary solution (R,= 0) is pro-
portional to the unity operator. Using furtheron
Trp' 0-5„, the expression for the susceptibility
may be written

)("((d)d(d = 1,

and we have

N= lim iP (q'-, B p')(q', Ap')

(A2.21)

(A2.22)

)(rr (~) c(- P~ Q d ~(71', Btp') (q', A p')

xe '~~'cos~T. (A2. 19)

= lim i p—(q', B'p') (~', App)R,
Q~ 00

x [1n(n+ R,) —lnR,

+ in(o.' —R,) —ln(-R, )] . (A2.28)

Calculating the integral and taking into account
that the contribution of the term containing the
stationary eigenvalue R, disappears because of
~5(~) =0, we arrive at

R] = co) —gp] y

the square bracket in (A2. 23) gives

(A2.24)

Expressing the eigenvalue R, by its real and imag-
inary parts

lim [1n(o(+ (()& —iy&)+ ln(n —(()&+ iy&) —1n((a)& —iy&) —1n(-(a)&+ iy&)]

= lim l ln [(o.'+ (d, )'+y&]'i'exp -i arctan
Q+ CO]

/

+ ln [(n ((),)'+ y', ]' ' exp -i arctan ' —ln ((d, + y', )' 'exp iarcta-n —'
Q+ (d CO)

—(n (tp', ep))'r'exp —earn(an =' —a
(dg

(A2.25)

= lim [2 lna —1n(22(+ y() + 2i arctan (y&/9&) —iw] . (A2.28)

The expressions in small square brackets without
an index i give a constant factor to the sum of
(A2. 23); the evaluation of the sum in this case re-
sults in

no spin operators. If y"(&u) describes the ESR line
shape of triplet excitons, A and B are given by the
spin operator M„. In this case L,A is zero, and
the contribution of L, is zero too on account of

p ()7', B p')(q, Ap')R, . = (q', BiL,Ap') TrM„(H„M„]= TrH, [M„, M„]= 0. (A2.28)

~Tr(B L,A) . (A2.27)

The normalization constant is then given by

N = P (q', B'p')(q', A )(p-i )R

In the Haken-Strobl model, L, consists of a com-
mutator L, and a double commutator L, containing

x ln co',.+ y', + 2i arctan='
CO]

(A2.29)
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