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Effect of edge anomaly on the valence-band Auger spectra of metals
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The processes responsible for the anomalous edge behavior in the x-ray band spectra of metals are found to

play important roles in modifying the intensity of CVV Auger-electron emission spectra. The dynamical

effects related to the sudden switching of the core-hole potential are known to produce a power-law behavior

in the neighborhood of the upper emission edge. Using simplified diagrams and a realistic pseudopotential for

the core-hole interaction, we have extended the edge theory to energies well below the Auger emission edge.

A significant shift in the position of the maximum of the L» VV Auger emission intensity of Al is calculated.

I. INTRODUCTION

a = -2 I (2 l + 1)(~) (2)

where, as in ND theory, i5, 's are the phase shifts
of the Fermi-level electrons scattered by the ini-
5.al bound core hole.

In the case of x-ray band spectra, the power-law .

exponent was found to be'

u," =25, /w+u.

Let us note that in the Auger exponent (1), only
the I =0 contribution is retained. This is reason-
able because of the short-range character of the
Auger colhsion in which a large momentum is
transferred to the ejected electron. The exponent
for the x-ray spectra depends sensitively on the
symmetry of the core level, i.e., the E value de-
pends on the nature of the x-ray transition and is

The effect of excitations of weak-energy elec-
tron-hole pairs on the x-, ray band spectra of met-
als was first investigated by Mahan' and Nozihres
and deDominicis' (ND). It was found that such ex-
citations were responsible for the anomalous be-
havior of the soft-x-ray spectra of metals very
near the emission or the absorption edge. The
theory was also applied to the case of the photo-
emission spectra of metals by Doniach and Sunjic.
Natta and Joyes' (N J) then studied the weak-energy
pair-excitation effect on the core-valence-valence
(CVV) Auger spectra of metals. By a direct appli-
cation of the ND theory to the Auger case, these
authox s showed that very close to the emission
edge the Auger intensity was also given by a power
law with the exponent

o."= 2(25,/v) + cr —1,
with

controlled by the optical selection rule. Numeri-
cal computations" of the exponent o. ", have shown
that for the I, spectra the intensity is singular at-
the emission and absorption edges, whereas it
remains finite in the edge region for the K spec-
tra.

The two exponents (1) and (3) differ in two im-
portant respects: o."has an extra factor of 2 in
the first term, and it also has an additional third
term -1. The first terms of both Eqs. (1) and (3)
are related to the open-line part of the ND prob-
lem. The additional factor of 2 in Eq. (1) appears
because in a CVV Auger process two conduction
electrons participate, whereas in the x-ray pro-
cess only one such electron is involved. Indeed,
in the Auger collision a conduction electron drops
into a previously ionized core level (as in the x-
ray emission process), while another is ejected
out of the metal as an Auger electron. The term
o in Eqs. (1) and (3) is related to Anderson orthog-
onality (closed-loop pa, rt of the ND problem) and
is the same in both Auger and x-ray processes.
In the zero-order theory, the C VV Auger band is
obtained from the self-convolution of a state den-
sity function having a sharp edge at the Fermi
level (step function). This self-convolution is re-
sponsible for the occurrence of the third term iii
Eq. (1). This term -1 therefore, appears in the
zero-order theory and it is not to be related to
the weak-energy pair excitations in the metal.
Because of the presence of this term, the Auger-
band intensity drops off smoothly at the upper edge.

It is thus practically impossible to measure the
effects of the NJ power law in the edge region of
the Auger spectra. First, n" is always negative,
and as such, unlike the x-ray case (I, bands), no

spike is expected to occur in the edge region.
Second, the slope of the emission intensity at the
upper edge is modified by the NJ theory, but this
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slope cannot be measured experimentally since
the absolute intensity of the observed Auger spec-
tra is not known.

However, the scattering of the weak-energy elec-
tron-hole pair by the initial core hole, modifies
the Auger line shape not only in the edge region
(ND-NJ effect) but also at energies well below the
emission edge. In particular, it should produce a
displacement in the position of the Auger intensity
maximum. Such changes in the Auger line shape
and in the position of the intensity maximum have
been observed experimentally. " Thus, it will be
interesting to extend the ND-NJ edge theories be-
low the edge region to calculate this displacement.
However, due to inherent assumptions, these two
theories are valid only very close to the edge. In
this paper such an extended theory is presented
for the Auger-band spectra.

The simplest, and probably a rather naive way
to extend the edge theory, is to multiply the ze~o-
order band intensity by the N J power-law factor.
This factor is

(h. /~) "",
where $, is a constant energy which has already
appeared in ND and N J, and is estimated to be on
the order of the Fermi-energy eo. (Energy —e
=(u —26p is the spectral energy measured from the
upper edge and & is the same energy measured
from the bottom of the zero-order Auger band. )
This yields an Auger-band shape whose maximum
is much closer to the upper edge than that of the
zero-order band shape (see dotted curve in Fig. 4).
But since the ND and NJ theories are valid only
for vanishing e, such an extension of their results
to lower energies is obviously not reliable. A

proper extension of the ND edge theory for the
x-ray band spectra was made by one of the auth-
ors (P. L.).' We will follow the same procedure
for obtaining a proper theory for studying the ef-
fect of weak pair creation on the Auger-band spec-
tra.

In Sec. II we give a general formulation of the
Auger problem in terms of an appropriate Hamil-
tonian in which we introduce a realistic nonsep-
arable po'tential, used throughout the calculation.
Auger intensity is expressed in terms of Feynman
diagrams which are depicted in terms of "closed-
loop" parts and "open-line" parts. In Sec. OI we
consider the closed-loop part of the problem and
obtain the appropriate exponent in terms of Born-
approximation phase shifts. In Sec. IV we treat
the open-line part of the problem. Numerical
calcuIations are performed by using an appropriate
pseudopotential. We present our numerical re-
sults for the L,23VVAuger spectrum of Al in Sec.
V, and conclude with a. discussion.

H' =Ho+H'+H~,

with

(4a)

Ho= cpapaj +E'gagag+E'pa~a~
tV AJ

(4b)

1
Vp p

r QgO'p Qga~
Ilail g

(4d)

The first term H, describes a noninteracting sys-
tem where the individual states are the conduction
statesp, withenergy e»=P'/2m, a core state B
with energy e 8 (negative) and an Auger state k; the
energy of the Auger electron, e»= tz'/2nz, is such
that it can leave the metal. The second term H'
describes the interaction of the conduction elec-
trons with the core hole. This scattering of the
conduction electrons by the core hole will be treat-
ed by an infinite-order perturbative expansion
(many-body expansion). The scattering potential
V-;, is an effective electron-electron potential.
which can be written in the form

V-, -, = V(q) = V,.(q)/. (q), (5)

with q = jp —p'
~

and z(q) is the static Lindhard di-
electric function. This function is related to the
screenirig effect of the conduction electrons, and

V, (q) is a Coulomb pseudopotential related to the
Bloch wave and the core-hole structure. The
pseudopotential used in this calculatiop is.dis-
cussed in the Appendix [see Eq. (A8)]. We neglect
the interaction of the outgoing Auger electron with
the core hole, since this electron is fast and ha.s
little chance of interacting significantly with the
localized core hole. Also, the interactions among
the electrons and holes within the conduction band
do not play any significant role in modifying the
intensity of the Auger spectra in the high-energy
re~on, in which we are mainly interested in this
paper. ' Thus we neglect these interactions as well
as the dynamic part of the interaction potential
(5). The last term P» describes the interaction
Hamiltonian for the Auger transition. The transi-
tion matrix element lVQpp has a rather complicated
structure since the wavelength of the Auger elec-
tron is of the order of the core radius. However,
we note that the range of variation of e~ is only
twice the Fermi energy e, which is small com-
pared to the magnitude of e,. Also since e„ is
much greater than e» and e», the (k, p, p') depen-

II. FORMULATION OF THE PROBLEM

The total Hamiltonian of the system is represen-
ted by
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dence of lVkpp can be neglected, and like many
other authors '"'"we replace it by a constant

g7~~~ —g7kpp' (8)

Since we are interested in calculating the linear
response of our system described by the Hamil-
tonian H =H, +H' to the perturbation H, we will
treat H„ in the first-order perturbative expansion.
Initially our system has a hole in the core state.
Thus the initial state 4~ corresponds to the ground
state of an electron gas in the presence of an im-
purity (the core hole). In the final state the core
level is occupied and there are two electrons miss-
ing from the conduction band. The Auger intensity
is given by the response function

I(~) =- Re ds e &"'p(s), (7)
1

0

where

S—----—--

C

FIG. 1. Diagrammatic representation of a typical
Auger process. The white dots correspond to Auger
interactions at times 0 and s. The black dots represent
interactions of the core hole with the conduction elec-
trons.

and

S(s) =(4, iH, (s)H, (0)/eg

in the Heisenberg picture, or

(4 I U(, s)H„(s)U(s, 0)H (0)U(0, — ) i@ )
(e, iU(, — ) ieg

in the interaction picture.
Our model is quite similar to that of ND and NJ,

although there exist two important differences
which should be emphasized. The first and the es-
sential difference between the two models is that
we use the realistic nonseparable potential (5) for
the core-hole interaction, instead of a separable
one used by ND-NJ. Such a realistic potential is
necessary to extend their theory beyond the edge
region. The second difference is more formal
and, in fact, can be seen to occur as a consequence
of the fir'st one. In the present paper we consider
that the perturbation H' acts at times t &0 and t
& s, whereas in the ND-NJ model it acts at 0& t
& s; in their model the unperturbed Hamiltonian is
Ho + H and the perturbation is -O'. This differ-
ence allows us to express 8'(s) by Eq. (8), where
the individual electronic states p can be described
by plane waves instead of the scattered waves of
ND-N J model.

The correlation function P(s) can be represented
by diagrams of the type shown in Fig. 1. The Aug-
er interactions II~ take place at times 0 and s,
and are given by the white dots. The n black dots
(in a diagram of order n) are related to the scat-
tering of the conduction electrons by the core hole.
As shown in Fig. 1; a general diagram typically
contains two open lines A and B and a closed-loop

S--Q—-N--
A B A B B A B

+ I il 'il + 'll if +

FIG. 2. Four "complete diagrams" (right-hand side)
corresponding to the zero-order Auger process geft-
hand side). The thick line represents the outgoing
Auger electron.

part C which may, in fact, contain an unlimitec
number of closed loops. Such a diagram (Fig. I)
really corresponds to four ".complete diagrams, "
as shown in Fig. 2. By "complete diagrams" we
mean the diagrams where the role of the white
dots is explicitly demonstrated. Remembering
that the white dots represent the creation or de-
struction of core holes or Auger electrons, it is
easy to see how the zero-order diagram depicted
by the left member of Fig. 2 corresponds to four
complete diagrams shown on the right-hand side
of the figure. In this diagram the downward-di-
rected double lines and the thick single lines rep-
resent the core holes and Auger electrons, re-
spectively. Since the transition matrix element
lP$p p

is taken to be constant, these four diagrams
contribute the same expression multiplied by the
factors 2, 2, -1, and -1, respectively. The fac-
tors 2 and -1 occur due to summation over spins
and exchange effects, respectively. Thus as far
as the calculation of Auger intensity is concerned,
it is unnecessary to know whether a white dot is
connected to a core-hole line or an Auger. line.
The only relevant diagrams to consider then are
those shown in Fig. 1 or in the left-hand side of
Fig. 2. This was exactly what was done by N J.



1908 PIERRE LONGE AND SHYAMALENDU M. BOSE 19

The correlation function T(s) as shown in Fig, 1
can be expressed as

&(s) =F„(s)F (s)F (s)/F

(S)' 6:(s) = 6:~(s)&c(s),

where the first factor

s=E s~() [ ~()],
corresponding to the open-lirie part of the ND-NJ
problem, and the second term

(10)

where the terms F» p'» and E~ represent the con-
tributions of the parts A, B, and C, respectively,
and FD—= (C ~~ U(, -~}~4J corresponds to the con-
tribution from the denominator of Eq. (8). Note
that F„(s)=Fs (s) (see Fig. 2) and that the denomi-
nator E~ would be equal to unity if the individual
electronic states appearing in Eq. (4a) were de-
scribed by scattered wave functions —the true
eigenstates of H, +8'. In the real space there is
an attractive potential due to the absence of an
electron ig the core state. Thus due to our choice
of plane waves for the conduction electrons, the
denominator can no longer be taken to be unity.
In fact, it is found that both F~ in the denominator
and Fc(s) in the numerator become divergent in
the presence of the many-body interaction term
O'. This point has been discussed extensively in
previous papers, '" and it has been shown that the
divergences of Fc(s) and FD cancel each other.
One can appreciate this point rather easily as soon
as one realizes that F~(s) and F~ a.re both vacuum
contributions, and according to linked-cluster
theorem one has FD=Fc(0). Let us then express
6:(s) as

where e =2&, —u ~ 0. Thus we see that near the
edge region the intensity I(~ -2~,) is given by a.

power of e, where the exponent is (4-5,/a+o —1).
This power-law behavior of the Auger intensity
is in agreement with the result of NJ.

One notes that if the edge effects are neglected
(II'=0), one has

r~(s) = [A(is) 'e"0']',

rc(s) =1,
which give

I ((0' 2e0) =A 'E (16)

Sg/m
I„((u-2e,) =A'e ~ (18)

This zero-order approximation of Eq. (15) is in
agreement with the well-known shape of Auger-
band spectra, in the edge region, obtained by the
self-convolution of the Fermi distribution which
in this region can be described by a simple step
function. Since expressions (12)-(16) are provided
by the ND-NJ theories, $, and g, appear as con-
stants which are only estimated to be on the order
of the Fermi energy. (Moreover, ND-NJ assume
g, =g,.) They cannot be calculated explicitly since
the scattering in these theories is described by a
formal separable potential.

ln this paper go and g, will be replaced by. ener-
gy-dependent functions, since the aim of the pre-
sent paper is to extend the ND-NJ theory to ener-
gies well below the emission edge, and to deter-
mine the position of the Auger maximum. Vfe

propose to express Eq. (15) in the form

I(a)) = I„((O)ic((u),

such that for ~-2&0 one has

corresponding to the closed-loop part. According
to ND-NJ, in the edge region one has

6:„(s)= [(A/is) (it,s)"0 'e"0']' (12)

nd

: I (td-2e, )=(~) 2- —0 ~

6:c(s) = (icos)',

with

Using Eq (7) and fo.rmula

oo

—Re ds {is)"e'"=[1 (-A.)e""] ',
0

one obtains from Eqs. (S), (12), and (13)

(14)

The intensity I(&u) is thus factorized into two fac-
tors I„(&u) and Ic(v), where I„(&u) is essentially re-
lated to the open-line part and I c(ar) takes into
account the contribution from the closed-loop part.
Let us now express these factors in more elabo-
rate forms.

In the present Auger problem the open-line part
I„(u) contains two lines as shown in Fig. 1, where-
as in the corresponding x-ray problem the open-
line part contains only one open line. We can thus
write

40& -d(d2 5 (d —co& —QP&- Ix (0& Jx . » 20

(15) where I„(~) is similar to the open-line part of the
x ray problein. -In Ref. 6, Iz(+) was given in the.
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form

Id~) =J(~)G(~)'f$(~)/~. —~j'"' . (21)

Such an expression will be used in Eq. (20). The
function J(~) (cc~'I') represents the state density
with a sharp cutoff at ~ = &Q. A zero-order calcu-
lation of Eq. (20) can be performed using the dia-
grammatic rules of the Appendix, and yields

Thus we can write J(e} explicitly as

J((o) = ,'(n'-I'W')&u'I'e(s, (o)—,

{22)

I (~) = [&(~)/(2~. -~)] (24)

The functions g(&u), r(&u), and G(&u) appearing in
Eqs. (21) and (24) will have the limiting values of
g„g„and 1, respectively, in agreement with Eqs.
(18) and (19). [The constant denominator I' ap-
pearing in Eq. (19) is very close to 1. It will be
considered as being absorbed in'(co)]. Letus note
that our choice of expressing our results in the
forms of Eqs. (21) and (24) is more formal than
physical. For instance, we could have chosen $
and & as constants, in which case the exponents
50 and 0. would be u dependent.

The spirit of the calculation of the Auger inten-
sity (17) is the same as that of the calculation of
the x-ray intensity as presented in Ref. 6. The
calculation in Ref. 6 is such that in the low-energy
region (&uC 0), it reproduces the results of the cal-
culation. obtained from a first-order theory in the
electron-electron and electron-core-hole effec-
tive interactions. Such an approximation is quite
satisfactory since it adequately describes the low-

where 8 is the step function. The function G(v)
in Eq. (21) takes into account the difference in
the nature of the black- and white-dot vertices
which represent the electron-core-hole inter-
actions, and the production of Auger electrons,
respectively. The difference in the momentum
dependence of these vertices as shown by Eqs.
(5) and (6) [see also (A2)] was neglected by
ND-NJ. However, retention of this momentum
dependence gives rise to the factor G(u&), the de-
tailed nature of which will be discussed in Sec.
IV. Constant factor A appearing in Eq. (18) can
be obtained by calculating Eq. (22) in the edge re-
gion. One has

I„'((o-2e,) = -,' (v W') ~', (2e, —(o) .
Hence, according to Eq. (16), A'= —,'(s'W so).

The factor Ic(e) of Eq. (17), corresPonding to the
correction due to the closed-loop part of Fig. 1,
can be expressed in the form

I,((o) = 1+os In[g((o)/(2e, —(o)], (26)

where the phase shift 5, , as indicated by the super-
script B, is calculated in the Born approximation.
As discussed in Sec. IV of Ref. 6, the Born phase
shifts satisfy the Friedel sum rule exactly and
can be considered to be satisfactory approxima-
tions of the actual phase shifts (the relative error
is never more than 10%).

The ptogram in Secs. III and IV will be to evalu-
ate ((&o) and 1(e) by using the first-order theory,
i.e. , to calculate Eqs. (25) and (26). Then we will
use these functions to evaluate Ix(&u) and Ic (&u) ac-
cording to Eqs. (21) and (24), and, finally, obtain
the Auger intensity from Eqs. (1V) and (20). Such
a scheme will give results which will automatical-
ly satisfy the ND-NJ asymptotic expression (15) in
the edge region.

III. CLOSED-LOOP CONTRIBUTION

Since Fc(s) in Eq. (11) is a vacuum contribution,
it can be written in the form Fc(s) = e "'. Equa-
tion (9) then takes the form

0 (s) = cy„(s) exp[C(s) —C(0)], (2V)

where C(s) is the sum of all the linked vacuum
loops. In the lowest significant order of the core-
hole potential, Eq. (27) becomes

6:(s) = 6'„(s)[I+C,(s) - C, (0)], (28)

where we have included the contributions from
only two vertex loops. This corresponds to cal-
culating the phase shifts in Born approximation.

energy features of the x-ray emission-band spec-
tra (tailing and plasmon satellite). ' There is no
reason to believe that our theory will not work as
well in describing the low-energy intrinsic fea-
tures of the Auger spectra, the physical situations
being quite similar. "

The first-order diagrams corresponding to
Auger emission are contained in the general dia-
grams of Fig. 1. In this case, the open lines would
contain zero and/or one black dot, and in those cases
where the closed loops appear, they would contain
two black dots. (The two vertex loops are the
lowest-order loops giving a nonzero contribution. )

The basic requirement to extend the ND-NJ
theory beyond the immediate neighborhood of the
emission edge is the use of a realistic nonsepar-
a5le potential. The above mentioned first-order
theory allows us to introduce a realistic core-hole
potential. However, in the edge region, this theory
gives Eqs. (21} and (24) in the form

Iz(&g) = J(u&) G(+)jl+ 450s/n inf)(op)/(eo —+)]] (25)
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Expression (28) is then calculated by using the diagrammatic rules given in the Appendix. One obtains

C, (s) —C, (0) = — dp
4Pqo(P, q)dq, ,', dt, dt, exp[i(P' —q')(t, —t,)],

I

(29)

where the domain of integration of (t„t,) is (0
& t, & s or 0 & t, & s, and t, & t,). The function

o(P, q) is defined in the Appendix and one has
o(k„k,) =o given by Eq. (14). After performing
the t integrations in Eq. (29) and dropping the
terms proportional to s, which only produce a
band shift irrelevant to the present problem, we
substitute Eq. (28) in Eq. (7) to obtain

C(&o) is a smooth function for a&= 2@0. For ~c 2e,
(or for z = 2@0 —to small), Z(&u) given by Eq. (31)
can be written

Z((o -2e ) =— dP dq
8 4pq

a P

4pq

I((o) =I„((u)[1+Z((o)],

with

(30)
+ dp 2 22 O'Ppg —0'

p

4Pq
P

(35)

z(~) fdp=
0

'0 4Pqo(P, q)
(P'- q')'

(31)

where we have replaced I„by l' on the right-hand
side of Eq. (31). This approximation can be made
in Z(&u), since it only introduces higher-order cor-
rections. The function Z(~) is similar to function
E(e) introduced in Sec. III of Ref. 6. The only dif-
ference is that I' is now given by Eq. (22) instead
of the free-electron density of states.

The double integration of Eq. (31) is performed
numerically to obtain Z(&u). Once Z(+) is com-
puted, Eq. (30) can be recast in the exponential
form

Z((o -2c,) = o [I + In(e, /(2&, —~))],
with

~(u, ~)
1)P —q o2 2L=2

kp

which is a finite constant, and from Eq. (34) one
obtains

where the areas of integration g and A. are depicted
in Fig. 3. Area a vanishes when e tends to zero.
The integrals of the first two terms of Eq. (35)
can be performed exactly, and the third integral
does not diverge when e tends to zero. Its do-
main A. can thus be replaced by A+ g. These con-
siderations lead Eq. (35) to

I((u) =I„((u)e ' ', (32)
L

~0 ~0~

as was done in. Ref. 6. Thus the closed-loop con-
tribution to Auger intensity is

which is also finite.

(~) —~Z (ld) (33)

I~(&u) can also be expressed in the form of Eq. (24)
by expressing r„(&u) as

g(u&) = (2e, —(u) ez ' '~' . (34)

The next step will be the calculation of I„(&u),
which will be carried out in Sec. IV. However,
before proceeding with such a calculation let us
show that Eq. (33) recovers the correct ND-NJ
power g,/(2e, —co)' for the closed-loop contribu-
tion in the edge region (e & 2e,). In other words,
we want to show that P(a&) given by Eq. (34) is a
smooth function of ~ in the edge region.

In the edge region I, appearing in -Eq. (31), has
a finite discontinuity in its slope, in that the slope
is finite for v &260 and zero for» 260' and can be
written

Io((u) = (2eo —&u)C((u)8 (2co —(o) .
FIG. 3. Regions of integration (A and c) for the eval-

uation of the function 2 () by using Eq. (35). Area a
vanishes when tends to 2e&.
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IV. OPEN-LINP CONTRIBUTION

Ix(~) =Z(~) G(~) [( (~)/(s, —~)]'~ " . (36)

As shown by Eqs. (10) and (20), the total open-
line contribution appears as the convolution of two
single-line contributions. As it has been dis-
cussed in Sec. II, the single-line intensity I„(u&),
which must be self-convoluted, can be written in
the form of Eq. (21) as

Ix(&u) =Z(&u) G(&u)es '"', (32')

which can be written in the form of a power law

Ir ((O) =J((u) G((o) [& (|d)/(C, —&u) ]
' 0 "

Next, Ix(&u} is expressed in the exponential form.

Our task now is to determine the function g (&u)

and G(&u). The intensity Ix(~) is obtained from
by defining

t(~) =(so-~) e""" (34')

Ix((u) =—.R dse ' 'F„(s), (37)

Ir((u) =Z((u) G(u)) [1+E((g)],
with

(30')

0

where E„(s),appearing in Eq. (8), can be evaluated
by using the diagrammatic rules given in the Ap-
pendix. The method of this calculation is very
similar to that discussed in Sec. V of Ref. 6.

Because of the presence of two distinct vertices
corresponding to the Auger collision (destruction
of the core hole and production of the Auger elec-
tron), and the scattering by the core-hole poten-
tial, the calculation of Ix(&u) is somewhat more
difficult than the closed-loop calculation of Sec.
lll. Each Auger vertex (white dot in Fig. 1) con-
tributes a constant factor W [see Eq. (6)], where-
as each scattering vertex (black dot) contributes
a factor iD, (p,p') [see Eq. (A2}]. If both vertex
functions had the same momentum dependence,
G(~) in Eq. (36) would be equal to unity. However,
because of the difference in the nature of these
two vertices, G becomes a slowly varying func-
tion of &u except near the Fermi edge (&u =e,),
where it has a singular slope, "i.e. ,

G(s,) =1 and (dG/d(u)

For the details of the calculation of I~(&u), we
refer to Sec. V of Ref. 6. There are, however,
two points of departure which should be mentioned
at this stage. First, in this paper we consider
only the l =0 case, or, in other words, the white-
dot vertex, which in Ref. 6 is related to a dipolar
matrix element proportional to p', is now replaced
by constant O'. The second point is formal. The
function G(&u) of the present paper is the same as
G(&o} of Ref. 6 multiplied by [$ (&u)]"0~', i.e. , Eq.
(53) of Ref. 6 is now replaced by

G(~) =&(~)h (~)]'+'+ &(~)(s.—~)'+'
(g, of Ref. 6 is called f here). The rest of the cal
culation is quite similar to the one for the closed-
loop part. The following set of equations are par-
allel to Eqs. (30)-(32) and (34):

[Function v, (p, q) is defined in the Appendix. ] Like
r(&u), $ (v) can be shown to have a nonsingular be-
havior for & =e,.

V. RESULTS AND DISCUSSIONS

In this paper we have extended the ND-NJ edge
theory to energies well below the emission edge,
in order to study the effect of excitations of weak-
energy electron-hole pairs on the CVV Auger spec-
tra- of metals. This has been accomplished by the
introduction of a realistic nonseparable pseudo-
potential to describe the scattering of the conduc-
tion electrons by the initial hole in the core state.
Use of such a realistic pseudopotential necessi-
tated introduction of approximations in calculating
the electron phase shifts at the Fermi level. The
phase shifts have been calculated in Born approxi-
mation and have been found to satisfy Friedel sum
rule and to be in good agreement with other cal-
culations.

The only observable effect of the extended ND-
NJ edge-anomaly theory is the shift in the posit&on
of the Auger intensity maximum. Numerical cal-
culations have been carried out for the L23VV Au-
ger spectra of Al, and the results are shown in
Fig. 4. The dashed curve represents the one
electron Auger band obtained by the self-convolu-
tion of the free-electron density of state function
proportional to v'~'. This zero-order curve is
expected to be modified once the many-body ef-
fects are introduced. A very crude method of in-
corporating these many-body effects is a naive
utilization the. ND-N J power law. As discussed in
Sec. I, in this approach the Auger spectrum is cal-
culated by multiplying the zero-order intensity
by a factor ($0/e)" ' with a constant energy g,.n&+ X

This yields the dotted curve-of -Fig. 4 where the
Auger maximum is considerably shifted, bringing
it closer to the. experimental peak. . However,
since the ND-NJ power law is supposed to be valid
very close to the emission edge, its utilization to
obtain results at lower energies is unsatisfactory.
We therefore proceeded to a more systematic ex-
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FIG. 4. Line shapes for theI 2&VV Auger spectrum of
Al. The dashed curve representing the one-electron
band shape is plotted as a reference for comparison.
The dotted curve is obtained by multiplying the one-
electron curve with the NJ power-law factor. The solid
curve is the result of the present calculation. The in-
set shows the experimental profiles of powell and
Houston.

tension of the edge theory to lower energies as
presented in Sec. I-IV of the present paper. The
final Auger-band intensity obtained from Eqs. (17),
(20), (21), and (24) is shown by the solid curve of
Fig. 4. The relative intensities of the various
curves in this figure are irrelevant from experi-
mental point of view since absolute intensities
cannot be measured. The only point to emphasize
in this figure is the shift in the position of the
Auger maximum. The calculated positions of the
maximum are shown by the white triangles, where-
as the experimental peaks as obtained by Powell
and Houston are shown by the black triangles.
The full experimental curves are shown in the in-
set. Powell's curve is a result of subtracting a
plausible but arbitrary background from the raw
data. Houston has used a dynamic background
subtraction technique to subtract the contribution
of the secondary electrons. This difference in the
background subtraction technique may be respon-
sible for the occurrence of their Auger peaks at
two different energies. A satisfactory resolution
of this difference would be helpful in comparing
the theoretical result with experiment. In any
case, the shift of the Auger peak as obtained from
our extended edge theory is smaller than that of
the aforementioned calculation utilizing the ND-
NJ power law. In our theory ((&u) [and the other
functions like g(&u) and G(&u)] is energy dependent.
The energy dependence of these functions attenu-
ates the effect of the anomalous ND-NJ power-law

behavior with constant $,.
Several other effects, not considered in this pa-

per, can also modify the Auger line shape. First,
the energy dependence of the transition matrix
element in the free-electron gas model has been
considered by several authors. "'""These cal-
culations show that the matrix element is very
weakly dependent on energy and does not introduce
any appreciable shift in the position of the Auger
peak. However, an evaluation of the Auger matrix
element for Al with more realistic wave function"
for the conduction electron and the core state is
yet to be carried out, and this may modify the
Auger line shape. In several recent studies" of
the s-p materials such as silicon, the Auger ma-
trix element has been found to be dependent on the
local angular momentum of the final state holes.
%hether this effect will also modify the Auger line
shape of a metal like Al is a matter of further
study. Since the mean free path of an Auger elec-
tron in a metal is only 3-4 A, the electrons which
are ejected from the surface must originate very
close to the surface. Thus the surface effects
may play a role in altering the Auger line shape.
The surface effects on the Auger spectra of metals
have been considered by several authors. ' ' '
The peak shift obtained by these authors is of cor-
rect sign but it is not significant in magnitude.
However, to our knowledge, a self-consistent the-
ory of the surface effects on the Auger spectra of
metals has not been proposed yet.

In this paper we have essentially considered the
effect of the weak-energy pair production due to
scattering by the initial core hole on the high-en-
ergy region of the CVVAuger spectra of metals.
Other many-body effects such as the intraband
interactions among the conduction electrons"'
have not been included, since they are known to
modify the, one electron band shape only in the
low-energy region. In particular, when these in-
traband interactions are considered along with the
scattering of the conduction electrons by the ini-
tial core hole, the Auger and the x-ray spectra
of a metal develop tailing and a secondary maxi-
mum at these low energies. The tailing is the ef-
fct of the individual electron-hole pair creation
by the intraband electron-electron interactions.
The low-energy secondary maximum occurs due
to the simultaneous generation of a plasmon in
the medium. The effect of plasmon production
and the low-energy behavior of the x-ray and Au-
ger spectra of metals have been discussed by
various authors. '-"" These effects, however, do
not play any essential role on the intensity in the
high-energy region ' and, in particular, in modi-
fying the position of the main peak of the Auger
spectrum.
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APPENDIX

(Al)

with

V(q) = V„(q)/e (q) ~

The Born phase shifts at the Fermi level are
related to these functions by

(A3)

6, = ,'vkoD, (ko, k, ) . —

The functions o, (p,p') and o(p,p) appearing in the
cal.culation are defined as

&i (P, P') = -2'�'[D& 0,P')]' (AS)

u+e'
=-(2v) ' dqq[V(q)]',

Ir-p'~

whose value

o -=v (k„k,)

(A7)

at the Fermi level i.s the exponent of the closed-

Since the energy involved in an A,uger collision
is large compared to the Fermi energy, such a
collision occurs in a small region whose range is
on the order of the core-hole radius. On the other
hand, since the core radius is smaller than the
conduction-electron wave length, mainly the s-
wave part (i=0) of the conduction-electron wave
function will contribute to the Auger process.
Thus this is the only partial wave which appears
in the open-line part of our problem. For the
closed-loop part, however, one has to sum over
all partial waves (and spine).

Since we use the pseudopotential approach, the
conduction electrons are described by plane waves.
The core-hole scattering potential can then be
written

loop part of the edge effect.
Let us now enumerate the rules for evaluating

the diagrams corresponding to the function p(s).
An Auger vertex (white dot) contributes by a fac-
tor W and a scattering vertex (black dot) contri-
butes by a factor iD, (P, P') (use only l = 0 for the
open-line part). The contribution of a particle
line (p & k,) is given by p' exp[ip'(t, —t,)] and that
of a hole line (p & k,) is -p'exp[ip'(t, —t,)] (lines
run from t, to t,). A factor -2t(l+1) appears for
every closed loop. One sums over all l's and in-
tegrates over all momentap and time t. For
more details regarding the diag~anznnztic rules .

we refer to Appendices B and C of Ref. 6.
Finally, we present an explicit evaluation of the

pseudopotential used in thi. s paper. We use the
Ashcroft pseudopotential" which is Coulombic
beyond a cut-off radius R, and is zero within this
radius because of the core effects. Ig momentum
space this pseudopotential takes a rather simple
form:

Vp, (q) = (4ve'/q') cos(qR, ) . (AS)

Ashcroft has proposed the values of the cut-off
radius R, for a series of metals, including Al,
in which we are particularly interested in the'
present paper. However, the R, values given by
Ashcroft are evaluated only for the normal ions of
the metals and cannot be used for those ions which
have one electron missing in the core state, as is
the case for the ions involved in an Auger transi-
tion. However, according to an argument proposed
by Ashcroft" and developed in Sec. IV of Ref. 6,
there is a proportionality rule between the Ash-
croft R, and the radius of the valence orbital of
the neutral atom. Since the radii of the valence
orbital of a neutral and ionized atom can be eval-
uated by using the Slater rules, "one can calculate
the Ashcroft radius R,* of an ionized atom by know-
ing R, and by using the proportionality rule.

According to Ashcroft the cut-off radius for the
metallic ion of Al is R, = 0.59 A = 1.115 a.u. 'The

corresponding free atom is in the electronic state
1s'2(sp)'3(sp)' and according to Slater rules, its
valence orbital has the radius Rs, =0.857a.u. If
a 2p core hole'is created in this free atom, it
would be in the state (1s)'2(sp)'3(sp)'. The val-
ence-orbital radius of such an ionized atom will,
according to Slater rules, be found to have a
smaller radius of R$ = 0.690a.u. Thenusingthe
proportionality rule, we obtain R,*= 0.897 a.u. This
numerical value has been used for the cut-off ra-
dius in Eg. (AS) and all the numerical calculations
of this paper.
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