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The anisoiropic mass enhancement and anisotropic superconducting energy gap are calculated for zinc using
pseudopotential theory. The phonon frequencies and polarization vectors are obtained from a model developed
here which uses Shaw’s optimized model potential with three force-constant terms adjusted to obtain
agreement with- neutron scattering data. A realistic Fermi-surface geometry is used and the electron wave
functions are made up of several orthogonalized plane waves being those obtained by using the Stark and
Falicov nonlocal pseudopotential. The band mass and velocities are calculated again using the Stark and
Falicov pseudopotential, but with an empirically determined energy dependence of the nonlocal part off of the
Fermi surface. With these models, the phonon mass enhancement of the electrons which shows up in the
electronic specific heat is calculated, as is the superconducting transition temperature, anisotropic mass
enhancement, and the anisotropic superconducting energy gap. The model produces a quasiparticle velocity in
good agreement with the magnetic-surface-state measurements of Rahn and Sabo, gives cyclotron resonance
masses that agree well with the measurements of Brookbanks, and produces an anisotropy of the energy gap
that is in good agreement with the ultrasonic-attenuation measurements of Cleavelin and Marshall. There are
other experiments that are not in agreement with the results of this model, but they are not in agreement
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with the three experiments above, either.

I. INTRODUCTION

The electron-phonon interaction in metals is
the interaction responsible for superconductivity.
It also produces a phonon cloud around each Bloch
electron near the Fermi surface, thus increasing
the effective mass of the electron with an observ-
able effect on the measured Azbel’-Kaner cyclo-
tron resonance mass, as well as on the value of
the electronic specific heat. In this paper we are
concerned with these effects in zinc, and we use
pseudopotential theory to carry out realistic cal-
culations.! In the following paper? one of us
(P. G. T.) uses the same model of the electron-
phonon interaction to calculate other observable
effects of this interaction in zinc, particularly
electron-transport properties such as electrical
and thermal conductivity, ultrasonic attenuation,
and the electron lifetime due to phonon scattering.

Isotropic effects of the electron-phonon inter-
action in simple metals such as the specific-heat
enhancement and the superconducting transition
temperature T, can be calculated fairly well using
rather simple models. This was first shown for
the mass enhancement of lead, mercury, and
aluminum by Swihart, Scalapino, and Wada,® and
independently for the mass enhancement of lead,
aluminum, and sodium by Ashcroft and Wilkins.*
Similarly, 7, has been calculated for a number of
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simple metals by several groups.®~® However,
any attempt to predict theoretically anisotropic
properties such as the mass enhancement or the
superconducting energy gap as a function of posi-
tion on the Fermi surface, or the anisotropic
transport properties, must make use of more
sophisticated models.

The elements that enter a realistic calculation
of electron-phonon interaction effects are (i) the
phonon properties, including not only frequency as
a function of polarization and wave number, but
also the actual polarization vectors of the normal
modes, (ii) the geometrical shape of the Fermi
surface, (iii) the electron wave function for states
on the Fermi surface, (iv) the electronic band
velocity at the Fermi surface, and (v) the form
of the electron-phonon interaction. For the cal-
culation of isotropic properties the following ap-
proximations have been made in the past®™®: (a)
an isotropic or even Debye model is taken for the
phonons, (b) the free-electron Fermi sphere is
used for the Fermi surface, (c) the electron wave
functions are single orthogonalized plane waves
(OPW’s), (d) the free-electron velocity is taken
for the band velocity, and (e) the electron-phonon
interaction is treated as a constant.

A few treatments have gone beyond the simpli-
fications discussed above.®”*® Calculations were
carried out on Pb, Al, K, and Na by Carbotte and
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Dynes,” on white tin by Balsley and Swihart,® on
aluminum first by Leavens and Carbotte!® and more
recently by Leung!! and by Meador and Lawrence,
on potassium by Rice and Sham,!® on zinc and thal-
lium by Truant and Carbotte,**"*® on zinc and cad-
mium by Pecheur and Toussaint,'® and on Be, Mg,
and Zn by Borchi et al.,’ in which in each case
realistic phonon spectra and electron-phonon in-
teractions appropriate for the particular metal
were used. However, except for Refs. 11 and 12,
the electron states were treated as consisting of

a single OPW on a spherical Fermi surface.
Balsley and Swihart did use two-OPW electron
states for umklapp scattering. Bennett!® calculated
the anisotropic superconducting energy gap in lead
assuming that the anisotropy is due mainly to the
anisotropy in the phonon spectrum. He treated the
band structure in an approximate way, and con-
cluded that this would have a small effect on the
anisotropies in the gap. However, he approximated
the electron-phonon interaction by a constant.
Klemens, van Baarle, and Gorter®® calculated the
anisotropic electrical conductivity of Sn in which
they assumed that the most important contribution
to the anisotropy is the anisotropy in the Fermi
surface. We shall see that this anisotropy is also
important in Zn, but that one can not ignore the
other contributions to the anisotropy. Ashcroft
and Lawrence?® calculated the anisotropic mass
enhancement for indium, in which they also con-
sidered the band-structure effects by using realis-
tic electronic wave functions on the true Fermi
surface. However, they approximated the phonons
by appealing to the properties of phonons in simi-
lar metals.

The hexagonal close-packed metal, zinc, was
chosen for this study because its structure pro-
vides several interesting anisotropic properties,
while complications introduced by Fermi-surface
distortions are not so great as to preclude a real-
istic treatment of such. The existence of the ex-
tremely accurate pseudopotential fit of Stark and
Falicov?! (SF), which has been used very success-
fully in previous calculations,®+!* was also a factor
in the choice of zinc. Finally, there is a sufficient
amount of experimental data available with which
to compare our results.

Of the previous calculations discussed above,
those of Allen and Cohen,® Truant and Carbotte,*
Pecheur and Toussaint,!® and Borchi, De Gennaro,
and Tasselli'” were for zinc. Allen and Cohen
approximated the Fermi surface by a sphere, the
phonon frequencies by an isotropic fit to neutron
scattering data, single-particle electron states by
a single OPW, and the phonon Brillouin zone by a
Debye sphere. They obtained excellent agreement
between their calculated mass-renormalization

parameter X (1 +X is the mass-enhancement factor
due to phonons) using the SF pseudopotential and
the X extracted from the electronic specific-heat
coefficient and superconducting transition tem-
perature. - The same calculation using the Animalu-
Heine?® model potential yielded a value of X apout
36% lower than the experimental values. Their
results for the room-temperature electrical resis-
tivity were low by about 50% and 75% for the SF
and Animalu-Heine?? potentials, respectively.

Truant and Carbotte™ made the same assump-
tions as Allen and Cohen, except that they used a
force-constant fit to neutron diffraction data for
the phonon model. With this, Truant and Carbotte
calculated many anisotropic properties as well as
the isotropic ones. Their results for the isotropic
mass-enhancement parameter and electrical re-
sistivity were both in very good agreement with
experiment. They explored the sensitivity of the
results to different force-constant fits, and found
that 1 is very sensitive to these variations.. Since
that calculation, ‘phonon data®® have become avail-
able at more points in the Brillouin zone. These
neutron data are in best agreement with the force-
constant fit which gave the worst results for most
of Truant and Carbotte’s calculations.

Pecheur and Toussaint!® used a model similar to
that of Truant and Carbotte,'* and with this they
calculated the anisotropic electrical resistivity
and the thermal conductivity of zinc as a function
temperature. It should again be emphasized that
these authors approximated the electron states by
single OPW’s on a spherical Fermi surface.
Borchi, De Gennaro, and Tasselli’” had earlier
carried out a calculation similar to that of Pecheur
and Toussaint, but only for the isotropic electrical
resistivity of zinc.

A recent paper by Auluck?* also considers the
theory of the anisotropic cyclotron mass and ani-
sotropic superconducting energy gap in zinc. In
this work he uses the anisotropic band mass de-
termined by Stark and Auluck®® in a separate cal-
culation in which they used a modified Stark and
Falicov pseudopotential. Auluck then compares
the band mass averaged over various cyclotron
orbits with experimentally determined cyclotron
masses to determine the phonon mass-enhance-
ment factor averaged over the same orbit. Argu-
ing that the magnitude of the superconducting
energy gap is closely related to the mass enhance-
ment at the same point on the Fermi surface,
Auluck then does an approximate calculation for
the anisotropic energy gap.

Our paper differs from Auluck’s in the important
respect that we calculate the anisotropic mass en-
hancement and energy gap from our models of the
phonons, electrons, and electron-phonon interac-
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tions. We compare our results with the cyclotron
resonance experiments—we do not use these ex-
periments to determine the mass enhancement.
Later we shall have more to say about the Stark
and Auluck (SA) pseudopotential and the Auluck cal-
culation. '

In this paper we present the results of calcula-
tions which take into account, we believe, for the
first time! for a simple metal all five elements
listed above which are required for a realistic
accounting of electron-phonon interaction effects.
A somewhat similar.calculation has been carried
out for the transition-metal copper by Nowak®® and
also by Das.?” We find for the case of zinc, as
Nowak -and Das found for copper, that all five ele-
ments have important effects on the anisotropic
electron-phonon properties. This was also found
by Leung!! and by Meador and Lawrence® in their
recent calculations for Al. )

Atomic units, m =% =|e|=1, are used through-
out. The unit of energy is the double rydberg
(27.2 eV). ‘Hexagonal notation is used for recipro-
cal-lattice vectors. That is, a (k,%,k" +%, )-type
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FIG. 1. First Brillouin zone of zinc showing the labels
for the major symmetry points and their relation to-the
Cartesian axes used in this paper.

reciprocal-lattice vector is the vector kA +EB +1IC
in reciprocal space, where A and B are primitive
reciprocal-lattice vectors that lie in the hexagonal
plane and Cis perpendicular to A and B. When
polar coordinates are used, 0 is the angle with the
[0001] direction and ¢ is the angle with the [1120]
direction (i.e., the angle in the base plane with the
TKHA plane in reciprocal space).

Zinc is a nonideal hcp structure with two atoms
per unit cell. The low-temperature interatomic
distance in the hexagonal plane is a=2.6596 A,
while the height of the unit cell (twice the distance
between planes) is ¢ =4.8618 A. Figure 1 is a dia-
gram of the first Brillouin zone for zinc with the
major symmetry points labeled. The x axis is the
(1120) direction in real space, i.e., the direction
for ¢ =0 in the basal plane.

In Sec. II we set up the lattice model from which
the phonon frequencies and polarization vectors
are obtained. In Sec. II we discuss the band-
structure effects. In Sec. IV we consider the elec-
tron-phonon interaction, and we discuss the cal-
culation of the anisotropic and Fermi sphere
average o’F. The results of the calculation of the
anisotropic phonon mass enhancement of the elec-
trons and the anisotropic superconducting energy
gap are presented in Sec. V. In Sec. VI we calcu-

. late the cyclotron resonance masses for a number

of cyclotron orbits and compare with experiments,
while in Sec. VII we discuss the superconducting
transition temperature and summarize our results.

II. LATTICE DYNAMICS

A realistic calculation of electron-phonon effects
in metals requires a phonon model which provides
at an arbitrary point § in the Brillouin-zone 3x
frequencies wy, and 3r polarization vectors Eﬁ.b
where » is the number of atoms per unit cell and
X specifies the particular phonon mode. In order
to calculate anisotropic effects, one must consider
the full anisotropy of the phonons. An ideal model
would realistically treat the long-range interionic
forces and correctly predict the frequencies and
polarization vectors measured by inelastic neutron
scattering.23+28

Pseudopotential theory provides the promise for
such a model,?® but it is not always possible to find
a pseudopotential whose predicted phonons agree
with the experimental data. A Born-von Karman
force-constant model, on the other hand, can
sometimes be fit very accurately to the existing
data, but to obtain a good fit for metals it is usual-
ly necessary to take into account the forces be-
tween ions far removed from each other. Another
point is that force constants are less fundamental
than pseudopotentials. The forces are parameters
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that are adjusted to give the right phonon spectrum,
whereas in the case of, e.g., Shaw’s optimized
model potential®® (SOMP) the parameters are ad-
justed to give the right ionic spectra. There also
remains the problem of uniqueness in that different
fits of the force-constant model may agree with
measured phonon frequencies (usually measured
only along certain symmetry directions), but give
different frequencies in remote regions of the
Brillouin zone where measurements have not been
taken,® or generate different polarization vectors.

We found that the most satisfactory model for
zinc is a pseudopotential model based on SOMP
similar to that of Gilat, Rizzi, and Cubiotti®*
(GRC), but with small corrections added to the
dynamical matrix in the form of force constants.

The phonon frequencies and polarization vectors
for a given wave vector § in the first Brillouin
zone are determined by solving an eigenvalue equa-
tion,

28

w§he§(ﬁ,m)=; D os@ mm)ed@m'), (1)
m

where eX(d, m) is the ath Cartesian component

(@ =1-3) of the polarization vector for the mth
atom in the unit cell and for the Ath mode (i.e.,
polarization). For zinc, m runs from 1 to 2, cor-
responding to the two ions per unit cell. For such
a case, there are 2x3 =6 polarizations or values
of X for each value of §. ws), is the frequency for
the mode X, while D 4(§, mm’) is the aB, mm’
component of the dynamical matrix. The exact
nature of the ion-ion forces is contained in the
dynamical matrix, while the precise form of the
dynamical matrix for a given set of forces depends
on the definition of the normal mode. We use a
convention in which

u (1, m,t)=(A/VMN )e )@, m)

xexplild- K, +B,) -2 f]}, (2

where uy(l, m, t) is the ath component of the dis-
placement of the mth ion in the Ith cell from its
equilibrium position as a function of time ¢ when
the crystal is vibrating with amplitude A in the
normal mode A with wave vector §. Here X, is the
position of the lattice point of the lth cell, while
P is the equilibrium position of the mth ion in the
cell relative to the lattice point of the cell. M is
the mass of an ion (all the ions have the same
mass) and N is the number of cells in the crystal.
In pseudopotential theory the dynamical matrix
is made up of the sum of three terms, each arising
from one of three terms in the potential energy
which, in turn, is a function of the ion positions:

D(q) =D® +D° +D¥, (3)

where DF is from the ion-ion repulsive energy due
to core-core overlap, D€ is from the Coulomb re-
pulsive energy of interaction between ions, and
DF is the conduction-electron contribution. The
core radius in a simple metal such as zinc is
small compared to ion-ion distances, so, simi-
larly to other work,3! we ignore the contribution
DE.
T DC is computed by the method of Kellermann3
for determining the potential energy of a lattice of
point charges. It should be noted that the charge
on each ion is taken to be not Z in atomic units,
where Z is the valence (in the case of zinc Z =2),
but rather the charge is Z*, with Z*=2.1461. This
effective valence for the ions arises from the fact
that with the use of pseudopotential theory for the
calculation of the electronic part _[_)E a depletion or
orthogonalization hole charge develops about each
ion. To be consistent, the same change of ionic
charge must be considered in the calculation of DC€.
The electronic contribution D is determined Ey
pseudopotential theory—in our case, by using
SOMP —in which the electronic energy is calculated
to second order in perturbation theory. The sec-
ond-order contribution to the energy by the elec-
trons is?®

E =qZ¢° IS@PF@ , @

where

S@ = 3 e 5)

is the structure factor, and

r-23( [ g DE )

FIPPRETI o )

- (R0q°/87) lw,. @) (6)

is the energy—wave-number characteristic. In
the structure factor (5), the sum is over all ion
sites with the instantaneous position of the 7th ion
being ﬁi, n is the number of ions per unit cell

(two for zinc), while N is the number of cells in

the crystal (of volume ). @, is the volume per
ion so that Q =nuN€,. In carrying out the integra-
tion in Eq. (6), we assume that % is independent
of direction, i.e., % is taken as the radius of the
free-electron sphere. w(k,§) and w.. (4) are the
screened form factor and the electron screening
field, respectively. Screening is handled through
the use of the Hartree dielectric function which is
used to construct a self-consistent screening po-
tential. For details including the mathematical
expressions, see GRC.

GRC, using this model for zinc, found imagin-
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TABLE I. Parameters used in Shaw’s optimized model potential (SOMP) (Ref. 30) for the

phonon model.

AER) Ay(€p) Ay(€p) 94| 94 94y
Q¢ (ad) krlagl) Z* (double Ry) (double Ry) (double Ry) o€ er 0€ | 0€ |ep
102.16 0.8338 0.860 -0.355 -0.484 0.0

2.1461 0.984 1.380

ary frequencies near the T point (§=0). On re-
peating this calculation, we found the same dis-
persion curves as GRC, except that we did not
find imaginary frequencies. We then obtained
GRC’s calculated energy-wave-number character-
istic from Gilat (whom we wish to thank for send-
ing these to us), and, using a linear interpolation
between the calculated points in their table, we
obtained the same imaginary frequencies as they
did. However, using a second-order spline inter-
polation with their table, we found that the imag-
inary frequencies disappeared. This shows the
extreme sensitivity of imaginary frequencies at
low-§ values to the exact form of the energy-
wave-number characteristic.

GRC also explored the effect of the effective
mass on phonon dispersion curves and found it
to be significant. They suggested that m* may be
used as an adjustable parameter possibility to in-
clude some band-structure effects. Our best fit
occurs with m*=1.1,

Despite the fact that the imaginary frequencies
do not seem to be a problem with the GRC model
for zinc, it still is not a satisfactory model for
our purposes. The frequencies near § =0 are not
imaginary, but neither do they agree with the elas-
tic constants. More importantly, the frequencies
of the low-lying modes in the regions of § space
where the frequencies are nearly constant with §
do not agree quantitatively with the neutron scat-
tering data.2® It is justthese phonons thatdetermine
the lowest energy peaks in the phonon density of
states, and thus have the biggest effect on the elec-
tronic properties such as T, and the mass en-
hancement.

Brovman, Kagan, and Kholas®? have investigated
the effect of third-and higher-order powers of the
pseudopotential on the electronic contribution to
the dynamical matrix. They conclude that the
highest-order terms give rise to a short-range in-
teraction that is covalent in its structure and that
this additional force can be adequately represented
by a few force constants. In view of this, we have
added three force constants to the dynamical
matrix. These affect only the dynamical-matrix
elements D, (4, 11) and D,,(§, 12), and are included
in the framework of the model of DeWames, Wolf-

ram, and Lehman.?* According to their notation,
the force constants are

€,,=-1180 (dyne/cm),
€, =785 (dyne/cm),
Ry, =246 (dyne/cm).

Table I gives the other parameters used in our
phonon model. Here A;, i=0-2, is the depth of
the SOMP well in double rydbergs for the s, p,
and d contributions, respectively. Figure 2 shows
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FIG. 2. Phonon dispersion curves, frequency vs wave
number, calculated using Shaw’s optimized model poten-
tial with three added force constants (solid curves)
plotted in major symmetry directions. Experimental
data of Ref. 23 are shown by the solid dots. (a) q in the
basal plane and along the ¢ axis; (b) q along the upper
hexagonal boundary of the Brillouin zone.



1872 PHILIP G. TOMLINSON AND JAMES C. SWIHART 19

the data of Ref. 23 along with our calculated fre-
quencies. The least agreement is near point A,
but being along the ¢ axis this point has little
statistical weight compared to points off the ¢ axis
when integrations are performed over the phonons.
This is because the volume of a cylindrical shell
of radius 7 about the ¢ axis increases as 2.

In general, the dynamical matrix and polariza-
tion vectors are complex, but to simplify diagon-
alization the dynamical matrix can be made real
by a unitary transformation. For two atoms per
unit cell the dynamical matrix is of the form

_1211 212
D= 7
= \D% Dy ’ (M
where the D;; are 3x 3 matrices which contain the

indices of the Cartesian coordinates. We deal with
the transformed matrix :

D= 1o —_—
D=UDU "=75 \4 Df Dy) V2 \-i 1)’
(8)

which is real since D,, is real. Since we apply the
calculated phonon p()_la.rization vectors only to the
calculation of the electron-phonon interaction (see
Sec. IV), it is not necessary to carry out the in-
verse to the transformation (8) on the polarization
vectors.

If the dynamical matrix were evaluated and dia-
gonalized each time phonon frequencies and polar-
ization vectors were required in the calculations
to be described, the process would have to be
performed hundreds of thousands of times. This
was avoided by using a modification of the QUAD
program written by Mueller et al.®® for interpo-
lating electronic band structure. The program
had to be modified to apply it to the hcp structure,
and also to apply it to phonon frequencies and po-
larization vectors. It divides the irreducible wedge
of the Brillouin zone into a number of cells of
equal volume and like shape, and the dynamical
matrix is evaluated and diagonalized at each of 27
points in each cell. Then a quadratic least-squares
interpolation is performed for each of the six fre-
quencies and each of the six components of the six
polarization vectors in each cell, and the inter-
polated polarization vectors are renormalized.

The error in the fit for the frequencies is much
less than the discrepancy between the model and
experiment. The polarization vectors present
more of a problem in that quadratic interpolation
is inadequate in cells in which phonon dispersion
curves appear to cross or change character. The
adequacy of the interpolation for both frequencies
and polarization vectors was tested by calculating

a®F(cosf =1, ¢ =0,w) (see Sec. IV for a discussion
of the oF functions) for two cases in which the
irreducible wedge was divided into 80 and 252
cells, respectively. The difference between the
results of the two calculations was much less than
the statistical error inherent in the Monte Carlo
integration. The bulk of the remaining calculations
were formed with 150 cells in the QUAD?® program.
The frequencies of phonons of very small wave
vector (¢ <0.1¢,,,,) were approximated by a linear
function of ¢g. In the above, g, refers to the mag-
nitude of the largest § vector in the Brillouin zone.

III. BAND STRUCTURE

There are three distinct ways in which the band
structure plays a role in electron-phonon effects.
These enter via (i) the geometrical shape of the
Fermi surface, (ii) the electronic wave function
for an electron at the Fermi surface, and (iii) the
electron-band velocity at the Fermi surface. The
wave function, conveniently expressed in terms of
coefficients of plane waves, is required in order
to calculate the electron-phonon matrix element
between two states at the Fermi surface. By using
pseudopotential theory, it is possible to limit one-
self to determining only the pseudo-wave-function.
This has the advantage that fewer plane waves are
needed for the pseudo wave function than for the
true wave function.

The shape of the Fermi surface is required in -
the calculation to determine which wave vectors k
lie on the Fermi surface. Itisalsoneededas is the
band velocity in summing over states at the Fermi
surface. These two band-structure properties
[(i) and (iii) in the paragraph above] are determined
if one knows the band energy as a function of k, at
least in the vicinity of the Fermi surface.

The band structure is dealt with in this calcula-
tion by using pseudopotential theory.

The pseudopotential W is much “weaker” in
some sense than the true potential V, so that the
pseudo wave vector ¢, can be accurately expres-
sed by only a few terms in a plane-wave expansion

¢i(?‘) =W12__ Zaa(ﬁ)ei(i-r?}) ot _ Z aa(ﬁ) IE +§> R
G G
(9)

with G a reciprocal-lattice vector and © the total
volume. Each of the functions in terms of which
¢; is expanded in (9) is a plane wave which we
shall refer to an orthogonalized plane wave (OPW).
The band energy €3 is the same for the pseudo-
eigenproblem as for the true eigenproblem, Thus
it is not necessary to convert to the true wave
function in determining the Fermi surface. Nor
is the true wave function required for the band
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velocity ¥, at the Fermi surface, since
> —_>-b ->
Vy = Vi€t (10)

involves only the band energy at and near the
Fermi surface. Finally, the calculation of the
electron-phonon matrix element for the scattering
of an electron from one state k to another state
K’ requires only the pseudo wave functions ¢z and
¢z in the form Eq. (9) according to a theorem of
Sham.?® Thus in our actual calculations we con-
fine ourselves to the pseudopotential and pseudo-
wave-functions, and it is not necessary to use the
true wave function at all.

The Fermi surface is determined in the extended-
zone scheme in a given direction g by finding the
magnitude of K that satisfies

Za:(i+ E‘H’IE-#- 6')a3.
=3(k+ —é)zaa‘fz S(-é - 6’)w(E+ 6',6 - a')aa.

a'
=€pag ‘ (11)

for arbitrary reciprocal-lattice vectors 6, with
€r the Fermi energy which is independent of G
and the direction of k. In (11) the pseudopotential
matrix element has been broken up into the pseudo-
potential w for a single ion (i.e., the form factor)
and the structure factor S of Eq. (5). In certain
directions, no solutions of (11) exist. For such a
case the best value of % is at a Brillouin-zone -
boundary with % on one side of the boundary giving
too small a value for the left side of (11), but with
k on the other side giving too large a value. In
such a direction the Fermi surface does not exist.
It is also possible that more than one value of 2
could satisfy (11) for a given direction. The latter
case does not occur for zinc.

We used the Stark and Falicov (SF)?! nonlocal
pseudopotential in Eq. (11) in obtaining the Fermi
surface for our calculations. We also used the SF
value of €, =0.400 25 a.u. (0.8005 Ry). We dropped
the spin-orbit term which modifies the Fermi sur-
face by less than 1%.3" The spin-independent
pseudopotential is expressed in the form

w(&,§) =uy @) + }; v(e)k +G 1)), (12)
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where u; is the local part of the potential and
hence independent of k, while [f) is a Hartree-
Fock-Slater atomic function centered on an atomic
site at the origin.?® The index ¢ runs over the
occupied core states s, p, and d. The local part
u; is given only for § equal to certain reciprocal-
lattice vectors (see Table II), while the nonlocal
strength v(t) is given for the occupied s, p, and d
core orbitals (it is nonvanishing only for the d
orbital).

Using the SF pseudopotential (in this work we
shall always mean by SF pseudopotential, SF with
neglect of spin-orbit terms), we found that by
carefully choosing the reciprocal-lattice vectors
in the expansion (9), we obtained a Fermi surface
with only two to eight terms in the expansion (i.e.,
only two terms on some parts of the Fermi sur-
face, particularly over the flat part of the lens,
but up to eight terms at other parts of the Fermi
surface) which duplicates as accurately as does
Steenhaut and Goodrich¥ the Fermi surface ob-
tained with many more terms (SF used 18-27
terms or OPW’s). We have in this way a good rep-
resentation of the SF Fermi surface in which, in
agreement with SF, the “butterflies” and “stars”
are missing. The reciprocal-lattice vectors taken
in addition to G =0 are those corresponding to the
Bragg planes closest to the & vector. This same
procedure was used in determining the pseudo wave
functions for the calculation of the matrix elements.
Figure 3 shows two sections through our calculated
Fermi volume in both the extended zone scheme
and the reduced zone scheme.

The parameters in Table II for the pseudopoten-
tial were chosen by SF to obtain the best fit to
their experimental de Haas—van Alphen periods.
More recent experiments on the radio-frequency
size effect in zinc® indicate that the SF Fermi
surface is very close to the actual one. However,
these experimental results as well as those of SF
give us information only on the geometrical shape
of the Fermi surface.

A correct pseudopotential must be both nonlocal
and energy dependent. The nonlocal property
means that there is a first-order contribution to
the energy of the form (g%, We7) which is dependent
on k. Thus there is a contribution from this term
to the band velocity (10) because of the nonlocal

TABLE II. Parameters used in SF pseudopotential (Ref. 21) for the Fermi-surface calcula-
tions. All numbers are in atomic energy units (double Ry).

u;(G) local pseudopotential

{0002) {1010) (1011)

v(t) nonlocal pseudopotential
(1012) v(s) v(p) v(d)

+0.0020 +0.0075 +0.017 25

+0,0100 0 0 +1.575
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FIG. 3. Fermi surface of Zn using the spin-indeper-
dent SF pseudopotential and two to six POW’s. Both
diagrams are for planes in 2 space containing the ¢ axis.
(a) The plane ¢ = 0 or the TKHA plane; (b) The plane
¢ = 30° or the I'LMA plane.

property of the pseudopotential. One expects (12)
to represent the general form of the pseudopoten-
tial where v(¢) is the strength of the nonlocal con-
tribution from the tth atomic core state. Since SF
fit these strengths empirically, one might reason-
ably think that the nonlocal part of the SF pseudo-
potential is essentially correct at least in the
neighborhood of the Fermi surface. (Of course
there is the highly likely possibility that the SF
fit to the data is not unique. In such a case the
nonlocal part of the SF pseudopotential may not be
correct.)

On the other hand, no energy dependence has
been put into the SF pseudopotential since the
parameters are fit to the experimental data at
just one energy, the Fermi energy. But the energy
dependence of the pseudopotential also contributes
to the band velocity (10). That is, the right-hand
side of (10) at the Fermi surface is the rate that
the energy changes as one moves off the surface
normal to it. Since, as we have noted, there is a

first-order contribution to the energy of the form
(o7, Wo7) the energy dependence of W contributes
to the gradient of ¢ with respect to k.

One thus sees, by the argument of the paragraph
above as well as by the argument that the fit of
the parameters in the SF pseudopotential may not
be unique, that one can not expect the SF pseudo-
potential to give the correct band velocity at the
Fermi surface. Hence it is not surprising that
when one compares the band density of states cal-
culated from the SF pesudopotential, the experi-
mental superconducting transition temperature T,
and the experimental temperature coefficient y
of the electronic specific heat, one does not get a
consistent set of results. We shall now discuss
this in detail.

Let us first consider the band density of states
normalized to that of the free-electron sphere

_mplep) _ 1 ds

> nt‘e(E%) 477}3% S Ub(E) ’
where #, is the band density of states for one spin
and ng, is the density of states for the free-elec-
tron Fermi sphere with €% the free-electron Fermi
energy 3(¥%)%. K5 is the free-electron Fermi wave
vector. The integral is over the true Fermi sur-
face. We have found a value of

p,=0.54 : (14)

using the SF pseudopotential and taking 1200 points
on ¢ of the zone. (Allen, Cohen, Falicov, and
Kasowski® quote a value of 0.59, However, 0.54
seems more consistent with their Fig. 1.)

The electronic specific-heat temperature coef-
ficient y is related to the band density of states by

7 =@7/3)kny(ex)(1+1), (15)

where kp is the Boltzmann constant and X is
McMillan’s mass-renormalization parameter due
to the phonon cloud.*® A value of 0.54 for the nor-
malized density of states together with the experi-
mental value of* y =642.5+ 1.0 pJ/mole K? in Eq.
(15) requires that A be 0.61. This, in turn, ac-
cording to McMillan’s formula® would give a
superconducting transition temperature 7, greater
than 5.0° K compared to the experimental value for
zinc* of 7,=0.85°K. On the other hand, if we take
McMillan’s value of A =0.38 which is obtained from
the experimental T, and use this in (15) together.
with the experimental y, we find p,=0.63. Thus
we see that the SF band velocity must be modified
to agree with experiment. Further this modifica-
tion can be made via the energy dependence of the
pseudopotential without changing the geometry of
the Fermi surface that this pseudopotential gives.
There are other indications that one should not
use the unmodified band velocities from an energy-

(13)
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independent SF pseudopotential. First, Shaw’s
optimized model potential®* (SOMP) for zinc gives
a value for the k derivative of the diagonal term
of

d

ﬁ(k‘WSOMP Ik> =0.037 (16)
in atomic units, compared to the SF value of

d

d—,@(klwSF |k)=0.16. 1

Equation (16) includes the effect of the energy de-
pendence of SOMP and was calculated from the
parameters for Zn given in Ref. 31.

One can use the local on-the-Fermi-surface
version of the SF pseudopotential (k and kK’ lying on
the Fermi sphere, thus suppressing all but the q
dependence) and calculate v, at each point on the
SF Fermi surface. Then one can correct for the
nonlocality and energy dependence by adding the
value of Eq. (16) to the local velocity. If, instead,
we would add Eq. (17) to the local velocity we
would have the unmodified SF band velocity with
the effect of nonlocality approximately included,
but with no energy dependence of the pseudopoten-
tial included. ,

If this modified band velocity , obtained using
Eq. (16) together with the on-the-Fermi-surface
local version of the SF pseudopotential, is used
in Eq. (13) and the integration is still over the SF
Fermi surface, one obtains p,=0.615, which is in
reasonable agreement with the specific heat and
T, data.

Stark and Auluck®® and also Moriarty® are in
agreement with our conclusion that the unmodified -
SF band velocity is too large. Both of these groups
were concerned with the effects of the d band but
approached the problem in quite different ways.
Although Stark and Auluck find the same band den-
sity of states with the SF pseudopotential as did
Allen et al.® (one can see this from Auluck’s?*
Table II, in which he gives 0.42 for the enhance-
ment factor A from specific heat with the SF mo-
del), they find with their modified pseudopotential
(their SA model) a smaller X from specific heat.
This means that p, must be larger for their SA
model than for the SF model. But Auluck states
that the SA model gives the same Fermi surface
as the SF model. Hence their SA model must give,
at least on the average, a smaller band velocity,
Moriarty concludes a similar result in which he
finds for his nonlocal pseudopotential that the 2
derivative of the diagonal matrix element of the
pseudopotential at the Fermi surface [correspond-
ing to Egs. (16) and (17)] has the value 0.045 in
double rydberg atomic units. This is fairly close
to the value of Eq. (16), which we had concluded

was a reasonable value before becoming aware of
Moriarty’s work. It is not close to the unmodi-
fied SF value of Eq. (17).

The band velocity is required in only two places
in our calculations—for the density of states in
integrations over the Fermi surface and for cal-
culations of cyclotron masses in integrations over
cyclotron orbits. For integrations over the Fermi
surface we first used a local version of the SF
pseudopotential to calculate the band velocity at
each point on the Fermi surface. That is, for a
given point on the Fermi surface we calculated
the values of the relevant plane-wave matrix ele-
ments to determine the band energy using the un-
modified nonlocal SF pseudopotential. We then
calculated new band energies for new 2 values
slightly below and slightly above the Fermi sur-
face and on the normal through the point. In these
last calculations the same values were taken for
the matrix elements of the pseudopotential as for
the calculation of the energy on the Fermi surface.
In this sense the pseudopotential is treated as a
local potential. This variation of the band energy
with the normal component of the & vector then
determines the local potential band velocity.

This local potential band velocity gives a value
of p,=0.625 for the calculation of the band density
of states. This same band velocity was used in the
density of states for all integrations over the
Fermi surface. Then the result was multiplied by
the factor 0.615/0.625 to correct for the nonlocal-
ity and energy dependence of the pseudopotential.

For the cyclotron orbits, more care was taken.
The band velocity was determined by

7,() = [V3+ (Vg - ¥)ez (18)

where V¢ denotes differentiation in which the
pseudopotential is not allowed to vary with fr:

That is, this operator operating on €} gives the
local SF band velocity as discussed in the preced-
ing two paragraphs. The constant « is treated as
an adjustable parameter to obtain the best fit with
the experimental cyclotron mass data. In order to
get the same derivative of the diagonal matrix ele-
ment as in Eq. (16), we would use a value of o
=0.037/0.16 =0.23. However, as we shall see, we
obtained better fits with o= 0.45.

The result of such a calculation with o =0.45 on
the lens is shown in Fig. 4. Plotted here is the
magnitude of the band velocity together with the
magnitudes of the components parallel and per-
pendicular to the ¢ axis, all normalized to the
magnitude of the free-electron velocity on the
Fermi sphere. Note that at the top of the lens
(6 =0), where the wave function is very nearly
free-electron-like, the unmodified SF band veloc-
ity is about 1.1 (as given by the dashed curve),
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FIG. 4. Magnitude v, of the band velocity on the lens
together with the components v, parallel to the ¢ axis
and v, perpendicular to the ¢ axis. The velocities are
normalized with respect to the free-electron Fermi
velocity v, and are given as a function of the angle 6 of
k p with the ¢ axis in the extended-zone scheme. The
dashed curves (-----) are determined using the unmodi-
fied SF pseudopotential, while the solid curves ( )
are from the modified SF pseudopotential in which the
nonlocal contribution is decreased by a = 0.45 in Eq.
(18). Also plotted as a comparison to v, is vz sin 0
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which is approximately 10% larger thanthe free-elec -
tronvalue. This difference is due almost entirely to
the nonlocality of the SF pseudopotential. Thus
when the nonlocal contribution is partially can-
celed by the energy-dependent contribution by «
=0.45 in Eq. (18), the band velocity then becomes
nearly that of the free electron. This is seen in
Fig. 4, in which the normalized velocity is approxi-
mately unity for the solid curve at small values

of 6.

IV. ELECTRON-PHONON INTERACTION

As shown by Sham,®® the matrix element gy
for the scattering of a Block electron from wave
vector k to kK’ with emission of a phonon of wave
vector § and polarization A can be expressed in
terms of the corresponding pseudo wave functions
@ and @7, and the pseudopotential w(k,§ +G) as

= Z a'(’;'(ﬁl)*a%(ﬁ)g}" IR (19)

-

G,G"

where az(K') and az(k) are the expansion coeffic-
ients, as in (9), in terms of OPW’s of the pseudo-
wave-functions @3 and @3, respectively, and

gt 7y is the electron-phonon matrix element for
the scattering from the one OPW state [k) to the
one OPW state |K’') with the emission of a phonon
of wave vector § and polarization A. This one
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OPW matrix element is given by

1 . 1 1/2 (‘E" |
gi'“_‘z(_—_ZNMw;J w ,Cl+G);

x 3 (G+8)- NG, m) exp(-iG- b, . (20),

In Egs. (19) and (20) § is the wave vector k +G
~% -G’andk -K', respectively, in both cases re-
duced to the first zone. Thus { is the same vec-
tor in both equations, while G in (20) is the reci-
procal-lattice vector which reduces k-% to the
first zone. G =0 for a normal scattering process,
while G#0 for an umklapp scattering. As before,
N is the number of unit cells in the crystal and
n =2 is the number of ions per unit cell. The sum
over m goes from unity to two for the two ions.
By using the transformed real dynamical matrix
of Eq. (8) to obtain the phonons, we obtain real
polarization vectors I, and 1, related to the com-
plex polarization vectors € (m) by

fl -El
fz =g_ zz> ’ (21)

where U is the unitary transformation matrix in
Eq. (8). If we set the origin so that —p, =p, =p,
then

T ) ( 1 ._> )1/2 &,4+G)3G +9)
S kn ==t ‘/‘i ZNM(-OE)\ wK, q 2 q
x{T*@, Dlcos(G-p) - sin(G- b))

+12(@, 2)[cos(G-p) +sin(G-p)]}. (22)

We shall only need. the absolute square |gf 7y F,
so the factor —i(1 —4)/v2 may be dropped and all
quantities are real.

The pseudopotential form factor w(k,§) occurs
only for § equal to reciprocal-lattice vectors for
the band-structure problem of Sec. III, and thus
could be determined only for these values by
Stark and Falicov.?! However, for the electron-
phonon interaction (20) the form factor must be
known for a continuous range of § values from
zero to slightly more than two times %%. Hence
the SF pseudopotential (12) must be extrapolated
to small values of §, as well as interpolated to q
values between reciprocal-lattice values.

We are not concerned with values of ¢ much
larger than.2.2 %, since we are only interested
in Fermi-surface scattering. It is true that
with multi-OPW wave functions on the Fermi sur-
face there are plane-wave components with wave
vectors greater than k.. -Hence in the matrix ele-
ments there will be plane waves connecting with
plane waves with a wave vector difference greater
than 2k,. However, only those plane waves near
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the Fermi sphere occur in the Fermi-surface
wave functions with non-negligible coefficients,
and thus ¢ values larger than 2.2 &, make very
small contributions to the matrix elements.

For the intermediate values of §, i.e., those in
the range where the SF form factor is known, a
spline interpolation of the local part of SF was
taken, while the nonlocal part of the SF form fac-
tor was considered to be correct over this entire
range. For the extrapolation to small § vector
it is possible to carry out the same procedure as
with the interpolation. This was done by Allen
et al.® and by Truant and Carbotte,** in which the
SF pseudopotential was smoothly interpolated be-
tween the values at the reciprocal-lattice vectors
and the limiting value ~% ¢, at§ equal to zero for
k and K’ on the Fermi sphere. We also used this
procedure at first, but with it we obtained a cal-
culated value of A that was about 30% too low. By
the calculated A, we mean the value obtained using
the electron-phonon interaction (19)—(22) with the
appropriate integrals over the Fermi surface, as
we shall describe below. We do not mean the value
of X obtained from comparing the calculated band
density of states with the electronic specific heat,
as in Eq. (15).

Another way of extrapolating to small § values is
to extrapolate the local value of the SF pseudo-
potential such that the total nonlocal pseudopoten-
tial agrees with Shaw’s optimized model potentigl®®
(SOMP) for small § and for k and &' on the Fermi
sphere. When one uses SOMP including the cor-
rection to the effective mass due to the nonlocal
and energy-dependent nature of the diagonal term
of the pseudopotential,*® one gets a long-wave-
length limit significantly different from -—%eF. For
zinc the appropriate limit is ~%(1.23)e,. SOMP
calculated in this way does not join smoothly to
the fitted points of SF. However, the former po-
tential does have a better theoretical foundation
than the extrapolated SF potential at small §. Thus
we used SOMP with the k-dependent mass for
0 <g <1.2F}. For larger § values we connected
‘with SF by a spline interpolation. ‘With this pseudo-
potential, which is greater in magnitude for small
g than the extrapolated SF pseudopotential, the
calculated value of X is 0.36. This value of X
agrees quite well- with McMillian’s value® of
0.38. i ‘

A third extrapolation that we used consisted of
fitting to the nonlocal pseudopotential of Appapillai
and Williams* at small values of §.  Although this
pseudopotential goes to the value -%e,,. on the Fermi
surface for 4 =0, and thus is not as strong for
small § as is the SOMP with the k-dependent ef-
fective mass, it does have a larger magnitude in
the region of q/kp ~1. The value of X calculated

.with this pseudopotential is 0.33, which is about

10% too low. See the following paper? Fig. 1, for
a plot of the two form factors discussed here to-
gether with a plot of SOMP with m*=1. The follow-
ing paper also has a more complete discussion
concerning the form factor.

For the physical properties of interest to us in
this paper, the electron-phonon interaction enters
only through the anisotropic «®F function

o?*F(&, w)

o . R’%T Llerinfs-wz), @3

and the Fermi-surface average

2 _ das 2 das
QF(w)‘—‘L‘S Wb( )|OZF(R,0J)/'/F-S m. (24)

For the transport properties, generalizations of
a’F enter that involve deviations of the electron
distribution from the Fermi-Dirac distribution.
These functions are discussed in the following
paper.?2 All of these functions involve integrals of
the square of the magnitude of the electron-phonon
interaction matrix element over the Fermi sur-
face, but with different weighting functions. Thus
the calculations of the o®F functions were carried
out by the same method, namely, a Monte Carlo
integration over the Fermi surface, and in fact
were frequently done simultaneously.

The o®F functions may be thought of as the den-

“sity of phonon states available to the electron at

k:

S Sy G i
F(&,©) = f“m;sw wy)  (25)

weighted by the eledtron-phonon interaction
squared. The method of calculation of the ani-
sotropic o?F at a given value of k on the Fermi
surface was as follows: The free-electron Fermi
sphere was divided up by a grid system. A ran-
domly scattered electron state k' on the true Fermi
surface but within a given grid square in terms of
its direction was found by using a random number
generator. If the Fermi surface existed in that
direction in the extended zone scheme, then that
would determine K. If the Fermi surface did not
exist, this direction would be discarded and a new
random direction would be determined. The phonon
§ vector was determined as K’ -k reduced to the
first zone, With our stored information on the
electron wave functions at k and &' together with
the phonon frequencies and polarization vectors
corresponding to §, the electron-phonon inter-
action Eq. (19) was evaluated for each X.

The 6§ function in Eq. (23) was handled by divid-
ing the phonon frequency range into 100 equally
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spaced regions or bins. The scattering from k

to k' would then give a contribution to a2F at the
value of w corresponding to the bin in which w+,
would fall. The magnitude of the contribution was
AS', a Fermi-surface area element, divided by
the band velocity times the electron-phonon ma-
trix element squared times the reciprocal of the
bin width. For a given &k and ¥, all phonon po-
larizations were used. This process was then
first repeated for all the 23 other kK’ points ob-
tained by the point operations of the hexagonal
symmetry. Then a new random k' was obtained
in the next grid square, and so on. For each of
the anisotropic ?F functions, 6264 &' points were
taken.

The isotropic o®F functions were calculated in
a similar way, except that both k and kK’ were ran-
dom points within the grids on the Fermi surface.
For these calculations 9216 pairs of k and ¥ were
taken.

Figures 5-T are plots of calculated o®F functions
for zinc. Figure 5 shows our calculated Fermi-
surface averaged a®F(w) of Eq. (24) using the SF
pseudopotential extrapolated to Appapillai and
Williams at small g. Although this function has
been determined from anomalous tunneling data
combined with a numerical inversion of the Eliash-
berg gap equation for a number of strong-coupling

0.30 T T T [2 T T T T T
a” Flw)
0.20—
—
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FIG. 5. Isotropic @’F as a function of reduced fre-
quency. w, = 4.178 10!3 rad/sec is the maximum phonon
frequency. The pseudopotential used in the calculation
was SF Ref. 21 extrapolated to Appapillai and Williams
(Ref. 44) at small g. The band velocity used in the in-
tegral over the Fermi surface was that of the nonlocal
SF, but the final integral was multiplied by the factor
0.615/0.54 to correct for the modification of v, due to
the energy dependence of the pseudopotential.

superconductors,® zinc appears to be too weak
coupling to make this procedure feasible. Thus
there are no data at present with which to com-
pare our calculated o?F.

Note that there are three large peaks in the cal-
culated o®F function at values of w/w, of approxi-
mately 0.30, 0.38, and 0.88, corresponding to fre-
quencies of 2.0, 2.5, and 5.9 THz, respectively.
There are two smaller peaks at w/w,=0.50 and
0.65, corresponding to 3.3 and 4.3 THz, respec-
tively. These peaks also occur at about the same
frequencies in o®F functions calculated using the
SF pseudopotential extrapolated to SOMP at small-
g values. In fact, with this latter potential we
have calculated the isotropic a?F for three cases
(not shown here; see Tomlinson’s thesis): multi-
OPW wave functions on the true Fermi surface,
one-OPW wave functions on the true Fermi sur-
face, and one-OPW wave functions on the spheri-
cal Fermi surface. In all three calculations
there are peaks at approximately these five fre-
quencies, with the ones at w/w, equal to 0.30,
0.38, and 0.88 being the dominant ones. The peaks
at w/w, equal to 0.50 and 0.65 are almost lost in
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FIG. 6. Anisotropic ¢®F in the direction of the ¢ axis
as a function of the frequency. The pseudopotential used
was the same as for Fig. 5.
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FIG. 7. Anisotropic ¢’F in the direction cos6
=0.8448 and ¢ = 0 as a function of frequency. This
direction corresponds to the rim of the lens. The
pseudopotential used was the same as for Fig. 5.

the noise in the last two calculations.

Since the main thing that is constant in the four
calculations of o®F discussed above is the phonon
model, we conclude that since the peaks occur at
nearly the same frequencies for each calculation,
the position of the peaks must reflect the positions
of peaks in the phonon density of states F. Also,
the three dominant peaks are dominant in all four
calculations, while the two minor peaks are minor
in all the calculations. So in some gross sense
the magnitude of the peaks is also determined by
essentially only the phonon density of states. How-
ever, for the finer details the other parts of the
model play a role. Thus the electron-phonon in-
teraction, the Fermi surface, and the electronic
wave functions, i.e., the parts of the model that
go into the o? of a*F are also determining factors
in the size and exact location of the peaks. For
example, for the one-OPW on the spherical Fermi
surface, the peak at w/w,=0.38 is larger than the
one at 0.30, which is just the reverse of the case

of multi-OPW’s on the true Fermi surface in Fig.
5.
On looking at the phonon dispersion curves, Fig.
2, we see that some of the branches are rather
constant in frequency in the frequency region near
2 THz and also in the region of 6 THz. However,
these curves are only along a few directions in

the three-dimensional zone, and thus all such flat
regions may not appear in these figures. Further-
more, where they do appear, we cannot tell from
the graphs how large the phase space of the flat
region is. }

Truant and Carbotte!* have also calculated iso-
tropic o®F functions for zinc with single OPW wave
functions on a spherical Fermi surface. They used
two different models for the phonon spectra (both
different from the one used by us). They also find
five peaks in both the o*F function and in the pho-
non density of states for both phonon models. Ac-
tually, with the one model a small peak in the pho-
non density of states splits into two small peaks in
the o?F function. It is of interest to-compare the
locations of their calculated peaks with ours.  In
their one model the peaks. in o®F occur at approxi-
mately 1.6, 2.4, 3.6, 4.1, and 5.7 THz, while with
the second model they find peaks at 1.9, 3.4, 3.9,
and 5.6 THz with the very small double peaks at .
2.2 and 2.4 THz. Thus the five peaks occur at
roughly the same places for our phonon model and
for their two phonon models. We also agree with
the models of Truant and Carbotte in that the low-
est- and highest-frequency peaks are major ones
and in that the third and fourth peaks are minor
ones. We disagree that our peak at 2.5 THz is a
major one, while with both their models this is'a
minor peak.

Although there is fair agreement between the
results of their two phonon models and our results
as to the locations of the peaks in @?F, it is true
that with their one model [they donate it by MEPM
(McDonald, Elcombe, and Pryor modified force
constants), which they considered to be their better
model], the major low-énergy peak is 20% lower
in energy than is the same peak in our model.

This can be attributed to the very low energies of
the phonons of the lowest branch in their model in
the LH region of the Brillouin zone. More

‘recent neutron data?® shows' that this branch does

not have such low energy (see Fig. 2).

We further have general agreement with Truant
and Carbotte on the magnitude of the dimension-
less quantity «?F. In all of the calculations it
ranges from about 0.05 to 0.15, going over 0.2 only
at the major peaks and going under 0.1 only at
three valleys in the middle of the frequency range.
Such quantitative agreement is possible on compar-
ing calculations using the free-electron spherical
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Fermi surface with those using the true Fermi
surface only if the results in Eq. (23) of the former
are multiplied by p, of Eq. (13). Truant and Car-
botte used this procedure to correct for the actual
Fermi-surface density of states when integrating
over the free-electron Fermi sphere.

It is gratifying to find such close agreement for
the isotropic o?F obtained with such widely differ-
ing models. Thus we feel the o®F function of Fig.
5 is probably fairly close to the actual o*F of
zinc. '

The calculated @2F functions in Figs. 5-17 are
somewhat noisy due to the fact that we took a
limited number of points in the Monte Carlo inte-
gration. By taking more points we can cut down
on this noise. However, we have found on doing
this for a few test cases that we still obtain the
same results for A(k), A(K), and the transport
properties. This is due to the fact that these prop-
erties are obtained by integrations over @?F with
smooth functions as weighting functions. For such
integrals one gets nearly the same results if one
first averages o®F values over the nearest two or
three bins to obtain the o®F value in a given bin.
Such an averaged function obtained from any of
our o*F functions given here is quite smooth,
showing that we have taken enough random points
in the Monte Carlo procedure. However, with
the noise in these functions as presented here, it
is not as easy to see the van Hove singularities
that occur.

Figures 6 and 7 give anisotropic o?F functions
for k in two particular directions on the Fermi
surface in the extended-zone scheme. The cal-
culations for these graphs used the same pseudo-
potential as in Fig. 5, namely, that of SF extra-
polated to Appapillai and Williams at small §.

The band velocity in Eq. (23) was that of the non-
local SF, but the final integral was multiplied by
the factor (0.615/0.54) to correct for the modifica-
tion of v, due to the energy dependence of the
pseudopotential.

Figure 6 is for k in the ¢ direction, which is at
the center of the flat part of the lens. The cor-
responding o®F has peaks at w/w, equal to 0.30,
0.38, 0.50, and 0.88, which is at the same places
as peaks in the isotropic «®F, with all of these
peaks much larger here than for the isotropic
case. However, the peak at 0.65 does not appear
in this direction, and there is an additional peak
at 0.34.

Figure 7 is for k at the edge of the lens in the
TKHA plane. The properties on the lens are
nearly independent of the angle ¢, and thus o*F
is very similar to Fig. 7 for any point on the edge
of the lens. Again peaks occur for w/wc equal to
0.30, 0.38, 0.50, and 0.88. Also, as in Fig. 6,

not only is the peak at 0.65 missing, but the entire
region from 0.60 to 0.80 is quite small (note that
the ordinate scale in Fig. 7 is different than in
Figs.5and 6). On the other hand, the magnitude
in the region around 0.3 is much larger for both
of these points on the lens than is the average
over the Fermi surface for this frequency region,
i.e., in Fig. 5. This is an important factor in the
amsotropy

The most important part of the anisotropy in the

ofF functions is in the low-energy peaks at w/w,
equal to 0.30 and 0.38. It is these peaks that make
the greatest contribution to the physical quantities
of interest. These peaks are much larger for k on
the lens than for k on the monster. We canunderstand
this in terms of the (k — k’) . €*(§, m) factor in the
electron-phonon matrix element of Eq. (20). The low
energles that we are considering involve mostly pho-
nons thatare polarized parallel to thec axis. For k
vectors onthe lens there are many k’ vectors such
thatk — & has a large component parallel to the ¢
axis. Forkonthe monster there are not the possi-
bilities for formmgk k’ vectors with large com-
ponents in the c direction. The low-energy phonons
involved are transverse, which one tends to think
do not interact well with the electrons. However,
this is not true for umklapp processes, nor is it
true for normal processes for § not in a high-
symmetry direction. :

V. MASS ENHANCEMENT AND ENERGY GAP

In this section we give our results for the effec-
tive mass and the anisotropic energy gap based on
our calculated o®F functions.

The electron quasiparticle of wave vector k has
an energy w relative to the Fermi energy, given
by '

w=let- e,,.|+2(1%,w), (26)

where €7 is_the band-structure energy, as in

Sec. III. =(k, w) is the self-energy and is a function
of the quasiparticle energy. ¥ is also a function of
the direction of k, but is relatively insensitive to
the magnitude of k for k near the Fermi surface.
The energy w in Eq. (26) is the location of the pole
in the single-particle Green’s function of the elec-
tron system.

By virtue of Migdal’s theorem, the self-energy
can be determined to all orders in the electron-
phonon interaction and to order (m/M)2.%¢ Very
close to the Fermi surface (exc¢itation energies
small compared to the Debye energy) and at low
temperatures, the imaginary part of ¥ vanishes
and the real part has the form

E(ﬁ, w)==-\jw, 27)
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where A} depends only on the position on the Fermi
surface and is independent of w for small w. A3
is given by

x; =2 [ ) 20 ipk,w). ; (28)

The Fermi-surface average of Aj, denoted by 2,
is by Egs. (28) and (24)

r=2 [ ) %‘i W?F(w) . , (29)

A is the quantity that, as pointed out by McMillan,*®
plays an important role in determing the super-
conducting transition temperature T.,.

Using Eq. (27) in Eq. (26) gives, for the quasi-
particle energy, i

w = |ey —€p| /(14207), (30)
so that the quasiparticle velocity is
V1 =Viw =%,/(1 +13), (31)

where we have used Eq. (10) for the band velocity.
Equation (31) can be interpreted as an increase in
the effective mass by the factor (1+x3). This
manifests itself in the cyclotron resonance fre-
quency and, in terms of the Fermi-surface average
A, in the electronic specific heat.

The electron effective mass and hence the phy-
sical quasiparticle velocity are also affected by
the electron-electron interaction. However, esti-
mates of this indicate that it is much smaller than
the mass enhancement due to the electron-phonon
interaction. Also, the contribution from the elec-
tron-electron interaction would.probably be much
more isotropic than for the electron-phonon inter-
action.

Table III lists the values of the isotropic A for
zinc for various calculations. The first five
columns are for various calculations we have made
in this work. The first value of A =0.334 is for
multi-OPW wave functions on the true Fermi
surface using the SF pseudopotential extrapolated
to Appapillai and Williams at small §. That is,
it is the X calculated by Eq. (29) from the o?F of

Fig. 5. This value is about 12% too low compared
with McMillan’s X of 0.38 (column 8) obtained from
T,, or 22% too low compared with the A obtained
from the experimental electronic specific heat as-
suming p, is 0.61 (column 9). It should be pointed
out that the X from the specific heat is less ac-
curate than that from T, since the former depends
on the relatively uncertain value of p,. Further-
more, it is 1+X rather than X that is proportional
to the specific heat.

The second column of Table III gives a A of 0.36
for the multi-OPW wave functions on the true
Fermi surface using the SF pseudopotential which
extrapolates to SOMP at small §. Columns 3, 4,
and 5 are values obtained with the same pseudo-
potential as in column 2, but with one-OPW wave
functions on the true Fermi surface, one-OPW
wave functions on a spherical Fermi surface with
the Fermi surface cut out in the directions in
which the true Fermi surface does not exist, and
one-OPW wave functions on the spherical Fermi
surface with oF multiplied by p,, respectively.

THe sixth and seventh columns of Table III are
the results obtained by Truant and Carbotte!* and
by Allen and Cohen.® Both of these calculations
were for one-OPW wave functions on a spherical
Fermi surface with the result multiplied by p,
=0.59 taken from Allen, Cohen, Falicov, and
Kasowski.? As we have discussed above, we
believe that with the pure SF pseudopotential the
value of p, that is obtained is 0.54. The main
difference between the Truant and Carbotte calcu-
lation and that of Allen and Cohen is that the
former group used a much more realistic phonon
model with the actual anisotropies, while the
latter group used an isotropic phonon model.

Allen and Cohen concluded® that “a reliable
value of XA can be found provided the correct
pseudopotential and phonon spectrum are known,
even if effects of phonon anisotropy and depar-
ture from free-electron behavior of the conduc-~
tion electrons are ignored.” They concluded this
on the basis of calculating A for a number of sim-
ple metals, including zinc, in which they ignored

TABLE III. Isotropic A of Eq. (29) for zinc obtained from various calculations.

Multi-OPW
true Fermi- Multi-OPW One-OPW One-OPW One-OPW
surface. true Fermi true Fermi cut-out spherical Specific
SF to Appapillai surface surface FS . FS Truant and Allen and McMillan ¢ heat with
and Williams  SF to SOMP SF to SOMP SF to SOMP SF to SOMP Carbotte®>  Cohen® from T, py=0.61
0.334 0.36 0.39 0.38 0.41 0.425 0.42 0.38 0.43

2 Reference 14.
b Reference 8.
¢ Reference 39.
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both the phonon anisotropy and the departure from
free-electron behavior of the conduction electrons.
They found values of A that agreed to within 10%-
50% of the X obtained from the superconducting T,.
On the basis of our more extensive calculations
for zinc, we agree with this conclusion if one con-
siders 10%-50% error reliable. If one wants to
use the X to predict a T, to 10%~50%, then the x
must be known much more accurately. We discuss
this in more detail in Sec. VII.

We have calculated the anisotropic A} at a num-
ber of places on the Fermi surface using Eq. (28).
Figures 8 and 9 give the results for four different
models. In both of these figures the value of X is
given as a function of 6, the angle with ¢ axis in
the extended-zone scheme. Figure 8 is for ¢ =0,
corresponding to the slice of the Fermi surface in
Fig. 3(a), while Fig. 9 is for ¢ = 47 corresponding
to the Fermi surface in Fig. 3(b). Curve 1 as well
as the individual points are for multi-OPW wave
functions on the true Fermi surface, curve 2 is
for single-OPW wave functions on the true Fermi
surface, while curve 3 is for single-OPW wave
functions on the spherical Fermi surface. The
numbered curves were obtained using the SF
pseudopotential extrapolated to SOMP at small ¢,
while the individual points were calculated using
the SF pseudopotential extrapolated to Appapillai
and Williams at small g. Note that the anisotropy
is very nearly the same for the multi-OPW wave
functions on the true Fermi surface with either
pseudopotential. However, the anisotropy is quite

T T T T T T T 1
12— ¢=0 —
! 2,(0,0) = 042
= LI L ~
c 2,(0,0) = 0.50
o
<10 2,(0,0) = 0.38 -
X
b
T 09— .
=< 2
0.8
0.7
| | 1 l
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FIG. 8. Calculated anisotropic values of A as a func~
tion of the angle 6 with the ¢ axis in a plane in the ex~
tended zone scheme that includes the [1120] direction.
Curve 1 is for multi-OPW’s on the true Fermi surface,
curve 2 is for one OPW on the true Fermi surface, and
curve 3 is for one OPW on the spherical Fermi surface.
These three calculations are for the SF pseudopotential
extrapolated to SOMP for small wave vectors. The
points are calculated using multi-OPW’s on the true
Fermi surface and with the SF pseudopotential extra~
polated to Appapillai and Williams for small wave vec-
tors.

different for either one-OPW wave functions on

the true Fermi surface or for one-OPW wave func-
tions on the free-electron sphere compared to the
more realistic calculations.

Notice that there is a large discontinuity in
for the multi-OPW .case in going from the lens to
the monster; i.e., 'in going across a Bragg plane
in the extended zone scheme.  This comes about
for exactly the same reason that there is a dis-
continuity in the band energy on going across a
Bragg plane—namely, it is due to the fact that the
multi-OPW’s have different relative phases on the
two sides of the Bragg plane and hence certain
quantities involved in matrix elements have differ-
ent signs on the two sides. In the case of the band
energy it is the matrix element of the potential
energy between different plane waves in the expan-
sion of the electron wave function that changes
sign. In the case of A, it is the sign of the matrix
element of the electron-phonon interaction between
certain of the plane waves in the wave function for
% and the wave function for K.~ Although it is the
square of the matrix element between the electron
wave functions that enters A and thus there cannot
be a negative overall contribution, with multi-OPW
wave functions the contributions from the different
plane waves are added before the result is squared.
Thus there will be a discontinuity in the square of
the matrix element as kK moves across a Bragg
plane because of the relative phase changes of
components of kK. See the Appendix for more de-
tails.

Qur results for the anisotropic. A near the Bragg
plane for the multi-OPW cases are quite different
from what was predicted by Havinga.* He argued
that with multi (or “mixed”’) OPW wave functions,
“any intersection or close approximation of the
Fermi surface by reasonable strongly scattering
Bragg planes tends to increase V...,” where V
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FIG. 9. Calculated anisotropic values of A as a func-
tion of the angle 6 with the ¢ axis in a plane in the ex~
tended-zone scheme that includes the [1010] direction.
The notation is the same as in Fig. 8.



is the effective electron-electron interaction due
to phonons that produces the superconducting state.
Thus V is closely related to our isotropic A and
an increase in one follows from an increase in the
other. Since the isotropic A is a Fermi-surface
average of the anisotropic 13, Havinga’s argument
is that the anisotropic A3 should be larger for k
near a scattering Bragg plane. We see that this

is true at the rim of the lens; i.e., for 6 equal to
or slightly less than 34° in Figs. 8 and 9. How-
ever, just the opposite is true for k on the inside
rim of the monster at ¢ equal to zero; i.e., for 6
equal to or slightly larger than 37° in Fig. 8.

In his analysis, Havinga does not consider the
relative phase changes in the multi-OPW wave
functions as k crosses a Bragg plane. He also
argues that the pseudopotential has its largest
effect for small §, but neglects the factor §.€" in
the electron-phonon matrix element of Eq. (20).
This factor causes the scattering to be zero at
very small angles (small §). For umklapp proces-
ses in which (G +§)- € is not small for small 4,
the interaction still goes to zero as § goes to zero,
as discus$ed by Sham and Ziman.*

Another author who has considered the anisotrop-
ic X in zinc is Auluck.?* As we have discussed in
the Introduction, Auluck determines the aniso-
tropic A} [or the mass-enhancement factor (1 +a3)]
by comparing the calculated band mass of Stark
and Auluck?® with the cyclotron resonance mass of
Sabo? on various cyclotron orbits. However,
Stark and Auluck derived their nonlocal pseudo-
potential on the assumption that the anisotropic A}
on the lens is constant. We see from our calcula-
tions of Ay, Figs. 8 and 9, that this function is
far from being constant. However, we agree with
the conclusion of Stark and Auluck that the SF band
mass-and band velocity must be modified. They
argue that this modification is necessary because
of the effect of the filled d bands near the Fermi
surface on the pseudopotential of zinc.

We previously published a graph of the aniso-
tropic A} as a function of 6 for ¢ =0 for zinc,!
corresponding to Fig. 8 of the present paper. The
result reported there is much the same as in Fig.
8, namely, that there is much more anisotropy
for the calculation with multi-OPW’s on the true
Fermi surface than with other calculations with
more approximations, that A is larger on the lens
than on the monster, and that for the multi-OPW
calculation there is a large discontinuity in A} at
the break from the lens to the monster. However,
there are some differences; e.g., A} in the pre-
vious calculation did not increase as much with 6
on the lens for the multi-OPW case as in Fig. 8.
The reason for the differences is that different
phonon models were used in the two sets of calcu-
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lations. The phonon model in the present calcula-
tion is superior to that in the previous calculation.

The electron-phonon mass enhancement also
shows up in measurements of the electron quasi-
particle Fermi velocity. This velocity has been
measured on the lens in zinc by two types of mea-
surements.5°%! Rahn and Sabo® used magnetic-
surface-state measurements to determine the
quasiparticle velocity as a function of position on
the lens. We have reproduced their data in Fig.
10. vy =1.837x10%° cm/secand is the free-elec-
tron Fermi velocity. The curves in Fig. 10 are
the results of two of our calculations, in both
cases using Eq. (31). The band velocity used was
that of the solid curve in Fig. 4 for both curves in
Fig. 10. For the solid curve in Fig. 10, 1, of
Fig. 8 (multi-OPW wave functions on the true
Fermi surface) was used for the renormalization,
while for the dashed curve A, of Fig. 8 (one-OPW
wave functions on the spherical Fermi surface)
was used for the renormalization.

Notice that our more realistic calculation gives
a better fit to the data, not only in terms of the
total magnitude (Rahn and Sabo claim an overall
probable error of about 4%, so the difference be-
tween our dashed curve and their data may not be
significant), but also in terms of the shape of the
curve. There is an increase in the band velocity
on moving from the center of the lens out to about
0.9 of the distance to the rim. We believe it is
this increase in the band velocity that causes the
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FIG. 10. Electron quasiparticle Fermi velocity nor-
malized to the free-electron value v, as a function of
position on the lens. &, (max) is the radius of the lens.
The curves are our calculated results using Eq. (31).
The solid curve is with the renormalization of the veloc~
ity by 7\1(1;) of Fig. 8 (multi~-OPW wave functions on the
true Fermi surface), while the dashed curve is with the
renormalization by As(ﬁ) of Fig. 8 (single~-OPW wave
functions on the spherical Fermi surface). The band
velocities for both curves were taken from the solid
curve of Fig. 4. The crosses are experimental points
from Rahn and Sabo (Ref. 50).
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initial increase in quasiparticle velocity that Rahn
and Sabo detected. We believe that they are in-
correct in attributing this to the variation in the
renormalization. They state that they have an
inaccuracy due to statistical fluctuations in locat-
ing the peak positions of less than 1%; so pre-
sumably this 3% change in velocity is real. The
dashed curve in Fig. 10 is the resultant variation
in quasiparticle velocity when there is practically
no variation in the renormalization (curve 3 in
Fig. 8). Infact, what we think is the true variation
in the renormalization (curve 1 in Fig. 8) tends to
cancel the variation in the band velocity so that
the quasiparticle velocity is rather flat out to near
the rim. Very near the rim the rapidly increasing
A% (curve 1 of Fig. 8) and the rapidly decreasing
v, (the solid curve of Fig. 4) combine to cause the
rapid decrease of the quasiparticle velocity. Even
if the dashed curve is shifted down in Fig. 10, the
fit cannot be made as good with the experimental
data as in the case of the realistic calculation

(the solid curve) with no fitting.

Rowell has also measured the electron quasi-
particle energy in the ¢ direction in zinc.5! He
used the Tomasch effect (geometrical resonance)
in a tunneling junction, and in the later of the two
papers reports four quasiparticle velocities of
1.02x 108, 0.76 x10%, 0.51x108, and 0.44x10% cm/
sec. None of these are near our calculated and
Rahn and Sabo’s measured velocity at the center
of the lens of v =0.71 vge =1.30x10% cm/sec.
However, it has been suggested by Colucci, Tom-
asch, and Lee® that, based on the theory of Wolf-

3

Aw')

ram,’® Rowell’s results should be multiplied by 2.
If this is done, his value of 0.76 x10® cm/sec be-
comes 1.52x10% cm/sec, which is within 159 of
our value. The other velocities may come from
the monster, but we have not carried out detailed
calculations to make a comparison there.

The superconducting properties including T,

the anisotropic energy gap, and the temperature
dependence of the gap, the specific heat, and the
critical field can be calculated® from the &*F func-
tions by means of the Eliashberg equations.*®.
We shall not be concerned with the temperature
dependence of the superconducting properties in
this paper, and we shall defer our discussion of
T, to Sec. VII. Here we present our results for
the anisotropic energy gap. )

The anisotropic energy-gap function at 7=0
satisfies the coupled Eliashberg rionlinear integral
equations,* which involve the anisotropic gap
under the integral. This set of integral equations
could be solved by an iteration scheme in which the
isotropic gap is substituted for the gap in the inte-

. gral and a first approximation to the anisotropic

gap is obtained. This first approximation is then
substituted in the integral to obtain a second ap-
proximation, and so forth. This procedure was
first done stopping at the first iteration by Ben-
nett'® and followed by others.® % Leavens and
Carbotte® showed, by carrying out a second itera-
tion for the case of Al, that the gap anisotropy
remained much the same as for the first iteration.

The first-order anisotropic gap function then is
obtained from*

1 1

A(ﬁ,w)Z(ﬁ, @) ;[wm au’ Re(m f ) da azF(ﬁ’ Q)(Q +w +w=158 +Q +w —w —ié) B H*]’ (322)

and

_( , o’ U"" N ( 1 1 )]
[I—Z(ﬁ,w)]w—o dw Re(m) ) dQ o*F(k,Q) 910 t0=i6 0+0 —w=is/l"

In order to calculate the right-hand sides of Eqgs.
(32), we need to know the isotropic gap function
A(w) and the Coulomb pseudopotential u* as well
as the anisotropic @®F function. The value ob-
tained from the right-hand side of (32a) is inde-
pendent of the value of the cutoff of the integrals
w,, as long as w,, is sufficiently large, and provid-
ing that u* is adjusted to the cutoff.® We used w,,
=10w,, where w,=4.178 x10% rad/sec is the maxi-
mum phonon frequency. '

The isotropic gap function was first obtained by
solving the isotropic Eliashberg equations [similar
to Egs. (32), but with the isotropic «?F on the right-
hand side in place of the anisotropic o?F]. We
used the isotropic «*F obtained from the SF

(32p)

L B
pseudopotential extrapolated to SOMP at small
values of @. This function is very similar but not
identical to that of Fig. 5. The Coulomb pseudo-
potential u* was adjusted so that the energy gap
A, =A(4,) took on the experimental value® of A,
=0,117 MeV. The required value of y* was found.
to be 0.075, lower than the value suggested by
McMillan®® of p*=0.12, but in agreement with u*
=0.08 given in Ref. 56. ‘ '
Using these results together with the aniso-
tropic oF functions obtained from the multi-OPW
wave functions on the true Fermi surface and the
SF pseudopotential extrapolated to SOMP at small-
4-values, we have obtained the anisotropic energy
gap A,(k) =A(K, A,(K)) at a number of positions on
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FIG. 11. Calculated anisotropic superconducting en-
ergy gap 2 Ao(ﬁ) at T = 0 normalized by 2 3T, as a func-
tion of position on the Fermi surface. The results were
obtained using Eqgs. (32) with the anisotropic o?F(k, w)
obtained using multi-OPW wave functions on the true
Fermi surface and with the SF pseudopotential extra-
polated to SOMP at small a o

the Fermi surface. In Fig. 11 we have plotted this
function in terms of 2A,/k,T, (this quantity takes
the value 3.53 for the weak-coupling isotropic BCS
superconductor) as a function of 9 for three values
of ¢ on the Fermi surface in the extended zone
scheme.

We find withour multi-OPW true Fermi-surface
model, as did Truant and Carbotte®® for the one-
OPW spherical Fermi-surface model of zinc, that
the anisotropic gap varies over the Fermi surface
in much the same way as the anisotropic rj. This
can be seen by comparing Fig. 11 with curves 1 in
Figs. 8 and 9. Also, as with the case of the ani-
sotropic A}, the anisotropic gap is quite different
for our model with the realistic electrons than
with the one-OPW electrons on the spherical Fermi
surface, particularly near Bragg planes.

One of the ways the anisotropy in the energy gap
shows up experimentally is in the anisotropy of
the ultrasonic attenuation in a single crystal. Such
measurements have recently been reported on
zinc by Cleavelin and Marshall®” and by Dobbs,
Lea, and Peck.*® For sound propagating in a

TABLE IV. Comparison of the calculated anisotropic
energy gap averaged over the effective zone with the
experimental results from ultrasonic attenuation.

Propagation  Effective 20 )/ kT,

direction zone Calculated Experimental
[1120] $=30° 4.14 3.80% 3.64°
[1070] ¢=0° 3.27 2.82% 379"
[0001] 0=90° 3.50 3.02% 3.41°

2 Cleavelin and Marshall (Ref. 57).
Y Dobbs, Lea, and Peck (Ref. 58).
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given direction, the attenuation is a function of
the average of the gap in an extremal belt on the

" Fermi surface perpendicular to the propagation

direction. In Table IV we compare the results of
crudely averaging our anisotropic gap over this

‘belt or effective zone with the experimental re-

sults®”+%8 for each of three directions of propaga-
tion. Although there is not quantitative agreement
between our calculation and either set of experi-
mental data, neither is there agreement between
the two sets of experiments. However, it is prob-
ably better to compare the ratios of the gaps for
different zones, since the absolute value of our
anisotropic gap is obtained from only one iteration
of the gap equation using the isotropic gap as the
trial function. Leavens and Carbotte’® showed that
the first iteration gives the correct anisotropy but
not the correct absolute magnitude of the gap.

Table V gives the ratio of the gaps in a particu-
lar zone to those in the zone corresponding to
propagation in the [0001] direction. Such ratios
give an indication of the degree of anisotropy of
the gap. We see that our calculated ratios agree
rather well with the measurements of Cleavelin
and Marshall,’ but they do not agree at all with
the measurements of Dobbs, Lea, and Peck.%®

The measurements of Dobbs, Lea, and Peck
indicate that there is very little variation in the
average gap between the three zones. This is not
inconsistent with a large anisotropy in the gap as
a function of position on the Fermi surface, since
the averaging over the zone could sample the gaps
in such a way that in each of the three zones con-
sidered the average is the same. However, this
seems unlikely. Thus the measurements of Dobbs
et al.®® appear to be inconsistent with other types
of measurements which do show an anisotropy in
the gap of 15% or s0.°°7%! For example, Ducla-
Soares and Cheeke® found this large variation of
the energy gap when they analyzed their specific-
heat data on superconducting Zn. Zavaritskii®
measured anisotropy in the thermal conductivity
in superconducting zinec,which indicates that the
maximum energy gap 2A.,is in the ¢ direction and
is about 3.6 %zT,, while the minimum gap 2A ;,
occurs in the plane and is about 2.4 kgT.. Although

TABLE V. Ratios of anisotropic energy gaps of Table
IV for two different directions.

Ratios of (A(k))

Directions calculated Experimental
(11201, [0001] 1.18 1.26%  1.07°
[1070], [0001] 0.93 0.93% 111"

2 Cleavelin and Marshall (Ref. 57).
b Dobbs, Lea, and Peck (Ref. 58).
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his analysis was based on an ellipsoidal model of
the gap anisotropy and thus does not correspond to
the real anisotropy, it still should give us some
indication of the anisotropy. We see that the devia-
tion of the maximum and the minimum from some
average is about 20% in Zavaritskii’s results. This
is consistent with our calculated results. We do
not find the maximum gap in the ¢ direction but the
maximum is on the lens (see Fig. 11), and the
average on the lens is larger than the average on
the monster. The former average is roughly 4.3
kgT.. Thus we find about the same anisotropy as
does Zavaritskii, and our maximum is roughly in
the same direction as his.

Microwave-absorption measurements on single
crystals of superconducting zinc®! also give an
anisotropy of the energy gap. Hays’ analysis of
this data indicates that there is a gap on the lens
of 4.0 kT ,—4.9 kpT,, while the average over the
rest of the Fermi surface is approximately 3.1
ksT. Hays states that the gaps he finds are con-
sistent with the data of Dobbs et al.’® However,
Hays is taking a gap that already has a certain
amount of averaging over the Fermi surface, and
he does further averaging to obtain his model
values for the ultrasonic attentuation. Thus we
think that the data of Evans, Garfunkel, and Hays®!
shows more anisotropy of the energy gap than
does the data of Dobbs et al.5®

VI. CYCLOTRON RESONANCE

Another experiment in which the electron-pho-
non interaction shows up in the electronic proper-
ties is in Azbel’-Kaner cyclotron resonance.
Whereas magnetic-surface-state measurements
determine the values of A} point by point on the
Fermi surface, cyclotron resonance gives A}
averaged over a line around the Fermi surface,
the cyclotron orbit. :

Although large anisotropies are measured in
the cyclotron mass,* % only a very small part is
due to anisotropies in x{. Two other sources of
the anisotropy are the breaking up of the Fermi
sphere by Bragg planes and the anisotropy of the
band mass as reflected in the anisotropy in the
band velocity. Since the geometrical shape of the
Fermi surface is well established, we have divided
the cyclotron mass m by (%7 /Zn)sﬁdﬁ/vm, where
the integral is-around the cyclotron orbit on the
true Fermi surface and V, =#Kk%/m is the free-
electron velocity. v, is the component of ¥, that
is perpendicular to the magnetic field. By divid-
ing by this factor we have normalized out the ani-
sotropy due to the breaking up of the Fermi sur-
face by Bragg planes and due to-other geometrical
factors. That is, with electrons with a band

velocity equal to the free-electron band velocity
(band mass equal to the free-electron mass m)
and with A; equalto zero, the normalized cyclotron
mass m,would then have the value m regardless
of the shape of the Fermi surface and regardless
of the particular orbit chosen. :

In Figs. 12-15 are plotted the ratio of the cyclo-
tron mass to the free mass m_/m normalized by
the factor given above. We see that much of the
anisotropy of the measured cyclotron mass has
disappeared on using the normalization factor.
This is especially true for the lens central orbit
masses in Fig. 12, where in the experimental data
the mass varies by over a factor of 2. The aniso-
tropy that remains in Figs. 12-15 is due entirely
to anisotropies in the band mass and in A3.

The experimental curves in Figs. 12-15 are
given by the dashed lines with the triangles for
Sabo’s results*® and the solid dots for Brookbanks’
results.®® The triangles and dots are not experi-
mental points, but are points calculated by us
using points from their experimental curves of
the cyclotron mass. The error bars indicate the
estimated accuracy to which we could read the
experimental graphs. The experimental errors
were less than these error bars, according to
both Brookbanks and Sabo.

The results from three of our calculations are
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FIG. 12. Normalized or effective cyclotron mass for
the central orbits on the lens as a function of the angle
6 of the magnetic field with the ¢ axis. Our calculated
results are from Eq. (33), with the band velocities from
Eq. (18) for two different values of a. The X’s and
squares are with the anisotropic Ay, while the open cir-
cles are with a constant A,. The calculated points are
joined by solid lines. The solid circles and the triangles
joined by the dashed curves are our normalization of the
experimental cyclotron masses of Brookbanks (Ref. 62)
and Sabo (Ref. 49). See text for an explanation.
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FIG. 13. Effective cyclotron mass for the limiting
point orbits on the lens as a function of the angle of the .
magnetic field with the ¢ axis. Solid lines connect cal-
culated points, while the dashed line connects our nor-
malization of experimental points. The notation is the
same as in Fig. 12

also given in Figs. 12-15 in each case obtained
with the effective mass m.q from

_$dR(L +2,)/ [0, ()],
$dk /vp, ’

where the integrals in both the numerator and
denominator are around the cyclotron orbit on
the true Fermi surface. The best calculation,
denoted by the x’s, is with A3 from curve 1 of
Figs. 8 and 9 and with the band velocity v, from
Eq. (18) with o =0.45 (the solid curve of Fig. 4 for
the lens) substituted in Eq. (33). The open circles
are with the same band velocity, but with A} taken
as a constant equal to 0.41. The open squares
give the calculated points with the realistic A% of
Figs. 8 and 9, but with v, of Eq. (18) with a =1.0,
i.e., with the unmodified SF band velocity. The -
solid lines are lines drawn through the calculated
points. )

We see in Figs, 12-15 that in each case the cal-
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FIG. 14. Effective cyclotron mass for the s series on
the monster as a function of the direction of the magnetic
field in the TKHA plane. Solid lines connect calculated
points, while the dashed lines connect our normalization
of experimental results. The notation is the same as in
Fig. 12.
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FIG. 15. Effective cyclotron mass for several orbits
on the monster and needle. The X’s, open circles, and
squares are our calculated results, while the closed
circles and triangles are our normalization of experi-
mental data. The notation is the same as in Fig. 12.

culated results with the unmodified SF band veloc-.
ity does not fit the experimental data nearly as
well as the results with the nonlocal contribution
to the band velocity decreased, either with the
anisotropic Ay or with a constant A} . This is fur-
ther evidence which, together with the arguments
given in Sec. III, leadsustobelieve that the band
velocity obtained from the unmodified SF nonlocal
pseudopotential is not correct for zinc.

Except for the central orbit on the lens, the two
calculations with the modified SF band velocity
(the x’s and the open circles in Figs. 12-15) give
very nearly the same results. That is, except
for the lens central orbit, one can scarcely see
the effect of the anisotropy of Aj. The reason is
that although A7 appears to be very anisotropic in
curve 1 of Figs. 8 and 9, the variation is only -
about 20% about the mean. In the cyclotron mass
it is 1 +% which occurs, and with A ~0.4, the
variation of 1+2x73 is only approximately 6% about
the mean. Further the cyclotron mass does not
represent a point value on the Fermi surface but
is an average.over a cyclotron orbit. This further
washes out the anisotropy in the cyclotron mass
due to anisotropy in A3.

For the central orbit masses on the lens there
are differences between the result with an isotropic
A and that with the anisotropic A3 that are large
enough to show up experimentally. First we see
that with the constant x =0.41, which is the value
that gives good agreement with the limiting point
masses on the lens (Fig. 13), and with the differ-
ent orbits on the monster (Figs. 14 and 15), the
effective mass is too. small compared with the ex-
periments for the central orbit mass on the lens.
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Thus the experiments show that Af on the lens
particularly near the rim must be larger on the
average than on the monster. The limiting point
orbits are on the center of the flat part of the lens,
so the larger A} near the rim of the lens does not
contribute to these orbits. However, the Aj near
the rim of the lens contributes to all of the lens
central orbits, particularly those in which the
magnetic field is along or near the ¢ axis. Qur
conclusion on this point is similar to that of Au-
luck,?? who also found that the experimental data
requires that 1 on the lens be larger than on the
monster. See his Table III.

It is precisely for the central orbits on the lens,
where there is the greatest difference between the
calculation with a constant A and that with the
anisotropic A3, that there is the greatest difference
between the data of Brookbanks® and of Sabo.*
Although our curves based on the experimental
data of Brookbanks and of Sabo in Fig. 12 differ
somewhat over the entire § range, where 6 is the
angle of H with the ¢ axis, Brookbanks states that
his results are in good agreement with Sabo for
these orbits except for an interval of 15° about the
(0001) direction. We see that our derived curves
from the experimental curves are nearly within
our estimated errors of each other for 6 greater
than 15°. However, for 6 smaller than 15° the
two curves based on the experiments are quite
different. .

Brookbanks’ effective mass is nearly independent
of angle, the kind of dependence one would get
from an isotropic band mass and an isotropic Aj.
In fact, Brookbanks states in his paper®® that
“When the anisotropy of m* for branch a (the lens
central orbit) was compared with the nearly-free-
electron prediction, it was found that the enhance-
ment factor was very nearly constant over the
whole angular range, falling slightly in the region
of the ¢ axis.” We see in Fig. 12 that this is ex-
actly what we would conclude from his data if the
band mass were a constant. However, the band
mass is not a constant on the lens. And if we take
a band mass based on the modified or even the un-
modified SF pseudopotential (only the former is
plotted in Fig. 12), a constant Aj leads to an ef-
fective mass that drops rather sharply for the
magnetic field near the ¢ axis. This is given by
the curve with the open circles in Fig. 12. If we
consider our calculated X3, which increases
rather strongly near the rim of the lens, this in-
crease in 2y tends to compensate for the decrease
in the band mass, and the resulting curve (the x’s
in Fig. 12) decreases only slightly as the mag-
netic field approaches the ¢ axis. Remember that
as-the field approaches the c axis, the central
cyclotron orbit samples more and more of the

rim of the lens. Brookbanks’ data is in agree-
ment with our best calculation, in which the ani-
sotropy of the band mass is nearly canceled by the
anisotropy of 1. And, in fact, we interpret the
slight decrease in the mass as the field approaches
the ¢ axis not as a decrease in the enhancement
factor but as a decrease in the band mass, which
is not quite compensated by the increase in the
enhancement factor. Brookbanks was quite aware
that a compensation must be taking place between
these two anisotropies and he states so in his
paper.

On the other hand, Sabo’s results for the effec-
tive mass in Fig. 12 show a relatively small varia-
tion with 6 for 6>20° but a 10% drop between 8 =20°
and #=0°. This is the same type of variation that
we find with the modified SF pseudopotential and a
constant A3, Auluck®* also concluded, on compar-
ing the Stark and Auluck band mass?® (which seems
to be similar to our modified SF band mass) with
the data of Sabo, that Aj; is constant on the lens.
However, the Stark and Auluck pseudopotential
was derived on the assumption that the mass re-
normalization is a constant on the lens. We do
not think that this assumption is justified.

Inasmuch as the experiments disagree on this
important measurement, we can not say that cyclo-
tron resonance shows whether or not there is an
anisotropy in Aj;. However, the one experiment
(Brookbanks) does agree quite well with our best
calculation. And this calculation is based on the
same model that gives results in good-agreement
with the Fermi-surface velocity measurements of
Rahn and Sabo®® and the ultrasonic-attenuation
measurements in the superconductor by Cleavelin
and Marshall.’” Because the difference between
Sabo and Brookbanks involves the question of
whether or not there is a sharp change for H lined
up with the ¢ axis compared to H being 10° or so
away from the c axis, there is always the question
of whether or not H really was well aligned in the
experiment. It appears from Fig. 12 that Sabo

" has observed the sharp change and Brook-

banks has not, so one might question whether
Brookbanks might have missed the alignment; in
fact, inthe experimental cyclotron mass it is really
Brookbanks who has observed the sharp change in
mass near 6= 0and Sabo has not. It is the sharp change
in orbit path length that we have used, combined
with Sabo’s relatively small change in cyclotron
mass for small 6, that have combined to give the
large change in effective mass in Fig. 12. In
Brookbanks’ case the large change in orbit path
tended to cancel his observed large change in
cyclotron mass to give the small change of his
effective mass in Fig. 12,

At this point we can compare the average Ay



which fits the cyclotron resonance data with the A
that fits the specific-heat data. We have seen that
if we assume A =0.41 we obtain reasonable agree-
ment with all of the cyclotron orbits, with the pos-
sible exception of < 15° on the lens central orbits.
On the other hand, we have seen in Table III that

A =0.43 from the specific-heat data. Thus these
two experimentally determined values of X are in
reasonable agreement with each other and with

the A =0.38 obtained from T, Of course, the cyclo-
tron resonance determination of A as well as the
specific-heat determination both depend on the
band mass or band density of states that we use.
However, we have used the same band density of
states in both of our determinations of A, and un-
certainties in this band density of states would
tend to cancel. That is, these determinations of

A may be off by 10% or 20% from the true A, but
one would hope that they would agree with each
other to something better than this. In contrast,
Auluck®* found that X obtained from cyclotron
resonance data is 25%-30% higher than X obtained
from the specific-heat data, whether he used the
unmodified SF pseudopotential or the Stark and
Auluck pseudopotential (see his Table II). We do
not understand these large differences that he
obtained.

In Fig. 13 we have not put error bars on the
effective masses obtained from Brookbanks’ data
on the limiting point orbits, because we obtained
the experimental data from a graph of the b reso-
nances in Brookbanks’ thesis. We could read these
data points to better than +2%, the latter being the
experimental accuracy for these orbits. We have
plotted only the one point from Sabo at 6 =0° but
his measurements at larger 6 are within 29 of
‘Brookbanks’ curve.

In Fig. 14 we have plotted the effective mass for
the s series of orbits. These orbits are around
the small horizontal arms of the monster. In
order to do a reasonable calculation, it'was nec-
essary to increase the number of OPW’s from five
to ten. The reason is that both the circumference
and the band mass of this orbit are extremely sen-
sitive to the number of OPW’s. Calculations with
the true Fermi surface but a free band mass give
results that are much too low, but when one con-
siders the single OPW Fermi surface and free-
electron- band mass the results are much better.

In Fig. 15 we have plotted single points from
other cyclotron orbits. The j point was calculated
assuming the orbit is on the inside rim of the
monster, as suggested by Sabo. Brookbanks poin-
ted out that this is not consistent with the known
Fermi surface, but he could offer no other orbit
for these observations. If it is correct that this
is the inside rim of the monster, then the experi-
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mental data suggest that A} decreases even more
on going from the rim of the lens to the rim of the
monster than we show in the discontinuity of A7 in
curve 1 of Fig. 8.

The 7 resonance and the » resonance were seen
by Sabo but not by Brookbanks. For the calcula-
tion we used Sabo’s interpretation of the former
being the “dog bone” on the monster and the latter
being on the needle. Qur calculation on the needle
is not as accurate as for other orbits.

The p, d, and e resonances were taken as sug-
gested by both Sabo and Brookbanks to be the u, y,
and o orbits on the monster. See their papers for
drawing of these orbits. ’ ’

VII. CONCLUSIONS

We have carried out detailed calculations of
electron-phonon effects in zinc using realistic
models for the phonons, for the electrons, and
for the electron-phonon interaction. Of much in-
terest is whether calculations such as this can pre-
dict the superconducting transition temperature
T.. Itis our view that if the normal-state proper-
ties were known to sufficient accuracy, then T,
could be determined with great accuracy. How-
ever, the normal-state properties are not known
to arbitrary accuracy.

For such a prediction in T, the Coulomb inter-
action p* between electrons must be known.*® Here
we follow McMillan’s notation, in which the star
on u denotes the renormalized Coulomb interaction.
Calculations such as those in this paper tell us
nothing about the value of yu*. Crude calculations
of u*, together with estimates from anomalous
tunneling and from the isotope effect, indicate
that p* does not vary much from metal to metal
and that for Zn it has the value of approximately
0.11+£0.01,% A 10% error in u* is not so important
for a strong-coupling superconductor such as Pb
or Hg. Thus, for example, for a strong-coupling
superconductor with Ax=1 and p*=0.1, a 10% error
in y* leads to only a 2% error in the exponent in
McMillan’s formula and to only a 5% error in T,.
However, for Zn with A =0.38 and pu* =0.1,‘ a 109
error in p* leads to a 27% error in 7,. We could
get more accurate results for T, and the effect of
errors in p* by a direct solution of the Eliashberg
equations. However, McMillan’s formula does
give us better than an order of magnitude in the
expected error in T, with a given error in u* and/
or in \ (see Allen or Dynes®). The reason for the
much larger effect in Zn is that for this super-
conductor the Coulomb repulsion nearly cancels
the electron-phonon interaction, while in strong-
coupling superconductors the electron-phonon in-
teraction is quite a bit larger than the Coulomb
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TABLE VI. Estimated errors in calculatmg T, of zinc from errors in various normal-state

electronic properties.

Normal-state Estimated error Resulting
electronic Origin of in.the error in
property the error property T,

Wk +10% +27%

A * Spherical Fermi +90% +1393%
surface

A _ Spherical Fermi +14% +122%
surface corrected
for actual area

A ‘ Band velocity- +14% +122%
energy dependence
of pseudopotential

A Extrapolation of -97%

pseudopotential to
small g values

-30%

interaction. Thus small changes in u* have a
much greater effect on T, of weak-coupling super-
conductors such as Zn. Table VI summarizes the
estimated errors in calculating T, for zinc.

Errors in ) also produce enhanced errors in 7.
For example, if the true Fermi surface and multi-
OPW wave functions are replaced by the free-
electron Fermi sphere and one-OPW wave func-
tions, our calculated X increases by a factor of -
1.90, leading to an increase in the superconducting
T, by more than a factor of 10, as given in the
second line of Table VL

If we correct this free-electron result by multl-
plying the free-electron x by p,, as was done by
Allen et al.® and by Truant and Carbotte,* so that
the large cut-out region of the Fermi surface and
the non-free-electron-band velocities are correc-
ted for at least approximately, we find a A that is
still 14% larger than our best result. Such an in-
crease in ) for Zn leads to an increase in T, by
more than a factor of 2. ThlS error is given on
line 3 of Table VI.

Furthermore, if the SF band velocity is taken in
‘the calculation of A, one obtains an error in x of
+14% compared to the calculation using what we
feel is a more reasonable band velocity (line 4 of
Table VI). Finally, there is an error in X of about
~30% if one uses a straightforward extrapolation
of the SF pseudopotential to small ¢ values for
calculating the electron-phonon matrix elements
in determining A, compared to using SOMP* or
Appapillai and Williams** for the pseudopotential
at small ¢ (see the last line of Table VI). :

We do not think that the prescriptions which we
have used for the band velocity or the electron-

‘'several OPW"s.

phonon matrix elements are orders of magnitude
better than that from the straightforward use of
SF. However, we feel that our arguments do show
that the uncertainties in these quantities make a
calculation of T for zinc to an accuracy of better
than +100% impossible. In the calculation of Ref.
8 the errors that we believe occurred there tend
to-cancel (the last three lines of Table VI), and
thus those authors obtained a reasonable result for
T.. However, we think that this agreement was
fortuitous.

We conclude: that to obtain a reasonable value for
T, it is-essential that a realistic treatment of the
electrons and of the electron-phonon interaction
be made. It is equally important to have a good
model for the phonons. We have not investigated

.the effect of different phonon models on 7,. How-

ever, as we have discussed, the low-lying peaks in
the phonon density of states determine the low-
lying peaks in ¢®F, which, in turn, have a critical
effect on A and on T,.

For the anisotropic electron-phonon effects it
is equally important that the theoretical model
include all elements in a realistic manner. For
example, the calculated A3 and A} both have large
discontinuities ‘across' Bragg planes when the elec-
tron wave functions are treated as an expansion of
These discontinuities do not occur
in calculations with single OPW wave functions
whether on a‘spherical Fermi surface or on the
true Fermi surface.

Of the different parts of the total model, the
lattice dynamics?3-%! and the geometry of the Fermi
surface®!*" are fairly well established. On the
other hand, neither the electron-band velocity at



the Fermi surface nor the electron-phonon matrix
element for small and intermediate ¢ values were
previously known to sufficient accuracy to carry
out accurate calculations. We have proposed on
the basis of both theory and experiment a modi-
fication of the Stark and Falicov nonlocal pseudo-
potential which retains the same Fermi surface
but alters the band velocity and the pseudopotential
for small and intermediate values of q. We believe
that this model gives fairly accurate results for
electron-phonon effects. It produces a quasi-
particle velocity which is in good agreement with
Rahn and Sabo,*® gives cyclotron resonance mas-
ses in good agreement with all orbits of Brook-
banks®? and with all but a few orbits of Sabo,* and
produces an anisotropy of the superconducting
energy gap which agrees well with Cleavelin and
Marshall.’” Unfortunately, the results of this
model do not agree with the Fermi-surface velocity
measurements of Rowell,’* with the cyclotron
mass of Sabo* for the crucial lens central orbits
for H near the ¢ axis, or with the superconducting
ultrasonic-attentuation measurements of Dobbs

et al.,%® but neither do the measurements of Rahn
and Sabo,%® of Brookbanks,® or of Cleavelin and
Marshall®” agree with these.
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APPENDIX

We are able to use a simplified model to under-
stand the discontinuity in A} across certain Bragg
planes. We consider a Fermi surface which is
spherical except for small distortions near two
symmetrically located Bragg planes. The limiting
pseudo-wave-functions for states at k, and k, are,
respectively, given by '

X7 =) V2(ky) + [k, +G)), (A1)
Ixz,) =) 2(&,) - [k, + &), (A2)

where k, and k, are located on opposite sides of
one of the Bragg planes. Assuming we may ap-
proximate all final states by their single-OPW
value, we have for the matrix elements

- 1
g A =@ t ) gh ) (A3)
g =@V (gt T —gh ) - (A4)

Since the Fermi-surface distortions are small,
we may approximate’

AR AR (A5)
LRI PR (A6)
Inserting these into Eq. (30) we obtain

PF(K,, w) =[L03(w) + to(w) +a) 2(w)F(w), (A7)
@?F(K,, w) =[302(w) + 3ok(w) - ap a(@)[F)  (A8)

where one merely has to identify the cross term
in | g% %, [ to obtain the three terms in brackets.
By symmetry, aﬁ(w)=a%(w) equals the single-
OPW result. Thus we have a discontinuity of
2|a? o(w)|F(w), which is, in general, less than
202 F(w). o

*Based in part on the Ph.D. thesis of P. G. T., Indiana
University.
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