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Pseudopotential calculations have been performed by Tomlinson and Swihart to obtain phonon frequencies
and polarization vectors, the Fermi surface, band velocities, and multi-orthogonalized-plane-wave. electron-
phonon matrix elements for pure zinc. These results are then used to determine the electrical and thermal
resistivities which result from the scattering of electrons by thermal phonons. The same interaction also
contributes to the attenua'tion of ultrasonic waves and the finite lifetimes of quasiparticle states near the
Fermi surface, and these effects are also calculated, The Fermi surface and electron wave functions are
based on the extremely accurate fit to de 'Haas —van Alphen data obtained by Stark and Falicov. Tomlinson
and Swihart also make use of their resulting nonlocal pseudopotential for the matrix elements. The phonon
model used is based on a pseudopotential calculation, and agrees well with neutron-diffraction data for
frequencies at all high-symmetry points and for the polarization vectors where they have been determined.
We solve the Soltzmann equation by the variational method, where we assume that the trial distribution
function. can be well represented as an expansion in up to six spherical harmonics. Solution in terms of
different types of trial functions and in terms of anisotropic scattering times are presented for comparison.

I. INTRODUCTION

The pseudopotential theory of metals allows one
to calculate many metallic properties within the
framework of simple perturbation theory. The the-
ory, as it applies to the electron-phonon interac-
tion, has been worked out by Sham' and has been
tested by several authors' ' on numerical calcula-
tions of transport properties and superconductivity.
The extent to which such things as realistic phonon
models, Fermi surfaces, nonlocality of the pseudo-
potential, and the multi-OPW (orthogonalized plane
wave) nature of the wave functions are important
still remains uncertain. The calculations to be
described here are of value in answering some as-
pects of the above questions, as well as in the in-
terpretation of experimental data.

The hexagonal close-packed metal, zinc, was
chosen for this study because its structure provides
several interesting anisotropic properties, while
complications introduced by Fermi- surface distor-
tions, eI:c., are riot so great as to preclude realis-
tic treatment of such. The existence of the ex-
tremely accurate pseudopotential fit of Stark and .

Falicov' (SF), which had been used very success-
fully in previous calculations, "was also a factor
in the choice of zinc. Finally, there is a sufficient
number of experimental data' "with which to
compare our results.

This calculation explores for the first time the
effects of realistic band-structure models and
higher-order trial functions on the solution of the
Boltzmann equation in an hcp metal. Initial results
of these calculations have been reported in Ref. 12.
Previous calculations in zinc were done by Allen

and Cohen' for isotropic properties and by Truant
and Carbotte for anisotropic properties. Allen and
Cohen approximated the Fermi surface by a
sphere, the phonon frequencies by an isotropic fit
to neutron-diffraction data, single-particle elec-
tron states by plane waves (single OPW's), and the
phonon Brillouin zone by a Debye sphere. They
obtained excel1.ent agreement between their calcu-
lated phonon mass-renormalization parameter A.

and that extracted from the electronic-specific-
heat coefficient and the supe'rconducting transition
temperature. Their results for the room-tempera-
ture electrical resistivity were low by about 5(P/&&

and V5% for the SF and Animalu-Heine pseudopoten-
tials, respectively. Truant and Carbotte, 7 using
the same assumptions as Allen and Cohen except
that they used a force-constant model for the pho-
nons, calculated anisotropic properties as well.
Their results for the isotropic mass-enhancement
parameter and room-temperature electrical resis-
tivity p273 were in good agreement with experiment.
They. explored the sensitivity of their results to
different force-constant fits, and found ~ @nd p273
to be very sensitive to the different fits. Since
that calculation, phonon data" have become avail-
able at many more points in the Brillouin zone,
largely removing that uncertainty. Pecheur and
Toussaint' have calculated the thermal and elec-
trical resistivity under similar assumptions. All
but one of the above calculations neglect anisotropy
of the electron distribution function, which we find
important at low temperature. Truant and Carbotte
include this in the form of anisotropic scattering
times.

Results of our calculation for Zn (Refs. 12, 14, 15
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together with the present paper), that of Nowak'
for Cu, and recently that of Leung'7 for Al demon-
strate that for anisotropic properties one must use
more realistic models for the Fermi surface and

electron-phonon matrix elements. In this work,
the Fermi surface is generated fr'om the Stark-
Falicov' pseudopotential which was fit to de Haas-
van Alphen data. The electron wave functions are
based on an expansion in several OPW's (multi-
OPW's) also obtained from the SF pseudopotential.
The phonon frequencies and polarization vectors
are obtained from a pseudopotential model, "to
whose dynamical matrix, ". terms resulting from
three additional force constants were added. The
addition of these force constants was sufficient to
cause the calculated frequencies to agree with re-
cent data" "covering all symmetry lines in the
Brillouin zone. The details of our calculational
model for the phonons, Fermi surface, band vel-
ocity, and electron-phonon matrix elements are
described in the preceding paper, ' referred to as
I. We. employ atomic units, mo=e =5=1, through-
out.

The theory of transport properties and results
are presented in Secs. II and III, respectively, and

Sec. IV is set aside for concluding. remarks.

II. THEORY

The Kohler variational principle provides a
method of solving the Boltzmann equation which is
extremely popular due to its great versatility and

simplicity of expression. Z iman' has demonstr-
ated its use in the treatment of a great many trans-
port problems. It simply states that if an integral
equation can be expressed in the form

X=P@,
where X is independent of 4 and P is an integral
operator satisfying a few physically nonrestrictive
conditions, then of all the functions 4 which obey

the one that solves E'q. (1) is the one that minimizes
the ratio

in our case arising from the electron-phonon inter-
action.

If we wish to express the trial function 4 in terms
of an expansion in simpler known function P&,

then the q, which minimize expression (3) also
minimize the resistivity which is then

"1
p= X) P ]~X~ (5)

where

x, =(c,.lx& (6)

A. Electncal resistwcty

1x = (-'4~P~'
4&3 3

+F
d k YM(8, 4)C&f(8, 4), (10)

where 8 and g are polar coordinates such that the
direction of the applied field determines the polar
axis and Y„(8,p) is a spherical harmonic. The P, ~

are given by

The distribution function f k in the presence of a
uniform electric field of unit strength u may be ex-
pressed as

0

@(~) sfk
k

where fk is the equilibrium distribution function
and contributes nothing to the current. Keeping
only terms that are linear in u, we obtain

8 k 1 k'
k u Q (@k' @k)+k

k'

where k~ is the Boltzmann constant and Pk is the
net equilibrium probability of scattering from state
k to k'. Equation (9) is in the form of Eq. (1), and
thus the resistivity is given by Eq. (5) with

(c IP lc»&(&c lx I&)'. (3)
0

The linearized Boltzmann equation 'can be written
in the form of Eq. (1), in which X is the driving
force, 4 is the deviation of the distribution function

' /
from equilibrium, and P is the scattering operator,

where P =1/%AT and m'~k is the band mass. The
function n', JE(&u) is given by
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In the above g„-~„isthe electron-phonon matrix
element for scattering from state k to k' via a pho-
non of reduced wave vector q, mode A. , and fre-
quency +~i. Also, vl, is the band velocity. We
have assumed that the phonons remain in their
equilibrium state, thus neglecting phonon drag ef-
fects. For a pseudo wave function expanded in

terms of plane waves ~k),

p-„= QaG(k) ~k +4),
G

(13)

where 6 is a reciprocal-lattice vector, the matrix
element is given by

X/2

g-„g-„~ = g [85i (k~')] *up(k Q (k + G, Q )Q

&& —,
' (~f(q, 1)[cos(QO ~ p) —sin(Q0 .p)]+ f~(qi 2) [cos(QO ~ p) + sin(Q p}]) . (14)

In the above Q =k'+G'- (k+G), and q is a vector in
the first Brillouin zone such that k'- k+G' —6
=Qo+q and Q, is a reciprocal-lattice vector
w(k, q) is the nonlocal pseudopotential form factor,
&V is the number of atoms, and M is the atomic
mass. The position vector p and the polarization
vectors f (q, M) are described in I. Thus the prob-
lem of electrical resistivity is reduced to that of
choosing an appropriate trial function and perform-
ing the numerical integrations of Eqs. (10) and

(12).
The Fermi surface of Stark and Falicov differs

from a spherical model in that the so-called butter-
flies and stars are absent. These sections of Fer-
mi surface have never been observed experiment-
ally. The expansion coefficients a5(k) are deter-
mined'simultaneous1y with the Fermi surface, as
is discussed in I. 'In Eq. (12) vt, is the band Fermi
velocity, and is obtained by numerically differenti-
ating the band energy as discussed in I. As me note
there, a different energy dependence must be in-
corporated in the SF pseudopotential in determining
the band velocity. We do this by scaling" the inte-
grals by the ratio 0.61/0. 54. '

The pseudopotential form factor in the electron-
phonon matrix element Eq. (14) is also a version
of the SF pseudopotential. However, this pseudo-
potential is determined only at reciprocal-lattice
vectors, so an interpolation through the fitted
points as mell as an extrapolation to q=o is re-
quired. We determine the local part of the pseudo-
potential by taking a spline interpolation through
the SF points at large q and contouririg the small
and intermediate q portion, so that for k and k' on
a spherical Fermi surface the total form factor is
identical to Shaw's optimized model potential. ".
After some preliminary calculations with the ver-
sion screened in the Hartree approximation, it mas
apparent that our results were too low (about 3(8~
for X). We found that by incorporating Shaw's the-

y, (k) =v-„I;„(e,y).
\

Only those Y~„(9,p) which have the symmetry of

(15)

ory 0f k-dependent effective masses" into his
pseudopotential, the long-wavelength limit was con-
siderably increased in magnitude and good agree-
ment was achieved with a great deal of experiment-
al evidence as reported in Refs. 12, 14, and 15.
Later we became aware of the work of Appapillai
and Williams, 24 in which they applied corrections
due to exchange and correlation and a more satis-
factory. treatment of the k-dependent mass correc-
tion. The effect also increased the magnitude of
the pseudopotential near q=k„, and where the
quasiparticle lifetimes and electrical resistivity
mere recalculated with this form factor the results
were only about F/p lower than those previously ob-
tained. For this reason the calculations for the
thermal resistivity and the ultrasonic attenuation
mere not repeated.

At this point we should emphasize that we are not
arbitrarily piecing together different form factors,
but looking for a suitable extrapolation of SF to
small and intermediate values of q. We feel that if
me are guided by experimental data we may learn
something about the nature of the physics involved.
As it turns out, the pseudopotential derived by
Moriarty, "after our calculations were completed,
very closely resembles our combination SF and

Appapallia and Williams pseudopotential. It would
presumably generate a realistic Fermi surface and

give reasonable Fermi velocities. Since Moriarty's
pseudopotential is based on firm theoretical ground
and also does a good job in predicting the correct
phonon frequencies and c/a ratio in zinc, we are
confident that our form factor is among the best
available.

For the case of electrical resistivity the trial
basis functions mere chosen equal to spherical
harmonics times the Fermi band velocity
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Y» 0', Y3 Y7 6; Y9 0~ Yg 6 ~

'Throughout this paper we use the real definition
of spherical harmonics in which e' ~, in the usual
definition, is replaced by W cosp. For u along the
(1120) direction we retain the c axis a.s the polar
axis, because the symmetry of the Fermi surface
is easily obtained in these coordinates. We expand
the trial function in terms of vk times the following
functions:

an hcp metal in an electric field are allowed. That
is, for u in the c direction

x=1, 3, 5, . . .
M=O, 6, 12, . . .

Qut of this set we were limited by practical con-
siderations to si.x. We were guided by the varia-
tional principle to those functions that yielded the
set of A',. with maximum values. Thus the choice
was made essentially on the basis of the Fermi-
surface geometry. Subsequently, the g, from this
smaller set are used to minimize the resistivity as
in Eq. (5).

For the case of u parallel to the c axis we obtain

40's) = v-„cos(8), (17)

where 9 is the angle between k and u, is obtained
for comparison.

Another way of solving the Boltzmann equation
is by the use of anisotropic scattering times de-
fined by

Y„;Y, \j Y7gj ( 55 Y57)j' Ys]j

(Yzs, ir+ Yxs, ss) .
We have also calculated the electrical resistivity
for the case of the trial function

4~(k) = v) cos)j(vt ~(vt)) (16)
I

where g is measured from u and (vs) is the Fermi-
surface average of v&. For future reference we
shall label the spherical harmonic expansion as
trial function A and the latter as trial function B.
This latter trial function was suggested by the work
of Bergman, Kaveh, and Wiser, "but as we shall
see the solution in terms of spherical harmonics
is slightly better for Zn. That is, the resulting
resistivities are lower. A third solution in terms
of the usual trial function

(18)

where v,.(k ) is a Cartesian component of the band
Fermi velocity v(k). The resistivity is then given
by

The scattering times were then calculated at vari-
ous temperatures, interpolated, and then used in
Eq. (19). These results are presented in Table I.

v)T)= ()s,, J [U, (&)]'~;(0, )')) (19) B. Thermal resistivity

In principle Eq. (18) could be iterated to conver-
gence at each value of T, but it is impractical to
do so. Instead, we make the right-hand side of
Eq. (18) independent of 7.,(k, T) by initially assuming
them to be independent of k. Sorbello" has found
this approximation to be unsatisfactory for the case
of residual resistivity due to substitutional impur-
ities. However, the values we obtain for the re-
sistivity are equal to those obtained by the varia-
tional principle to within numerical accuracy. In
practice, the Fermi-surface integral in Eq. (18)
was performed at 37 points on the Fermi surface.

For a conductor in a thermal gradient in the ab-
sence of electric fields the Boltzmann equation is
given by

~T,scatt
(20)

P, (k) = (Eg —E ) Y (8, Q) . (21)

Again Eq. (5) gives us the resistivity, but the P,&

are now defined as

Following the usual procedure, we take the trial
function to be linear in energy, i.e., of the form of
Eqs. (8) and (4) with

u ~&z Z' 3P ~ss'
( -q( z o.s, F((u) 1+ +, o,.sy'((o)gs

0
(22)
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where Z=p&o and Is=+sr'ks, the Lorentz number. The function n, JsF.(&u) is given by

„) (&/»)'fFs (d'k/~») fFs (d'k'/~«)(e, (k)e, (k')IZ«lg«««l'&(~- ~;.)

f ( d' k!v-«)
(23)

and is calculated simultaneously with the o.",~F(&u).
The derivation of Eq. (22) follows that of Ziman2c

(p. 388). We simply retain the more general trial
function.

This calculation was performed with a different
choice of spherical harmonics and the form factor
given by the solid curve of Fig. 1. The electrical
resistivity has also been calculated under these
assumptions, and is presented elsewhere. " The
spherical harmonics used in the thermal resistiv-
ity are

Y~ Y3 Y5 Y7 Y9 and Y»

with m=0, 1 for VT parallel and perpendicular to
the c axis, respectively.

0

-Pv, (l )v, (k) ' =f-„ (24)

We take the distribution function to be of the form

f« =f«+&72-v;(k)~~(k) (25)

We define T, (m=0 fordilatational waves and m= 1

for shear waves) such that

qv7 «1 following Steinberg, "where v is the Fermi
velocity.

Steinberg shows that for a wave traveling along
the ith cooxdinate with a velocity gradient P along
the jth coordinate, the Boltmmann equation is

C. Ultrasonic attenuation

Scattering times appropriate to the attenuation of
ultrasonic waves were calculated in the limit of

(fi -f«)!'2~=f«l...«
This gives, assuming the v(k) are isotropic,

(26)

TABLE I. Numerical results for electrical and thermal resistivity. Results for electrical
resistivity are for trial function A in units of & cm. For thermal resistivity units are cm K/W.
The superscript 0 indicates the directional trial function eras replaced by the simple &~cos(8).
Values for g; [Eq. (4)] are those that minimize Pll. p is the scattering-time resistivity.
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FIG. 1. On-the-Fermi-surface form factor. The X's
are the fitted points of Stark and Falicov (Ref. 9). The
long-wavelength portion is contoured to agree with that
of Shaw (Refs. 22 and 23), solid curve; and Appapillai
and Williams (Ref. 24), short-dashed curve. The long-
dashed curve is the Hartree version of Shaw's potential
with m*= 1.

fT,).» (k, tu)] '=2lmZ»(k, (d). (28)

By appealing to Migdal's theorem, this expression
can be made tractable, and at the Fermi surface
(&v=0) we have

not lifetimes at all since they, in effect, measure
not only the probability of an electron being scat-
tered, but the effect of such scattering in damping
the flow of current or heat, for instance. Mea-
surements that are thought to probe quasiparticle
lifetimes are amplitude signals of cyclotron reso-
nance, " radio-frequericy size effect,"and magnet-
ic- surface- states" experiments.

To calculate quasiparticle lifetimes we do not
have to solve a Boltzmann equation. Instead, we
know that the lifetime is related to the imaginary
part of the electron self-energy Z(k, (u). Consid-
ering only effects due to scattering from thermal
phonons, we have

—=64''&1;. I&l &,.& l45 cos'(8)
I

720 E Fs Va ) (27)
(29)

where the numerators are defined by Eqs. (7) and

(11). Once the scattering times are calculated,
the attenuation coefficients are given by Bhatia and

Moore.
It is difficult to compare with experimental data'

in the limit qvT «1, because at higher tempera-
tures, where & is small, phonon-phonon processes
dominate electron-phonon processes. The ultra-
sonic attenuation is of theoretical interest, how-

ever, in examining the effect of the different types
of distribution function on the temperature depen-
dence of the scattering time. We find, for in-
stance, that at high temperatures the ultrasonic
attenuation is much more sensitive to different
crystal orientations than the electrical or thermal
resistivity. The pseudopotential form factor used
was the solid curve of Fig. 1. The expressions
for the ultrasonic-attenuation scattering times that
appear here are different from those of Ref. 12.
In Ref. 12 we took the distribution function to be
proportional to 1;„(8,y), which is not the best
choice in the case of en=0. W'e also failed to cor-
rect for the normalization factors of the F, 's.
The current expressions are correct and the ones
of Ref. 12 may be disregarded.

D. Quasiparticle lifetimes

Though. not itself generally considered a part of
transport theory, the lifetime of a quasiparticle at
the Fermi surface is often thought of in connection
with transport scattering times. The latter are

The expression o."E(k, (d) is well known from the
theory of superconductivity, and is easily calcu-
lated along with transport properties:

1 d'k'
o. 'E(k, e)= 2, Q lg'T, , ), yl ()(&—~~) ) ~

7)' V gi

(30)

The pseudopotential used in calculating T „»(k)
is the combination of SF and Appapallia and Wil-
liams (short-dashed curve of Fig. 1). Results us-
ing the other pseudopotential (solid curve of Fig. 1)
have been presented elsewhere. "

III. RESULTS

A. Electrical resistivity

In Fig. 2 we plot the calculated temperature de-
pendence of p), (u parallel to the c axis) and p, (u
perpendicular to the c axis) for trial function A,
along with experimental data. ' The comparison is
quite good at all temperatures. Although we are off
by approximately a factor of 2 at T «14'K, this
does not indicate that there is anything seriously
wrong with the calculation. Small errors in the
phonon spectrum could greatly affect the results at
this temperature. At low temperatures phonon-
drag effects become important, also. Further-
more, at very low temperatures the experimental ac-
curacy goes down, since the resistivity is domin-
ated by impurity scattering.

At low temperatures we see that p, l

«x: T~' and p,
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FIG. 5. Ratio p„/p~is plotted as a function of temper-
ature. The solid line is from the calculation and the
X's are the experimental data of Ref. 10.

FIG. 6. Thermal resistivity as a function of tempera-
ture. ge„and Ml, are plotted as the solid and dashed
curves, respectively. The experimental data are from
Ref. 11 and are represented by ~ (zo,J) and a (gg, ). The
point at 273'K is taken from Ref. 40.

It is remarkable that the high-temperature resis-
tivity is so isotropic for zinc, since the X, 's and

P,.&'s separately are quite anisotropic, as one can
conclude from Fig. 4. If the scattering term Pyy
were isotropic, as might be the case for the re-
sidual resistivity, the Fermi-surface geometry
alone, as reflected in X„would cause an aniso-
tropy of p =2.7p~~.

In Table I we list resistivities obtained by the
scattering time formula of Eqs. (18) and (19).
Judging from the close agreement between these
results and those obtained by assuming totally dif-
ferent forms of trial functions in the variational
formulas, we conclude that our solution to the
Boltzmann equation is very nearly exact. The dis-
crepancy at lower temperatures is probably due to
the fact that the scattering time is too anisotropic
for accurate interpolation of v(k) between the points
at which it is calculated.

B. Thermal resistivity

resistivity (Table I). This is due to the fact that at
low temperatures the thermal resistivity is domin-
ated by the change in energy rather than the change
in direction of the electrons, and the former is
more isotropic.

Returning to Fig. 6, we note that the experimen-
tal values of p, and p~~ cross at around 30'K,
whereas the theoretical curves do not. Pecheur
and Toussaint' found that in their calculation the
curves did indeed cross. They included no band-
structure effects, and used a phonon model differ-
ent from ours. They ascribed the crossing as due
to an inelastic term peculiar to anisotropic metals.
However, we include the same inelastic term and

do not get the crossing. As in the case with elec-
trical resistivity, it is Bt high temperatures that
our ratio is wrong, and the error could be ac-
counted for by the neglect of multiphonon processes
and small changes in the phonon spectrum. In any
case, both theory and experiment give almost iso-
tropic results at high temperatures.

In Fig. 6 we plot the thermal resistivity as a
function of temperature. The agreement with ex-
perimental data" is not quite as good as we had
with the electrical resistivity. It is thought that the
theoretical resistivity can be lowered by as much
as 3(P/p by putting a better energy dependence into
the trial function of Eq. (21), and there is no doubt
that agreement with experiment could be improved
by doing so. In this work, however, we are more
interested in examining the importance of aniso-
tropy of the distribution function. We find that p'"/
po", the ratio of the resistivity obtained with the
higheI'-. order trial function to that obtained by re-
taining only the first term, is closer to unity even
at low temperatures, as was the case for electrical

C. Ultrasonic attenuation

We repeat that comparison with experiment is
difficult for the ultrasonic attenuation because of
our restrictive assumption that qv«& 1. We note
from Fig. 7 that the attenuation is much more
anisotropic than the electrical or thermal resistiv-
ity at high temperatures. This is probably due to
the Fermi-surface geometry. Lea, Llewellyn,
Peck, and Dobbs'o found that the impurity limited
attenuation of longitudinal waves in zinc was g.niso-
tropicbyafactorof 20, andtheordering is the same
as our curves 1 and 2. At low temperatures the
power law for the t'.alculated longitudinal waves
propagating along the c axis is T, ~ T ".
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FIG. 7. Scattering times appropriate to ultrasonic
attenuation as a function of temperature.

D. Quasiparticle lifetimes
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FIG. 8. Quasiparticle lifetimes due to phonons as a
function of Fermi-surface position are plotted at vari-
ous temperatures. 6 is the polar angle measured from
the c axis. Results are plotted for three azimuthal ang-
les III) (measured from (1120): X, p=o; -0,
p = 15', and ———O for P = 30'.

Since quksiparticle lifetimes can be measured at
specific points on the Fermi surface by the study
of magnetic surface states, "we plot our results as
a function of Fermi-surface position (Fig. 8). One
can also determine orbital averages for lifetimes
from the analysis of Azbel-Kaner cyclotron reso-
nance' and size-effect data. ' We note that there
are essentially two sources of anisotropy: one
slowly varying due to anisotropies in the phonon

spectrum, and one rapidly varying due to band-
structure effects. The latter seem to occur only
as one nears Bragg planes and are due to the
multi-OPW nature of the electronic wave functions.
We also note that as the temperature increases,
most of the phonon-induced anisotropy goes away,
but that that due to band structure remains.

It is generally accepted that [r „.,h (9, p)] ' goes
as T' at low temperatures, and this is based on a
Debye spectrum with frequency-independent elec-
tron-phonon parameter. We note that this is prob-
ably a reasonable approximation for the Fermi-
surface averaged (7 „,'» )~, but not for each point
separately. For instance, between 10 and 20'K,
T ).ph (0, 0) decreases by a factor of 54, while
1 el-ph (61, 0) only decreases by a factor of 5. Be-
tween 5 and 15'K a T4 dependence is probably
more correct even for the Fermi-surface average.
However, one should point out that the low-fre-
quency peak due to transverse phonons contributes
a significant amount even at 10%., so that in com-
paring with accepted power laws one should realize
that the assumption of a Debye spectrum is not
valid except at very low temperatures. Below 6'K,
a T" law holds quite well for (7,,',„). In compar-
ing with experimental data, one should note that we
have determined lifetimes only at the Fermi sur-
face. Experimentally one measures a mean life-
time of electrons in a thermal layer of states near
the Fermi surface. Allen" has determined that in
the limit as T»0 the apparent inverse lifetimes
are given by Kq. (29) multiplied by a factor of ~7.

There are two recent experiments in which the
quasiparticle lifetimes in zinc have been measured.
Brookbanks, "using cyclotron resonance, mea-
sured a lifetime for the central orbit of the lens
which goes as T ' for temperatures below 4.2'K.
Myers, Thompson, and Ali, ' using the radio-fre-
quency' size effect found that on the lens their in-
verse scattering lengths A. ,„' go approximately as
T ' and on the monster nearly as T . The latter
authors note that a single scattering will not neces-
sarily remove an electron from the signal. They
also note that if the angle of scattering required to
remove an electron is large enough, a T' law will
hold for ~ ' and that this may be a possible explana-
tion for the discrepancy between their results and

those of Brookbanks.
As far as power laws are concerned, out data are

consistent with those of both experiments. We note
that Myers eI; al. sample a larger temperature
range and that the convincing data occur for 4 & T
~ 7 K. . In Table II we report our results along with

experimental data. For theoretical X,h we divide
the inverse lifetimes by phonon renormalized Fer-
mi velocities and scale by ~7 as discussed above.
We note that for points on the lens a pure power
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TABLE II. Comparison of theoretical and experimental
scattering lengths. Theoretical values are taken from
representative points —not orbital averages. The param-
eter & is defined such thatA, ~ =&&~.

Location on
Fermi surface

& ~(mm ~)

Theor. Expt. Theor. Expt.

Central
lens orbit;

Lens rim
orbit

Limit point
on the monster

0.21

l.08

1.49

1.0
0.43

0.40

1 3b

5.6'
2.9'
4 7c
2.7'
3.1'

4.6b
3.0

4 6b

2 9b

Reference 35.
Reference 36.
T~ O'K.

d T —4'K.
T —10 'K.

'\

By calculating in detail the contribution of the
electron-phonon interaction to the several trans-
port and other properties of zinc, we have demon-
strated that the theory based on pseudopotentials
is essentially correct. By realistically treating the
Fermi surface and electron wave functions by

law is not observed in the calculation. Instead, be-
low 4'K we obtain roughly a T' behavior, and above
5'K we see an approximate T' dependence. Unfor-
tunately, below IO K our calculation is subject to
rather large statistical errors. We employ a
Monte Carlo technique (see 1), and out of all possi-
ble scattering relatively few are possible at low
temperatures. We also note that mith such strong
temperature dependence our results at any given
temperature are strongly dependent on the exact
details of the phonon spectrum for small j q~. Our
treatment of the phonons at small

~ q~ (see 1) is
crude and was not designed for accurate calcula-
tions of lifetimes at very low temperatures. Also,
at these temperatures the assumption that the
pseudopotential is adequately described in free-
electron theory does not hold. In fact, the long-
wavelength limit should be inversely proportional
to the density of states at the Fermi energy. This
would increase w(k, q) by a factor of 1.64 for

~ q~
& 0.1

~ k~ ~, which would increase the contribution
of normal processes to T,,',„(T~10'K) by a factor
of 2.7. Thus, though this part of our calculation is
crude, we still conclude that the T ' law is by no
means sacred and that our results are consistent
with experimental data.

j

IV. DISCUSSION

multiple OPW's, we have achieved good agreement
with a great deal of experimental data. In addition,
me have demonstrated that the band structure in-
troduces additional anisotropies which should be
observed in, for instance, a study of magnetic sur-
face states. "

In the process of choosing a suitable pseudopoten-
tial fo'r use in the calculation, it becomes clear
that beyond a certain point, the effects of nonlocal-
ity and exchange and correlation cannot be ignored.
A certain amount of nonlocality was required by
SF to fit the Fermi surface. %'e, as mell Bs
Auluck, "later found that their empirical form mas
insufficient to calculate Fermi velocities which in-
volve derivatives of the form factor with respect
to k. In extrapolating to small and intermediate
values of q we were guided by the optimized model
potential of Shaw. Here we found that only when
exchange and correlation effects are included is
good agreement with transport data achieved (this,
of course, depends on which phonon model one
uses, but ours is in much better agreement with
neutron-diffraction data than are the others which
are available). At the time of this calculation
there was no single pseudopotential form factor for
zinc that would be adequate for generating the Fer-
mi surface, band velocities, matrix elements, and

phonons. It would have to be dependent upon k and

E& as well as the momentum transfer q. However,
the recent work of Moriarity, " in which he uses
refinements of this theory previously applied only
to the noble metals, looks extremely promising.
We strongly encourage such work, though compli-
cated and tedious, because once a pseudopotential
is derived it can be used for many properties in the
future.

It is worth pointing out that in the screening of
our pseudopotential (except for the empirical part
taken from SF), band-structure effects were not
included. These can be important at very long
mavelengths, where the screening is done solely
by electrons near the Fermi surface. The long-
wavelength limit of the form factor is inversely
proportional to the density of states at the Fermi
energy, differing significantly from the free-elec-
tron value of ——, E~. It is not hard to convince one-
self by looking at results of band-structure calcula-
tions that for qa O. 1k~ the free-electron picture
should be a fairly good approximation. This is be-
cause electrons near Bragg planes are relatively
fewer as q becomes larger, and the electrons that
do the screening (k & k~ and ~k+q ~

~ k~) become
much more numerous. Also, in the electron-pho-
non interaction the very-long-wavelength scattering
is given very little weight except for effects at very
low temperatures.

In our electron-phonon matrix element we nor-
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malize the pseudo-wave-function instead of the true
wave function. Correcting for this approximation
would increase our resistivities and inverse life-
times by about 5%.

By treating the trial distribution function as an
expansion in spherical harmonics, we were able to
investigate the importance of the distribution func-
tion at various temperatures. However, phonon
drag effects which are significant at low tempera-
tures. are -neglected in our calculation. According
to the estimate of Lawrence and Wilkins, 38 the
electron-electron effect is negligible above about
1 or 2'K. We find that the proper treatment of
umklapp processes does not by itself cause signif-
icant deviations from the T law. This is consis-
tent with the theory of Lawrence and Wilkins.

We find that the thermal resitivity was also quite
sensitive to the directional anisotropy of the trial
function, but not as much as was the case for the
electrical resistivity.

The scattering times for ultrasonic attenuation
were also calculated and found to be much more

depend~nt upon crystal orientation than the elec-
trical and thermal resistivities. It appears that
the former are more sensitive to the Fermi sur-
face.

%'e calculated quasiparticle lifetimes at the Fer-
mi surface and found that the T' law was not
obeyed. Though our calculation is very crude for
temperatures in the region below 10'K, our re-
sults are consistent with cyclotron resonance and
size- effect data.
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