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Lattice specific heats of cobalt and ruthenium
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The nearest-neighbor central-force model of Srinivasan and Ramji Rao has been used to calculate the
lattice specific heats of cobalt and ruthenium as a function of temperature. The frequency distribution
function needed for the specific-heat calculations has been drawn by constructing a histogram involving a
total number of 19 380 frequencies. The theoretical C~ values are compared with C~ values obtained from
experimental data on the specific heat at constant pressure C~. There is reasonably good agreement between
theory and experiment for both cobalt and ruthenium. The theoretical dispersion curves in the [0001]
direction for ruthenium have been compared with the available experimental measurements and the
agreement is fairly good except for one of the optical branches.

I.-INTRODUCTION

Cobalt and ruthenium are metals which have the
hexagonal-close-packed structure. The second-
order elastic (SOE) constants of these metals have
been measured as a function of temperature by
Fisher and Dever. ' The dispersion curves for
ruthenium were measured only in the c direction
by Smith et al.' The temperature dependence of
the specific heat for these metals has also been
reported and compiled. 3

Srinivasan and Ramji Rao "proposed a central-
force model with nearest-neighbor interactions to
calculate the lattice dynamics, third-order elastic
(TOE) constants, and thermal expansion of hcp
metals. This model was used by the present au-
thors to study the lattice dynamics, TOE constants,
and thermal expansion of erbium, ' cobalt, ' ruthe-
nium, ' and scandium. In this paper the tempera-
ture dependence of the lattice specific heat of
cobalt and ruthenium has been calculated using
this model and compared with experimental re-
sults. The lattice dynamics of ruthenium in the
[0001] direction has also been compared with the
experimental measurements.

Ref. 4 and they involve a parameter g which is
defined

rl=nb (n-m)/2MD"". (2.3)

Here M is the mass of the atom and D is the lat-
tice constant in the basal plane. The experimental
SOE constants C» and C33 of the metal have been
used to determine an average value of g. Figure 1
shows the comparison of the lattice dynamics of
ruthenium in the [0001] direction with the experi-
mental data of Smith et al.'

The secular equation is solved for different wave
vectors q: and the corresponding normal-mode fre-
quencies are obtained using a computer program
(IBM 3"10/155). A grid of 213 points in the irre
ducible volume of the Brillouin zone is chosen for

II. FREQUENCY DISTRIBUTION FUNCTION
FOR COBALT AND RUTHENIUM

IN THE CENTRAL-FORCE MODEL

In this model the central interaction potential
has the form

C (r) = -a/r" + b/r" . (2.1)

The normal-mode frequencies of the lattice vibra-
tions are obtained as solutions of the determinant
equation 0 0.1 0.2 0.3 0.4

~
DElr(~) ~a 5, 0 [ 0 (2.2)

Drx (tl) are the coupling coefficients. The expres-
sions for these coupling coefficients are given in

FIG. 1. Theoretical dispersion curves for ruthenium
in the [0001] direction. Experimental points are denoted
as e LO, i TO, OLA, UTA.
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2.4 TABLE I. Values of the constants used in the present
calculations.
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FIG. 4. (a) Specific heat of cobalt from 0 to 300'K.
(b) Specific heat of cobalt from 0 to 70 K.

C «( T ) = 3R Q g((o) o'((u, T)/ Q g (ur), (3.1)

where a (a&, T) is the Einstein specific-heat func-
tion and R is the gas constant expressed in calo-
ries/K mole. Figures 4 and 5 show the results of
the present calculations for cobalt and ruthenium.
The full circles in these figures are values of C ~~

calculated from the experimental measurements
of C~ at different temperatures, ' as described
below.

The specific heat at constant pressure C~, is
related to the specific heat at constant volume C~
by the well-known thermodynamic relation

CJ-, = C„+9a2 TV/ X . (3.2)

Thus to calculate C~ knowing C~, one must also
have a knowledge of & and y at that temperature.
However, if the second term which is called the
dilation term C" is written in the form

C~=9n2 TVC2/C~x,

and letting

2 = 9a'V/ y C2~,

(3.3)

(3.4)
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FIG. 5. (a) Specific heat of ruthenium from 0 to 300'K.
@) Specific heat of ruthenium from 0 to 70 K.

C"=AC2 T.P (3.5)

It has been observed experimentally that A is al-
most constant over a wide range of temperatures.
Hence it is sufficient if the value of A is known at
room temperature for converting C~ to C~. The
electronic contribution to specific heat C~ given
by

C~=y 7, (3.6)

where y is the electronic-specific-heat constant,
is to be subtracted from C~ to finally yield C~,
the lattice contribution to the specific heat. The
values of A and y for cobalt and ruthenium have
been taken from Gschneidner's compilation" and
are given in Table I.

IV. DISCUSSION

The phonon dispersion curves in the [0001] di-
rection calculated on this model for ruthenium
are found to be in fairly good agreement with ex-
periment except for one optical branch, as seen
in Fig. 1. The TA branch is in good agreement
with experiment. The LA branch deviates from
experiment above q = 0.3 and at the zone boundary
(A, ) the discrepancy is about 14%%up. The experi-
mental frequencies are higher than the calculated
frequencies for the TO branch and the difference
is about 8%. The LQ branch is higher than the
experimental frequencies by about 25Pg, near the
zone center.

Considering the fact that this model requires
only a knowledge of the SOE constants of the met-
al, the agreement between theory and experiment
is fairly good. This is further vindicated by the
fact that the theoretical specific-heat values are
in overall good agreement with the corresponding
experimental values for both cobalt and ruthenium
as seen from Figs. 4 and 5, respectively.

The agreement of the calculated C~~ values using
the frequency distribution functions of this model
with those obtained from experimental C„values
is very good above 50 K for both metals. At tem-
peratures below 50 K the agreement is poorer, in
both cases. This could be due to the fact that the
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experimental measurements at low temperatures
involve a greater degree of uncertainty, com-
pared to the measurements at higher tempera-
tures. Further, at low temperatures, the elec-
tronic contribution to the specific heat C~ is com-
parable to the lattice contribution C~~ and any error
in the determination of y, the electronic coeffi-
cient, from low-temperature speeifie-heat data
could result in an incorrect estimation of C'„. In
view of these reasons one may conclude that this

model provides a reasonably good description of
the contributions of the phonons to the heat capac-
ity of these two metals.
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