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Wannier excitons in a thin crystal film
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Energy levels and wave functions of Wannier excitons in a crystal film whose thickness is smaller than the
size of the exciton are calculated. The exciton is found to behave like a two-dimensional hydrogenic atom
when projected onto a plane parallel to the film surface; it behaves like an independent particle and hole in a
potential well in the direction normal to the film. The effect of the finite thickness of the film is calculated
perturbatively. The energy-level scheme is plotted for a numerical example.

I. INTRODUCTION

Surface excitons and polaritons have been the
subject of a wide range of both experimental and
theoretical investigations' " in recent years. Most
of these works were concerned with what happen~
locally near the surface of a semi-infinite crystal.
However, the study of excitons in crystal slabs
of finite thickness has not received as much atten-
tion so far. Of particular interest is the case of
Wannier excitons in a thin semiconductor film.
Owing to the large static dielectric constant q and
small effective electron and hole masses in some
semiconductors the radius of the hydrogenlike
Wannier exciton can be as large as a few hundred
angstroms. If the thickness d of the film is com-
parable or less than the exciton diameter, it is
clear that the structure of the exciton itself will
be strongly affected by the finite geomet'ry of the
film. One might ask: Will the exciton be con-
structed like an oblately deformed hydrogen atom
or will the two surfaces exert such a destructive
influence that a hydrogen-atom-like exciton state
can no longer be formed'? How does the finite but
small thickness affect the exciton energy
levels?

We also recall that in a bulk crystal the exciton.
combines with a photon of the same momentum to
form a polariton, ""an excited eigenstate of the
crystal. A finite geometry such as that of a thin
film breaks the crystal symmetry, rendering it
possible fop the exciton to decay radiatively. The
decay of the Frenkel exciton under such circum-
stances was treated recently. " Interestingly, the
decay rate was found to be super-radiative. It
would be of great interest to study the correspond-
ing problem for the Wannier exciton. However,
before we can investigate the coupling with pho-
tons, the study of the exciton itself, the object
which undergoes radiative decay, must be comple-
ted.

In this paper we shall shelve for the energy levels

and the associated wave functions of Wannier ex-
eitons in a thin-crystal film. One might wonder
how such information about the exciton in a re-
stricted geometry can be found if one already has
difficulty trying to find the states of just a single
electron in such geometry. The answer is, of
course, that we are not starting from the basic
Hamiltonian for electrons in a finite lattice with
surfaces. We shall assume that the properties
of the Bloch electron in the bulk, including the
band energies, are known. The properties of the
exciton in thin films will ultimately be expressed
in terms of these bulk properties as well as a
parameter related to the work function associated
with the surfaces. The parameter represents the
height of the potential barrier that an electron from
within the film has to climb before it can leak out.
However, for simplicity, we shall neglect the dis-
tortion of the electron potential at the unit cells
near the surface barrier. This implies that the
possibility of Tamm-type electron surface states" "
and their effect on the exciton will be excluded.

The method of the equivalent Hamiltonian will
be used. The basic idea in treating our problem
with finite geometry is to represent the effect of-
the broken crystal symmetry introduced by the
surfaces by an appropriate external potential in
the equivalent Hamiltonian, while the "kinetic-en-
ergy" term is still characterized by the band
energy of the electron in the bulk. Our calculation
is facilitated by the assumption of small film
thickness d which renders a perturbation calcula-
tion possible. Qualitatively, our result shows
that the exciton levels are divided into separate
bands with band spacing essentially determined
by the small thickness d. The levels in each band
are like those of two-dimensional hydrogen atoms,
but modified by the finite film thickness. Although
ihe actual calculation is carried out for a simple
cubic lattice, the method employed in reaching the
solution and the qualitative results are expected to
be valid for other types of lattice.
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II. FORMULATION OF THE EXCITON PROBLEM Uriim+ ~

For simplicity we consider a semiconductor
crystal with two nondegenerate energy bands. The
valence band is denoted by v and the conduction
band by e. The ground state is the state in which
the e band is fully occupied and the e band com-
pletely empty. The one-electron-one-hole excited
state of the bulk crystal can be written

~

e j; u i ) = (C')'C".
~
+,„,), (l)

where (C-') t creates an electron described by thej
Wannier function of band c and lattice site j, and
C-" annihilates an electron of band g and site 1. The

1

relations between the Wannier function a„(R—R,)
and the Bloch function t'ai„-„(R) are given by

a„(R—R,.) = ~g e '~'"vtji„-„(R)

and

@„-„(R)= g e'"'"ia„(R—R,.) .
t

Let the z axis be in the direction normal to the
film surfaces. To avoid complications we assume
the x-y plane to be para, llel to the crystal planes,
for example, of a cubic crystal.

The crystal-film potential U«, acting on an
electron is then periodic in the x-y plane but is
cut off in the z direction near the surfaces at ~z

~

= —,'d, where potential barriers rise instead. With-
in the film where ~z

~

& —,d, U„., is assumed to be
periodic also along the z direction, without any
distortion even near the surfaces. Thus, electron
surface states of the Ta.mm type" "do not exist
in our model. Of course, the potential along a
line parallel to the z axis still depends on the dis-
tance of the line from the z axis.

We are now going to represent the effect of the
potential barrier by superimposing a finite attrac-
tive square well

/z/ &-,'d
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FIG. 1. Periodic potential and the potential barrier

for the fiLm as seen along a line parallel to the z axis.

Pl V' + Uy ig(R) + V (R)

=a, + V'(R) (6)

and V,~
is the Coulomb repulsion among electrons.

We can expand the excitonic eigenstates of H in
terms of the particle-hole states of Eq. (1) as

~E)= g g C(j, i)~c],vi).
j 1

The expanSion coefficients C(j, l) satisfy the
Schrbdinger equation

v j vi
~
P h, v gP i, ~vj', vi')C(j', i')

jI gl i j&t

=EC(j, ], ). (8)

The evaluation of the matrix elements is tedious
but standard. " The important point to note is that

"UbU

a superposition of the bulk potential Uh„,„(5) and
V'(R), the variations of which along the line paral-
lel to the z axis is plotted in Fig. 2.

According to Fig. 2 we can look upon the crystal
film as a bulk crystal with no boundary, but acted
on by an external potential V'(R). The Hamiltonian
for electrons can thus be written

ii= P(i,vP P i, ,),
where

on the film potential described above. Note that
the'total potential outside the film is just a con-
stant. However, to make use of the bulk parame-
ters we define U,„,~(R) to be the fully periodic
potential of the bulk crystal with no boundaries.
This U~„„(R) coincides with the film potential
U„, (R) for

~

z
~

—,'d, but differs from it for
~

z
~

—,'d
where the potential becomes constant for the film.
Therefore, along a line parallel to the z axis, the
actual single-particle potential U«, (R)+ V(z) as
seen by an electron in the film is as plotted in

Fig. 1. This same potential can be considered as
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FIG. 2. Potential Uz&&m+ V(z) decomposed into U~&&

.+ V' as seen aj.ong a line parallel to the z axis.
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now the term ho in Eq. (6) is diagonal with respect
to the Bloch states of the bulk crystal given'by
Eq. (3). This is why we purposely extracted h,
from the actual Hamiltonian. Other terms in the
Hamiltonian such as the potential barriers at the
surfaces are then treated as external potentials
acting on the electrons and can be conveniently
expressed in the representation of the Bloch
states or, via Eq. (3), of the Wannier states.

The matrix elements" of the Coulombic QQ~&, V,.&

give rise to, in particular, the interaction between
the particle c j and the hole el. First consider the
exchange matrix elements

x a*„(r, —1)a,( r, —j ) d r, d r, .
In the limit of a large exciton, the exciton radius
ao is much greater than the spatial spread of any
individual Wannier function. This means that in
the above integral the variation of V(r, —r,}, which
is on a length sca, le of a„may be neglected in the
length scale of the Wannier functions, leading to
the vanishing of the above exchange matrix ele-
ment on account of the orthogonality of the Wannier
functions for different bands. This result is true
regardless of the thickness of the film. Similarly
the direct matrix elements

2 [h:( j —j ') + &c j
I

V'
I
c j '&]C( j ', 1)

—g [So(1'-1)+&vl'I V'Ivl&]C(j, 1')

-(e'/q
I
j —1 l)C(j, 1)=(E—E„)C(j,1), (9)

where q is the dielectric constant, E„~is the true
ground-state energy of the thin film, and

&'„(1'—1)= &~ 1'
I

&Q
I
» & ~

(10a)

(lob)

g()(j jd) Q E (k )e(k ( j j )

h'(1' —1}=—g E (k)e"" ''.
N

k

Conversely, we have

E,(k ) = g &'.( j )e '"",

(1la)

(lib)

(11c)

We remind ourselves that, on the left-hand side
of Eq. (9), the minus sign of the second term indi-
cates that it is associated with the hole and that of
the third term shows that it is a particle-hole in-
teraction, always opposite in sign to the particle-
particle interaction. The hopping integrals of Eq.
(10) are, as usual, related to the band energies
E,(k }and E„(k ) by

V ) „".= a,*(r, —j ')a,(r, —j ) V(r, —r, )

x a„*(r,—1)a„(r,—1') dr, dr,
are vanishingly small in the same limit of ao»a
(lattice spacing) due to the orthogonality of Wan-
nier functions referring to different lattice sites
when (j, 1)e(j', 1'). Thus we have to take into ac-
count only the diagonal element V,-' „"-' which can
be approximated as e'/q

I
j —1 I, considering the

la.rge separation
I
j —1

I
as compared to the spread

of a Wannier function. The above approximations,
usually made in the study of Wannier excitons in
the bulk crystal, are valid also in the present
case of a thin film since they are based just on the
fact that a, »-a, which is true for both cases. Oth-
er matrix elements of V,-,. can be incorporated in-
to the single-particle band energy or into the
ground-state energy. These ter'ms can be ignored
if we assume that our Bloch states satisfy a Har-
tree-Fock-type equation with the average effect
of the two-particle interaction t/'„already taken
into account and if we are only interested in ex-
cited levels as measured from the true ground
state.

The matrix elements of h., in the Wannier repre-
sentation lead to the usual hopping intergrals.
Eventually, Eq. (8) can be reduced to

E„(k)= P 80„(i)e-"'.
1

Using Eq. (11) one can immediately show, as
usual, "

g h', ( j —j')C(i', 1)= E,(-zV.)C( j, 1)
I

(lid)

(12a)

&'„( l - l')C( j, 1') = E„( &;)C( j, 1)
1'

and substitute them into Eq. (9) to obtain

2

+ Z &cj IV'lcj'&C(j', 1)

(12b)

—P &vl'IV l~i&c(j, l')=(Z z„,)c(j,l),

where

(13)

(v1'
~

)"
~

v1) =f a,"(R —(')'V'(R)a, (R —1) dR,

etc. We shall now make the approximation that,
for region within the film,
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(c j [
V'

/
c j ') = V,(z-)5- -, , (14a)

(v 1'
i
V'i v l) = V„(z-,)5-, -, (14b)

This approximation will be valid for any V'(R)
which varies slowly in the scale of the Wannier
functions such as the square-well potential of Eq.
(4) in the present case. For regions outside the
film V'(8) varies rapidly and the local approxima-
tion breaks down. The Schr5dinger equation (13)
reduces, inside the film region, to

~ ~

2

(zri 7)+—V(,z.) —1'.((V.,) —V(z.,) — -. - ) C( i 1)

=(E-E„,)C(i, 1), (15)

where V(z) is given by Eq. (4) since V' is the same
as V(z) for ~z~&

—'d. Equation (13) is valid, of
course, for both the regions outside and inside the

film.
For simplicity we assume simple cubic lattice

and energy bands of the tight-binding form

E,(k) = ED+ E„,+ 6y,

—2y,(cosh~+ cosk,a+ cosk, a), (16a)

E„(k ) = E, —6y„+ 2y„(cosh„a+ cosk, a+ cosk, a),
(16b)

where a is the lattice spacing and E, is the energy
at the top of the valance band. When an electron
is in an empty lattice with no kinetic energy, its
energy is defined to be zero. Since the square
well V(z) in Eq. (15) affects only the motion in
z direction we may expand E„and E, to second or-
der in k„and k, in the effective-mass approxima-
tion. Thus Eq. (15) becomes

~ ~(. 8
1 —cos

~j
ia -+V(z,)+ ~, 1 —cosmic —V(z„)

me& - k ~ze -
' m

@2 g2 @2 g2 2

(r'+ z') '1'I 7'( r., z.; V„)=izlO(r„z, ; F z) (17„,)

III. EXCITON IN THE LIMIT OF SMALL FILM THICKNESS

To solve Eq. (17) for ~z & —,'d and Eq. (13) for
~z

~

& ~d, we first separate the Hamiltonian in.o
three parts

H=H +H„+H',
where

li, =h,(z,) -h„(z„), (20a)

e' ' (. e-
1 —cos~ ia — -+ED+X, + V(z),

)I
m+a i Bz

h,(z}=&
~

z
~

&-,'d (20b)
@2 s

, —, + V(g), [z(&-'d (20c)

where we introduced the notations

y, = h '/2m, *a', y„=5'/2m*„a'

g=g g E
(18)

j=(r„g,), 1=(r„,z„), r=r, —r„, z=z, —z„,
)lv(r„z, ; r„,z„)= C(j, 1) .

Note that r„r„, and r are two-dimensional posi-
tion vectors.

S2 9' 8' 82 e2

2M BR, 2p Br' gr ' (21)

1 1
z ( '+ *)'") ' (22)

where M and p. are the total mass and the reduced
mass of the electron hole system, respectively.
R, is the two-dimensional position vector of the
center of mass of the system in the x-y plane. In
Eq. (20), the Hamiltonian H, of the electron and
hole is written as the energy of the z-directional
motion of the single electron in the e band minus
that of the single electron in the v band. For ~z

~

& —,'d, h,(z) and h„(z) given by Eqs. (20b) and (20d)
are written according to Eq. (17) except for the
explicit appearance of E, and E„,. For the region
~z ~&-,'d we recall that the single-particle Hamil-
tonian h of Eq. (6) is that of a free electron in po-
tential V(z) outside the film (see Fig. 1) while the
same h is responsible for Eqs. (20b) and (20d) in-
side the film.

In the limit of small film thickness, i.e., d is
small compared to the radius go of exciton, we
can treat H' of Eq. (22) as a perturbation, for we
can then roughly expand H' about z = 0 so that

t'. 8
1 —cos) ia —+E,+ V(z),

(mfa ), Bz

h„(z) =& ~z~&-.'d (20d)
12 s2

, , +V(),
[

[&-',d (20 )

Then, according to Eqs. (19)-(21}the motion in the
x-y plane is separable from that in the z direc-
tion. The unperturbed wave function is in product
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form

(23)

h,(Z,)V,,(Z,) = E,"'q, ,(Z,),
—&.(Z,)P,„(Z,) = E,'"'P«„(Z«)

e'
!!(r)= E„q(r),

2p. er

82
X(R, }= EzX(R, ),

Sgc.m.

with

g(o) E (g)+ E(h)+ E + Eg 8 r' R

(24)

(27)

+,(i, I) = m„,(z,)P,„(z„)g(r )X(R, ) .

The wave equations satisfied by these functions
are

$,' tan((g/2a) = q,',
—$' cot( $

' d/2a) = q
' .

(33a)

(33b)

Note that E, and E„,appear explicitly in Eqs. (29)
and (32) because we match the energies within and
without the film. The relevant quantity is actually
Pp Ep or Vp —E, —Eg p

which provides a measure
of the work function. The Eqs. (29}and (30) can
be solved numerically or graphically for the elec-
tron energy levels associated with the z-direc-
tional motion; Eqs. (32) and (33) can be similarly
solved for the hole.

The relative motion of the electron and the hole
in the x-y plane is described by Eq. (26). It is
just like that of a two-dimensional hydrogen atom.
It can be solved exactly to give

The solution to the square-well problem of Eq.
(24) are

E(n) = tu e /2z'—I«'(n+ 2}', n = 0, 1,2, . . . (34)

A, cosa.z„
i
z, i

&-,'d

~e e g e-~+tze[ g
in (Z )=

+ e 2

for even-parity states, and

(28a)
( r ) =

~2
e' '&„[2x/(n -', )a, ]

1;~ [(n+m)! ]'(2n+1} (n+ 2)a,
V~~

' (n-m)! 2

A sue z„ iz, i&-,'d
(28b)

for odd-parity states. Substitution of Eq. (28) into
Eq. (24} yields the energy relation

I'n'
~

nz.*a 2ma2

(29)

—$ cot($ d/2a)=q .
Similarly, the solutions to Eq. (25) are

A~cosk~z«)
~
z«~ & 2d

«E ie-n'~In«l . I I )

(30b)

{31a)

for eveg, -parity states, and

where we have defined $, =k,a and q, =K,a. Match-
ing of the logarithmic derivatives at ~z ~=-,d yields

$,tan($, d/2a), = q, , (30a)

-r/( n+i /2 }a r 2 I ml

(n+ 2)a, )
p r

n+ 1m l (n p )a
1

(35)

where L'(p} is the Laguerre polynomial, "and

a, = eh'/i«e'. The principal quantum number n can
take any positive integral values including zero.
The angular momentum quantum number m = 0, +1,
+ 2, . . . , with

~

m
~

- n for a given n.
Equation (27) describes the free motion of the

center of mass of the exciton in the x-y plane.
%e shall simply assume zero momentum for this
motion.

From Eqs. (23)-(27), (29), (30), and (32)—(35)
we see that in the zeroth-order solution the %an-
nier exciton is structured like a two-dimensional
hydrogen atom in the plane parallel to the film
surface; but, in the normal direction it behaves
like independent electron and hole trapped in the
potential well characterized by the work function of
the crystal.

A sink z«, iz«i& d

+«««) ~ pie n' In«l I !) &-d (31b)
IV. PERTURBATIVE EFFECT OF FINITE THICKNESS

ON THE EXCITON

for odd-parity states. The corresponding energy
relation is

S2 g2 12

(32)

and the condition resulting from matching of loga-
rithmic derivatives is

As we saw in Sec. III, the assumption of small
thickness of the crystal film enables us to separate
the motion of the electron and hole in z direction
from that in the x-y plane. In fact, the energy-
level scheme is such that level spacings associated
with the z motion are comparatively the largest;
the hydrogen-atom-like motion in the x-y plane
will then split each of these levels into a set of
sublevels. However, the nonzero thickness will
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modify these sublevels associated strictly with the
two-dimensional hydrogen-atom-like states. This
modification can be calculated by treating H' given
by Eg. (22) perturbatively.

The perturbation energy is given by

dz~ dz„g~ z, p~ z„'I Z, 36

Basically, the dimensionless perturbation para-
meter is d'/a', . However, one should not try to
approximate H' by expanding about. z= 0, or the
integral in Eg. (3'I) would diverge on account of the
lower limit for levels with m = O. %e shall now
calculate E' for the most important level with
n=m =0 and even parity P(z). Since the Laguerre
polynomial L~= 1, we have

where

2 1 1
z( )= i2* ' f [ ...(o)i' ——),,z,), ) s o

(3'I)

and

I(Z) = — e '[1-p/(p'+ Z')'~']dp
ao

1+ ~-
(38)

where II,(
I
Z I) is the Struve function of order 1 and

I)I ( IZ I) is the Neuman function of order 1. Sincel
I(Z) is obviously an even function of Z, we can ob-
tain E' by using Eqs. (28a), (31a), (36), and (3V)

2 d/2 OO d/2
2 2E' A-' d, cos'(k, )+B' dz -'"" A," d „cos'(k.' „)+B," d „e '"" I(Z),

d 2
(39)

where the two bracketed terms should be under-
stood as integral operators acting on I(Z). Exact
evaluation of the integral has to be done on a com-
puter. To a high degree of accuracy, however, it
can be evaluated analytically if one notes that the
function

(z) =1+Izl l~lz
I
[a (Izl) x,(fzl)]

z

or equivalently,

(40)

4-

0

-2-

vasya ~
I I

N, (x)
—---' H((x)—-—H (x) -N (x)

I

--—J (x)

I

4

FlG. 3. Approximate
representation of the diff-
erence of the Struve func-
tion H~(Z) and the Neuman
function N &(Z) .

-8-
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FIG. 4. Graphical solu-
tions of the energy eigen-
values E RIld E "

—--—-- Eq, (29)—-—- —Eq. {32)
Eqs. (30a) and(33a)

—————Eqs.{30b)and(33b)

where

2/ fo lzl&1. (41)

5.I

5,352

4.792
3.243

3.I58

3.0I2

2,9I6

4.84

3,626
3.516

2.687

2.492

A comparison of H, —N, with J is plotted in Fig.
3. After l(Z) is replaced by 4f(Z)la, in Eq. (39),
the integration becomes straightforward but very
tedious. We shall present the numerical results for
a slab with several different values for the thick-
ness d.

We consider a semiconductor with Vp Ep 6

eV, q =15, a=3 A, E„,=0.7 eV, m,*=0.04 m, and
m„*=0.2 m. The values of the parameters corre-
spond roughly to those of Ge. Figure 4 shows the
graphical solutions to Eqs. (29)—(30) and to Eqs.
(32) (33) for d= 60 A as an example. The computed
ldvel schemes for E,'",E,'"' and the lowest F,
levels are shown in Fig. 5. Each of these E, levels
splits into a band of sub levels due to the two-di-
mensional hydrogenic motion according to Eq. (34)
and is shown schematically in Fig. 6. Then, each
sublevel is perturbed by H' to give an energy cor-
rection E'. The lowest two sublevels in each band
are E„(n=0)= 7.58x10' eV and E„(~=1)=-0.84
&&10 ' eV relative to the original level before split-
ting. The first-order perturbation energy calcu-
lated from Eq. (39) is E'= 2.42 x10 ' eV for d= 60
A, or about 36% of the spacing between the sub-
levels. Therefore, treating H' of Eq. (22) as a
perturbation is justified for d small compared with
a„which is approximately 260 A in the present
numerical example. In fact, a very rough estimate
of the various terms in H of Eqs. (19)-(22) could
have been made before we launched into the actual
computation. Clearly, the level spacing associated

2.26

0.988

0.258

2.887

2.285

I.729

I.228

0.804

0.458

0.198
0.05I9

2,186
2.I46

I.886

1.76$

I.4I6

I.1 56

I, OI

l

l

l
1

Ez Er E~+E„+E'

A=0 g=0
/

/
/

/

(e)
Ez Egap

(h)
Z

(e) F(h)
Z 2 -Z

FIG. 5. Spectra E, E " and the lowest levels
&e)E,=E~''+E',~ . All energies are in eV.

FIG. 6. Splitting of each E, level into a band of hy-
drogenic sublevels with each corrected further by per-
turbation energy E'.
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with E,"' or E,'"' is of the order of ff'/m, *d or 5'/
m*„d according to the uncertainty principle. The
energy spacing between the sublevels is of the
order of

2 g2 d 2

pe Pd Qp
2 2

appropriate for hydrogenic states. If we expanded
H' of Eq. (22) about s= 0 we would have obtained

Then,

However, the estimate of E' using an H' ex-
panded about z =0 is not accurate for the two-di-
mensional hydrogenic states with zero angular
momentum (i.e., the m =0 states), for such states
have nonvanishing probability at x= 0 according
to Eq. (35), causing a divergent result for (1/x').

This is why our E' computed from Eq. (36) or Eq.
(39) is considerably larger than the above esti-
mate. On the other hand, the estimate can indeed
be used for other m e0 states for which (l/r') is
finite.

Calculations for d=120 A yield E'=4.77 x10-' ep,
which is almost comparable to 4E„and, therefore,
cannot be trusted as a perturbation. This shows
that our present microscopic analysis, which de-
pends on the method of perturbation in an essen-
tial way, is valid for film thickness less than 40
layers or so. For much thicker films, approaches
using the concept of dielectric constant to treat the
polarization involving the electrons and the holes
together with the corresponding macroscopic boun-
dary conditions at the surfaces should be valid. "
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