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Melting and the vector Coulomb gas in two dimensions
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The dislocation theory of two-dimensional melting due to Kosterlitz and Thouless is investigated for the
triangular lattice, paying special attention to angular forces between dislocation pairs, which are equal in

magnitude to the radial forces. Generalizing the dislocation Hamiltonian to an arbitrary vector Coulomb gas
with different radial and angular interactions we find KR(T)—K„'(T, )-t', where K~ is a renormalized

coupling which includes the screening effect of bound dislocation pairs, the superscript i signifies either a
radial, r, or angular, 8 part and t is the reduced temperature, t =(T,—T)/T, . The exponent v varies as
the ratio K „(T, )/K~(T, ) is changed and is equal to 0.3696- for the physical ~alue of K = K". In
this case the shear and bulk elastic constants have the same temperature dependence as the K~. We find

that K~ has finite universal value at Tc and K'„= 0 for T ) T„corresponding to metallic behavior of the
vector Coulomb gas,

I. INTRODUCTION

Kosterlitz and Thouless' have proposed a theory
for a phase transition in two-dimensional planar
spin systems and helium films, and for two-di-
mensional melting. These systems have singulari-
ties, vortices for planar spins and helium, dislo-
cations in the case of melting, which interact with
a logarithmic potential. At low temperature they
occur in tightly bound pairs, but at sufficiently
high temperature it is favorable for the pairs to
dissociate because of the resulting gain in entropy.
Subsequently Kosterlitz' parried out a renormali-
zation-group calculation for the planar magnet
which gives equivalent results. '

Long-range positional order does not occur for a
two-dimensional solid and in a harmonic approxi-
mation, neglecting dislocations, the correlation
function (e' '""'e ' '""') decays at large distances
with a power law, ' the exponent depending con-
tinuously on temperature. Here G is a reciprocal-
lattice vector and u(r) the displacement at point
r. In the Kosterlitz- Thouless theory the harmonic
approximation is exact at all temperatures below
the transition temperature T„provided one only
investigates fluctuations on a sufficiently large
length scale and allows for a renormalization of the
elastic constants due to bound dislocation pairs.
Above T, correlations are expected to decay ex-
ponentially with a correlation length of order of
the mean spacing between free dislocations.

A criterion for distinguishing between a solid
and a liquid is that a solid exhibits resistance to
shear, characterized by a shear modulus p. When
dislocations appear only in tightly bound pairs the
material has a nonzero shear modulus so we de-
note the low-temperature phase of the Kosterlitz-
Thouless theory as a solid. However, when free
dislocations appear the system will respond to a

shear stress with no resistance by continuously
creating dislocation pairs and pulling them apart
to infinity. It is therefore tempting to call the
phase above T, a liquid. In fact it has recently
been shown" that this phase resembles a two-di-
mensional liquid crystal characterized by power-
law decay of angular correlations. A subsequent
transition at higher temperature involving an un-
binding of disclination pairs is required to com-
plete the melting process. In this paper we dis-
cuss only the solid phase at temperatures up to
and including T,.

In the Kosterlitz-Thouless theory one neglects
interactions between dislocations and harmonic
lattice vibrations and evaluates the energy of the
dislocation system XD using continuum elasticity
theory 'Defi.ning Hn = -3C~/ksT one finds

—K'[(b' r")(b' ' r' )/(o" )'-2b' 'b']}

+ lny, Q (h')',

where r"= r' —r', r' denotes the position of the
ith dislocation with dimensionless Burger vector
b', lny, is relatedtothe core energy, and a„ is the
lattice spacing. The dislocations are located on the
sites of the dual lattice (which is hexagonal if the
original lattice is triangular; the square lattice is~ 0

self-dual) and satisfy the condition Z, b'=0. The
summation over pairs (ij) in (1) assumes i cj and
counts each pair just once. KD=K, =KO with

&oBo ~o
2 71' p, o+ Bo k'~ T

where p,, and B, are the shear and bulk moduli in
the absence of dislocations. We shall later con-
sider a generalization of (1) where KoxK, . Bo is
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related to p,, and the Lame coefficient A, by Bp pp
+ A, We have defined K, in this way so that our
notation is as close as possible to that of Ref. V.

The Burger vectors have the form b= me, + ne„
where n and m are integers and e, and e, are unit
vectors of the Bravais lattice. Our discussion will
be restricted to the square and triangular lattices.
Strictly Eqs. (1) and (2) do not apply to the square
lattice which is characterized by three elastic con-
stants' and this will lead to some complications
later on. We expect that the angular dependence
of the interactions would be different from (1) but
that a term of the form b bin(r/a, ) would remain.
Our principal results are for the triangular lattice
for which (1) and (2) are correct.

The Hamiltonian (1) corresponds to a vector
Coulomb gas and is more complicated than the
scalar Coulomb gas which describes vortex dis-
sociation in planar magnets because of the angular
interaction K,. An additional difficulty arises for
the triangular lattice because two Burger vectors
of unit length can be combined to give another unit. ,

vector. If these extra complications are neglected
the theory of Refs. 2 and V predict that the "re-
normalized" coupling Kz(T), which differs from K,
because of screening due to vortex pairs, is given
by

2vK„(T) = 4+ Ct"

as T approaches T, from below, where t is the
reduced temperature, t = (T, —T)/T„ the exponent
P is equal to —,', and C is a nonuniversal constant.
Notice that K„(T,) equals the universal' value of
2/v. Above T„K„=0.

Nelson' has recently discussed two-dimensional
melting including the effects of the vector nature
of b but with K, =O. For the square lattice he finds
that Eq. (3) is unchanged, but the triangular lattice
he obtains v =—', instead of —,', the difference arising
from the possibility of combining two unit Burger
vectors to give a third unit vector. In this paper
we study in detail the role of the angular forces
in the Hamiltonian (1). Our conclusion is that P
varies continuously on the triangular lattice as the
ratio of radial to angular interaction is changed.
For KD=O we recover Nelson's result of v= —',
whereas in the physical case with K,'=K," we ob-
tain v=0.3696 ~ ~ . After the bulk of this work was
completed we received a preprint from Halperin
and Nelson" who have evaluated P for K~0 =KO ob-
taining the same result as given here. They also
point out that phase transitions on a substrate can
be described by the Hamiltonian (1) but with Ke

WKD. We therefore feel that our evaluation of P
for arbitrary values of the parameters is of some
physical interest. We do not give a complete dis-
cussion for the square lattice but expect that v = —,

'

for arbitrary values of the parameters on the dis-
location Hamiltonian.

For the case of K,"=K',(=K,) we follow Koster-
litz and Thouless and introduce a scale-dependent
dielectric constant e(r) which includes the screen-
ing effect of dislocation pairs of separation be-
tween a and y. Below T, , q(~) is finite and the
renormalized coupling K„(T) introduced above is
given by

(4)

The same linear-response theory also permits an
evaluation of the elastic constants which similarly
have renormalized values tj.z(T) and Bs(T) different
from p.0 and 8, because of screening effects. As
pointed out by Nelson and Halperin' there are
additional contributions to the bulk, but not the
shear, elastic modulus arising from creation of
vacancies and interstitials. The true bulk modulus
differs therefore from our B„(T)and is expected to
have a very different temperature dependence in
the transition region. " At T= T, we find that K~
has the universal value of 2/v while p, s and Bz
have finite nonuniversal values.

We investigate screening in the general vector
Coulomb gas with K,"4K80 by Kosterlitz's renor-
malization-group approach. The exponent v is now
nonuniversal but Ks(T,) still has the universal
value of 2/v suggested by Kosterlitz and Thouless'
entropy argument. It is also possible to derive
the renormalization-group equations from the
model discussed by Halperin and Nelson of melting
on a periodic substrate where the adsorbed layer
is characterized by three. elastic constants (which
do not correspond to the three elastic constants for
the square lattice) and a dislocation Hamiltonian
with K,"wK, . That the results of thetwo approaches
are identical provides a useful self-consistency
check on the calculations.

The linear-response theory is explained in Sec.
II and in Sec. III the exponent P is evaluated for
KD=KD. In Sec. IV we show how to evaluate P for
K,"WK, and discuss our results in Sec. V. The
linear-response theory for elastic constants is
given in Appendix A while in Appendix B we show
how to derive renormalization-group equations for
K"+Ke from an elasticity theory with three elas-
tic constants.

II. SELF-CONSISTENT INTEGRAL EQUATION

In this section we take K,"=K,=K, and discuss
how K, is renormalized by dislocation pairs within
a linear-response formalism. First of all we will
discuss the square lattice neglecting angular
forces. Then the angular forces will be included
and finally the more complicated case of the tri-
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angular lattice is discussed.
Only Burger vectors of unit length will be con-

sidered. At the end of the calculation it will be
clear that including larger Burger vectors would
not change the results in the critical region. If
the angular forces are neglected the Burger vec-
tors in the x and y directions on the square lattice
are independent and can be considered as two sets
of (scalar) vortices. There is a direct corre-
spondence between plus and minus vortices inter-
acting via a logarithmic potential and a two-dimen-
sional neutral Coulomb gas of charges + q. Taking
the basic equation of electrostatics to be Poisson's
equation (d' (t) = -4m p we find that in two dimensions
the potential between two charges q,. and q,. is
-2q,.q,. ln(r;, ./a, ) and comparing with (1) we make
the correspondence

mKa=q'/ksT. (5)

Consider a pair of opposite charges with separa-
tion y where y»a. The force, which is just the
electric field E divided by the charge is reduced
from its "bare" value 27(K,/r by the screening
effect of small ey dipoles. Kosterlitz and Thouless
treat the smaller dipoles as a continuous medium
so they can take over dielectric theory, the basic
equations of which are

because of the screening effect of still smaller
pairs. The energy is obtained from integrating
up the force and we write it as U(r') ln(r'/a, ),
where

ll '.(l} K,'r 4r 'p,'=exp (4}'- 4 4
0

gl

K(l")dl") .

(13)
As pointed out in Ref. 3 it is useful to unravel the
double integral in (13) by defining an auxiliary
variable

dlU(r'} ln(r'la, }=K,
(na

To leading order in y20 it is now straightforward to
show that

n(r', 8) (y--, /a', )'(r'/a, ) "a'"'

Combining Eqs. (7)-(11) it follows that

r /y& 4-2vU6" )

q(r) =1+4w'yoK, —,) (12)
a 0

which is a self-consistent equation for e(r) and is
the central result of the Kosterlitz- Thouless
theory It .is useful to rewrite (12) as an equation
for K(r)[=K,/e(r)] and let l = ln(r/a, ) after which
one finds

&=D/e,

q =1+47t X,

(6a)

(eb)

L

p(()=p, rzp(2} —r f K(l'}dl')
0

(14)

where g is the dielectric constant, X the suscepti-
bility, and D is the field that would be present if
the material were not polarizable and is due to
some external test charges, in our case the pair
separated by y. Clearly the reduction in force
depends on the separation y so Kosterlitz and
Thouless introduce a scale-dependent dielectric
constant q(r) such that the force is 2wKo/rq(r),
which we also write as 2 vK(r) r/, where

q(r) = I+4vX(r)

and y(r) is susceptibility of all dipoles of separa-
tion less than r. y(r) is then given by

X(r)=J r(r', 4)d(r')r'dr'dp,
a

where n(r') is the polarizability of a single dipole
of separation y', which is'

o.(r') = ,'(q'lk T)(r')'-
,' sK,(r ')', — (9)

I

where the last line follows from (5). n(r', 8) is the
density of pairs separated by y', where the dipole
makes an angle 8 with some axis and must be
evaluated from (1) recognizing that the interaction
between the pairs is modified from 2vK, ln(r'/a, )

so that (13) is equivalent to the pair of coupled
differential equations

dZ-'
dl

= 4W'y2, (15a)

—= (2 —wK)y,
dl

(15b)

which are the scaling equations of Kosterlitz. '
For T&T, q(r ~) diverges as discussed in Sec.

I so from (12) we see that T, is characterized by
U(r-~) =2/s, which also corresponds' to K(r =~)
=2/v [see Eq. (3)]. For T= T, the left-hand side
of (12) is K,/K(r) which is finite for r-~ and the
right-hand side is also finite because U(r) ap-
proaches its asymptotic value for large y suffi-
ciently slowly such that the integral in (12), which
has a potential logarithmic divergence, actually
converges. ' This example makes clear the im-
portance of having a self-consistent theory and
inserting the scale-dependent potential U(r') in the
exponent inside the integral of (12).

In order to carry out a similar analysis for the
full'dislocation problem including the angular
forces, it is necessary to generalize the above
linear-response theory to a vector Coulomb gas.
Kosterlitz and Thouless' have discussed such a
theory. and concluded that the main change is that
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the polarizability c((r ) is modified from Eq. (9)
and now reads

n(r ') = -', vK, (r')'(1 —,
' (cos28),), (16)

x ( i/ )-2~U(r') (17)
'I

Combining (7), (8), (16), and (17) and carrying out
the angular integration one obtains

where 8 is the angle the displacement vector be-
tween a pair of opposite Burger vectors makes with
the Burger vectors and the angular average is over
exp[))K(r') cos28] which comes from (1). In the
Appendix we derive (10) from a somewhat different
form of linear-response theory' which permits,
in addition, a calculation of the renormalized
elastic constants. Like Eq. (1) the linear-response
theory is strictly incorrect for the square lattice.
However, we shall apply it as it stands and argue
that a more exact treatment would not change the
results. n(r, 8) is multiplied by a. factor 2 to ac-
count for there being two species of pairs of op-
posite Burger vectors for the square lattice (this
factor will be 3 for the triangular lattice) and also
includes the part of the Gibbs distribution cqming
from the angular interaction exp[)TK(r') cos28].

Consequently we find, to leading order in y'„

n(r', 8) = 2( yo/ao)2 exp [vK(r') cos28]

in the calculation for the triangular lattice. First
of all there are three species of pairs of oppositely
oriented Burger vectors as opposed to two for the
square lattice. As a result the prefactor 2 in Eq.
(17) for n(r', 8) is replaced by 3 with the result
that the coefficient of the integral in (18) is 12m'

instead of 8m'. The second modification is less
trivial and arises because two Burger vectors, for
example, in orientations~ and z, can be combined
to give one Burger vector in direction t.

In the dielectric theory described above we re-
placed the pairs of oppositely pointing Burger
vectors with separation x' less than the separation
r of a test pair by a continuous medium. In the
same spirit we ignore the "structure" in the pair
zz provided they are separated by a distance x'&r
and consider them to be a single Burger vector
with orientation t. This means that y, in (18) must
be modified to include these "composite" Burger
vectors. To be precise, for the pair separated by
y' which is doing the screening, we have to allow
for the possibility that either of them may be a
composite Burger vectors of separation y" &y'.
We therefore replace y, by y(r') in (17) and pro-
ceed to evaluate y(r').

To lowest order in y„y(r') is just y, plus the
probability that there is a pair of type ~ I with
separation r' & x' and is

K '(l)=K +8~-'y', [I,(~K) ,' I, (~—K)]—
x exp 4/'-2n

L

K(l")dl"]dl', x exp[)TK(r") cos28]d8 „, (20)
dr"
r" '

(18)

which is equivalent to the differential equations

-1
= 8~'y'[1, (~K) ', I(~ K)-], (19a)

—=(2 ~K)y,
dl

(19b)

where I, and I, are modified Bessel functions and

y(l) is defined in (14). Equations (19) are our re-
cursion relations for the square lattice including
the angular interaction approximately. Comparing
(13) and (19) we see that the change induced by the
angular forces can be compensated for by a re-
definition of y. We expect that the same would be
true if the angular interactions were included ex-
actly and conclude that they do not change the value
of the exponent v for melting on the square lat-
tice. Equation (18) corresponds closely to Eq. (81)
of Kosterlitz and Thouless' except that they re-
place f, K(l")dl" by l'K(l') and have a different
coefficient in front of the integral.

Two modifications have to be made to Eq. (18)

y(l) =y, +27) y'(l') I,(~K)

x exp 2l' —r
) ~

l'f()") d) ")dl', (21)

which is equivalent to the differential equation

where 8 is the angle made by the displacement
between the pair relative to the direction of the
composite Burger vector. As T goes through T,
the integral in (20) diverges so the correction, al-
though of order y» is not small. To rectify this
difficulty the theory must be made self-consistent
with respect to y(r) just as we handled correctly
the divergence of the integral in (12) by making it
self-consistent with respect to K(r). In a self-
consistent theory we recognize that either of the
Burger vectors making the composite Burger vec-
tor could itself be composed of two Burger vectors
of still smaller separation. Thus yo in (20) should
be replaced by y' appropriate to length scale r"
and put inside the integra. l. In this way (20) is re-
placed by
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f-l—=2el (eK)exp 2l —e K(l')dl') y'(l). (22)
dl p

Now that we have obtained a self-consistent ex-
pression for y(l), we replace yo by y(l') in (18)
inside the integral, and find that the analog of (18)
for the triangular lattice is

J Y

K '(l) =K,'+ l2)(' y'(f') [I,(~K) —,
' I,(~K)]

Defining

~l

x exp 4P —2g K l" dl' dl'.
p

(23)

y(l) = y(i) exp (2l —e

Eq. (23) is equivalent to

l
K(l') dt' (,)

(24)

dpi
, =12''y'[I, (.~K) ,'I, (-vK-)] (25a)

and from (22) and (24) we find that y satisfies the
equation

—= (2 —vK) y+27)Io(7)K) y'. (25b)

III. EVALUATION OF THE EXPONENT P

Nelson' has discussed the critical behavior im-
plied by equations similar to (25) and our discus-
sion follows his closely. First of all we simplify
(25), replacing the arguments of the Bessel func-
tions by 2, their value at T= T, l -~, and by defin-
ing

Equations (25a) and (25b) are our final recursion
relations for the triangular lattice.

Neglecting the angular force corresponds to set-
ting the argument of the Bessel functions equal to
zero and dividing the coefficient on the right-hand
side of (25a,) by 2. This factor of 2 arises because
the radial force and the angular force give equal
contributions to the "polarizability" in Eq. (10).
One then recovers the scaling equations of Nelson. '

Because of the second term on the right-hand
side of (25b) the factors involving Bessel functions
cannot be transformed away by a redefinition of y
as is possible with (19). This term arises from
the possibility, unique to the triangular lattice,
of combining two unit Burger vectors to form
another unit Burger vector, and so cannot occur
for the square lattice even with an exact treatment
of the angular interactions.

where

Io(2)
(1

1 I,(2)
l~

'
= 0.072 939 ~ ~ ~

48 i 2 I,(2)&

for x, Y«1 Eqs. (25) are then equivalent to

—= Y
dx
dl

dY =xY+2n Y'.

(27)

(28a)

(2sb)

The trajectories which follow from Eqs. (28) are
shown schematically in Fig. 1 together with a
typical locus of starting values xp ' Yp The two
solutions which pass through x= Y=0 are straight
lines (separatrices) with slope m given by the solu-
tions of the quadratic equation

m' —2am —1=0. (29)

We shall be interested in the negative slope and
define m = mo (mo&0-) so

m =(n'+1)'" n- (30)

To the left of the separatrix with negative slope
Y-0 and x goes to a finite negative value as l -~,
which implies a finite &(~) and hence a solid phase.
Elsewhere in the diagram x, Y-. ~ as t-~ so
&(f -~) diverges which signifies a vanishing shear
modulus. On the critical trajectory (separatrix
with negative slope) we find

0
FIG. 1. Schematic drawing of trajectories corres-

ponding to the differential equations (28a) and (28b) of
the text. The thick ],ines (separatrices) have gradients
m given by the solutions of the quadratic equation (29).
At T = F~ the trajectories flow along the separatrix with
negative slope. Fort = (T, -T)/T, very small and posi-
tive the trajectory stays close to the separatrix untQ one
has integrated up the equations to a large value /. Be-
yond this the deviation from the separatrix is large and
x does not continue to increase much more. We have .

indicated by a cross the point on one of the trajectories
where l &*. The dashed line indicates a typical locus
of starting values (xp Fp).

x= 2 —pK,

Y = 7(yI,(2)/n,

(26a)

(26b)

(f)= . , Y(f)=
m'p l+lp '

rnp l+l, '

We now assume that T is just below T, so

(31)
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t = (T, —T)/T, «1 and write

Y(l) = -m, x(&) —D(&), (32)

where D(0) -t. It is straightforward to show that
D satisfies the equation

—=-xD+0(D )
dD
dl

which has solution

D(l) =D(0) exp ~ (x(l') ~dl'.
Jp

(34)

To leading order in D we replace x(l} by its value
on the critical trajectory (31) so (34) becomes

D(l) =D(0)(I+I,)'~ o. (35)

(36)

We use this result to integrate up the recursion
relations to a value l* where the trajectory starts
to deviate significantly from the separatrix. We
could for instance define I* bj' D(l*) = —,

' Y(l*), the
precise value of the coefficient being unimportant.
Since D(0)-t this gives, from (31) and (35)

v = 1 —-', [1+n' —n(l+ o.')' "]'. (43)

P= 0.3696 ~ ~ ~ . (44)

It is straightforward to show that the integral
equations (Alla) and (Allb) can be converted to
recursion relations, analogous to (25), which take
he form

RENT

, =3~y'1,(~K),
ao

(45a)

k~T dB =3vy'[I (mK) -I,(vK)], (45b)

and dy/dt is still given by (25b). By repeating the
above manipulations one finds

t,(T) —v, (T,) = c.t ",
B„(T)-B„(T;)=C,t",

(46a)

(46b)

The exponent v varies continuously as the coeffi-
cient n in (28b) is changed. In Sec. IV we evaluate
~ for arbitrary values of E „and E"„. Here we
consider only K' =K" (which holds at all scales I)
for which a' is given by (27) so

with

v = m o/( I + m o)

at which point

(37)

where, as before, v=0.3696 ~ ~ for the triangular
lattice. p„(T,) and Bs(T,) are nenuniversal but
Eqs. (2) and (42) show that g~+Bz' has a universal
value given by

x(I*)- Y(l*) -I/I*-t ". p„'+B„'= ao/4wK~ T, (47)

The exponent v will turn out to be the same as in
Eq. (3). We cannot use (35) for I » I* because the
approximations used to derive it break down. In-
stead we make the approximation that in this re-
gion x(l) does not deviate significantly from x(l*)
and justify that this is self-consistent at the end
of the calculation. We therefore replace x(l) by
x(l*) in the equation for d Y/dl and neglect the Y'
term because we are in a region where F«x.
Y(l) then has the form

Y(l) —(1/I*) exp[—ix(t*) it]

and inserting this in the equation for x we find

x(~) —x(l*) - I/I* -x(l*),

(39)

(40)

x(~)-t" (41)

and from (26a) and (41) we find the "renormalized"
stiffness K~, which is just K(l = ~), is given by

271%~=4+Ct",
where C is a nonuniversal constant and v is given
by (37) with m, related, to n by (30). Our final
result, then, is that

which justifies the above assumptiori. Consequently
we obtain

at T = T,, which is the analog of the universal
jump' in p, for helium films.

IV. GENERAL VECTOR COUI.OMB GAS

Screening in the general problem described by
(1) with K;WK,' is conveniently treated by the re-
normalization-group technique of Kosterlitz. ' An
alternative method which gives identical results is
discussed in Appendix B. As usual we restrict the
b' to be unit vectors. Equation (1) is not the most
general form for square lattices and the renor-
malized parameters have only cubic symmetry in
this case, even if we start off with the isotropic
model of (1). The discussion here is therefore
confined to the triangular lattice.

Since we are primarily interested in large-dis-
tance behavior we make a continuum approxima-
tion, allowing the vectors to be at any position
rather than confined to lattice sites. The under-
lying lattice only appears through the restriction
that no two vectors may be closer than the lattice
spacing a„which is necessary for stability. " We
therefore obtain a vector Coulomb g6.s with a hard-
core repulsive interaction at short distances. It is
interesting to Fourier transform (1) with the re-
sult that
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HD 2
(Kr Ke) @~trav

+(K" +K')~ 6
I'

0 0
i

llu q2

x b„(~)b ( ~)

+lnyp d qbq 'b -q (4s)

H', J= .exp(vK~ cos28), (55)

(rJ rA)] bA (56)

where 0 is the angle r'~ makes with the vectors
plus a part H, , , which involves the other disloca-
tions, where

1

H;&=2mb', e, P [M,z(r' —r )

The dislocation Hamiltonian with Kp"=K~p therefore
corresponds to a vector Coulomb gas with trans-
verse interaction, "whereas if the angular forces
are neglected the interaction is equally longitudi-
nal and transverse. For stability both the longitu-
dinal and transverse components must be non-
negative (Halperin, private communication) so the
interesting region is -Kp &K'p &Kp Kp&0.

For a given configuration of vector charges we
denote the number of these in direction n

(n = 1, . . . , 6) by n . The partition function may be
written

Z g '
~

' d2rf
~ ~

eH((n/)

) e=l a') c=l imp j
where

(49)

(5o)

H((n)} =2w g b'„q„b"„q,zM z(r"), (51)

where

M~(r) =K"5 ~G(r)+K (r,r8/r ' ——, 6 8) . (52)

is the usual antisymmetric tensor defined in
Appendix A and

G(r) = ln(r/a, ). (53)

M ~ has the following easily verified properties:

& M q= (K"+K~)sgG, (54a)

8 „M ~
-—(K"-K )B„G e„~, (54b)

V'M„~=2m(K" —K')5 ~6(r)+2K S„S&G, (54c)

which will be. useful later. In deriving (54c) we
have used V'G=2~5(r).

Consider a pair (i, j) of oppositely oriented vector
charges with separation -r'~ such that ap ~ x'' & ap

=ao(l+ bl) with 61«1. The Hamiltonian for the
pair, H,.„consists of a part KP~ only involving
the pair, given by

and H({n]) is the Hamiltonian (1) without the chemi-
cal potential term and with a fixed n . The region
of integration in (49) is over all space except that
no two vectors may be closer than a core distance
gp. From now on we drop the subscript 0 on K",
Ke, and y and write H(jn]) as

It is assumed throughout the calculation that y,
and hence the mean density of vector charges is
small. Consequently it is unlikely that-any other
charge is within a distance of order ap from the
pair (i,j). We therefore expand the term in brac-
kets in (56) in powers of a, /r'~ up to quadratic or-
der and find

= 2~~„'~ ~~ a~e~M

+ ,' a„a„a„&—„M,~(r'")],
where we have written a, for r,". Next e"» is ex-
panded in ap with the result

(57)

e" t~= 1+2mb„'e, g Ca„s„M 8(r")
k

+ 2 a„a„S„B„M8(r' )]

+ 2 v'b ',q, b „'&„8Q a„s„M,(r' }

(a,&= 0,
(a„a„)= a'[-, 6„„+(b„'b„' ——,'5„„)(cos28),],

(59a.)

(59b)

where the average (cos28), is over the distribu-
tion e"~i [Eq. (55)] so

(cos28},= l, (~K )/1, (wK ) . (60}

From (59) it follows that the second term in (58) is
zero. It is also convenient to average over the di-
rections of the pair of vector charges at this
stage. Some nonvanishing averages (valid for the
triangular but not the square lattice) are given in
Appendix A, Eq. (A8), while

(b„}„=(b„b„b,},„=0. (61)

From (59b) and (61) we deduce that the third term

(5s)

The summation in the last term is an independent
summation over all k and all l including terms with
0 == l. Qne is now in a position to carry out the in-
tegration over space in (49) for the pair (i, j). First
of all we perform the integral over r', which is an
annulus of radius ap and thickness apdl about r~

and is denoted by 6, The necessary angular
averages are easily found to be
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in (58) vanishes so we confine our attention to the
first and last terms. Equations (55)-(58) now im-
ply that

d'r, A, (r,)
D ~

2~'a', Q [(K")'+(K')'] 5.,G(r"')
e"ll = 2lla', dl [I8(llK )+A, (r') I,(vK )

+A, (r') I,(llK')], (62)

&kr&kie 8 eg ') ykpl
kl)2 2 l u 8

where A, and A, come from the first and second
terms in (59b) and are given by

(~j) ( ol g bk s Iif ( yk)

(66)

The manipulations needed to integrate A, over D,.
are similar, expect that in addition one needs
(54b), and the final result is

(63a), d2 A ( )
D~

= ll'a8 Q 2K"K 6 8G(r ')

(68b)

Next we integrate r' over all space apart from
circles of radius g about the remaining N —2 vec-
tor charges. This region of integration, which is
denoted by D, , actually counts certain configura-
tions which will not occur because r' will be
closer than a to another charge even though r' is
not. Such steric effects are small for pairs (b, l)
separated by a distance large compared with a and
are irrelevant in the critical region. Integrating
(63a) by parts assuming r"'» a„and using (54c)
one obtains

d'r, .A, (r,.)

2

2ll(K" —K ) Q b„e„8M,8(rkl)bkek,
k, l

+2K' d r, Q2b'„q„jd. 8(r")
D ~ k, g

x b,'&,„s.s,G(r~')

[(K")'+(K')']
kg kg

X e 8 n8
[

bkbl (67)(rkl)2 2 I
n 8'

We can now collect our results so far into the
equation

A ', =6vI, (~K')y'~ dF
(69)

and

, +,' 6K"5.8G(rkl)
5F 2m a~a

&0& 7 &k g&

( kl kg
e 8 e0 bkbt

l(( kl)2 2 a 8 i

(68)

where 6F, 6K", and I are proporti. onal to 6l.
Since they will eventually appear as an additive
contribution to the free energy and the change in
K" and K', respectively, we write 5K'/6l as
dK"/dl, etc. , and obtain the differential equations

(64)

The second term in (64) is integrated again by
parts and using (54a) together with the result that

d'r, Qnkn, S„G(.r'")&„G(r")

dK"
,

— = -6ll'y'([(K")'+ (K')']I,(&K8)

—K'K'I, (vK')),
dK'

= —6ll y (2K"K I8(mK )

(70a)

k, g

kS k&... 5.„G(;). , ;,;

valid for r"» a» Znk=0, we obtain

(65)

—-', [(K")'+ (K )']I,(llK8)), (70b)

where A is the area of the system. It is interest-
ing to note that recursion relations for the longi-
tudinal and transverse couplings which from (48)
are related to K" and K by

K8=2(K" —K ), Kr=2(K"+K ) (7l)
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can be expressed in somewhat simpler form as so we obtain for dy/dl the equation

dK~
,
' =12''y'[r, (~K')+ ', r,-(wz')], (72a) —,= (2 —vz') y+ 2 sr, (vz') y'. (76) .

dK~
= 12m'y'[I, (wz') —,' I,(w—z')].

The equation for K~ is identical to the result ob-
tained for K"=K~, Eq. (25a), with Ke in the argu-
ment of the Bessel functions, while the recursion
relations for K~ differ only in the sign of the term
proportional to I, which came from the angular
average {cos28), . Comparing with Eq. (16) we
see that the longitudinal and transverse polariza-
bilities of the vector Coulomb gas are given by

n~(r) = ,'wz~r'(I-+ ,' (cos2e) -g),

nz, (r) = —,
' wzorr '(1 ——,

' (cos28) ) .
The analogous result for the scalar Coulomb gas
is given by Eq. (9).

The subsequent step is exactly as in Koster-
litz. ' We have integrated out from the partition
function (49} a pair of charges (i,j) The .terms in
the summation over jz ] are correspondingly rear-
ranged, we allow for the existence of three types
of oppositely oriented vector charge, and then we
reexponentiate terms of order 6l. The result is,
as promised, that K" is replaced by K"+ 5K" and
K byK" M.

The hard-core distance a, has been increased
from a, to ao(1+ 5l} but the parameter a, still
appears in the Hamiltonian through (53) and in the
expression for the partition function (49). In or-
der to complete the renormalization-group calcu-
lation we must replace ao by a,' in these places
which is easily shown to generate a change 5y,
in y where

n' = —,
' I,(2o')[1+ o' —oI, (2o')/I, (2o')] ' (77)

with

Equations (70) or (72) together with (V6) are our
final recursion relations. Clearly if K, = 0 initially
then K~(l) = 0 at all scales l and similarly if K,"
=+Keo this equality is preserved by the recursion
relations. For K"=K~ we recover the- results of
the linear-response theory of Sec. II, namely,
Eqs. (25a) and (25b), while for Ke = 0 our equations
reduce to Nelson's' recursion relations.

The behavior of the solutions to (69) and (73) is
largely controlled by the sign of the coefficient of
y in (76). If K"(l'=0) is sufficiently large that
K"(l)& 2/m for all l then y - 0 and K ~ tends to a
constant as l - . If, however, K" becomes
smaller than 2/m at some l then y diverges as l

continues to increase. Consequently there is a
fixed surface in the K", K~ plane at y = 0, which
is stable for K"&2/w and unstable for K"& 2/w.
Projected onto the plane K = 0 the trajectories are
qualitatively the same as in 'Fig. 1. The region of
stability of the fixed surface terminates in the line
K"=2/v and we shall now show that the exponent
P varies continuously along this line.

To extract the leading temperature dependence
of the renormalized couplings we replace K" and
Ke in the equation for dK"/dl (70a) by their re-
normalized values at T= T,, namely, 2/w and
K~s(T,), respectively, and put K~~(T,) in the argu-
ment of the Bessel function in (V6}. Defining
x= 2 —vz" Eqs. (70a) and (76) reduce to the form
(28} where

5yi= (2 —wz") y 5l. (74) o=z', (T,)/K;(T;) = ,'~K-', (T,). — (78)

5y2 = 2mro(vz ) y 5l . (V5)

The total change in y is given by the sum 5y, + 5y,

Since the charges are unit vectors pointing to
nearest-neighbor positions on a triangular 'lattice
we must also consider pairs separated by a core
distance a, whose vectors are not oppositely orien-
ted but the sum of which is another unit vector. -

These cannot be integrated out because that would
violate the charge neutrality condition Z;b'=0.
Instead we consider them to be a single "com-
posite" charge just as in Sec. II. After rescaling
each of the charges can be either one of the origi-
nal charges or a composite type so we have effec-
tively increased the fugacity y. To leading order
in y it follows straightforwardly that the change
Cy, ls

The interesting region is -1& o & 1 and from (77} n,
and hence v, is a symmetric function of o'. The
exponent v is related to n by (43) and a plot of v

against cr for 0 &o &1 is shown in Fig. 2. Since n'
is always rather small the variation in P is quite
modest. For o «1 it is straightforward to show
that

v ——(1 3 o2s ~ ~ ) (79)

K"„varies as (42) close to T, while K~ behaves as

K',(T) =K'„(T;)+C'l",

where in general K~+(0 ) is nonuniversal. As men-
tioned above, however, K~~=0 if K, =O while for
KO~=K," we have K~~(T,) =2/v

One can show by a similar calculation' that the
correlation t, maries as
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FIG. 2. Plot of the critical exponent v as a function of
o, the ratio of the renormalized angular to radial inter-
action at T =- T, . The radial interaction has the universal
value of 2/~ at T, . The curve is derived from Eqs. (43)
aud (77) of the text which also imply that v is an even
function of a..
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V. CONCLUSIONS

Ne have developed the Kosterlitz- Thouless
theory of melting on the triangular lattice paying
special attention to the angular forces between
dislocation pairs. Close to T, the elastic constants
vary as given by Eq. (46) and the exponent v is
calculated to be 0.3696 ~ ~ ~, different from the
analogous exponent for planar spins and helium
films which is —,'. This difference arises from an
extra term in the recursion relations which in
turn is due to the possibility of adding two unit
Burger vectors on the triangular lattice to form
another unit Burger vector. These results apply
to the transition out of the solid phase. As shown
by Halperin and Nelson" the phase just above T, is
a type of liquid crystal rather than a liquid.

Generalizing the dislocation Hamiltonian to an
arbitrary vector Coulomb gas we find that v

changes continuously as one varies the ratio of the
renormalized angular to radial interaction at
T = T,. P is given explicitly by Eqs. (43) and ('l7)
and is plotted in Fig. 2. Such a model may be
appropriate to melting on a periodic substrate"
but since the change in v is small the prospects
for experimental verification of this nonuniversal
behavior seem slight. Although we have not car-
ried out a complete calculation for the square lat-
tice it seems likely that v=- —, independent of the
parameters in the dislocation Hamiltonian.

(,- exp(b, / ~t
~

"),
where b, are nonuniversal. Equation (69) gives an
additive contribution to the free energy per unit
area from which one can deduce that the singular
part, f", ", has only an essential singularity of
the form'

(6l)

The crucial assumption in the theory is that the
density of dislocations is small at T„which may
not be true for a realistic solid. Since the density
of dislocations decreases upon iterating the recur-
sion relations for T ~ T, it is possible that our
results are correct even for a large initial density.
It is' also possible, however, that with a large
initial density the renormalization-group trajec-

toriess

flow into another region of the parameter
space where the physics is different. Numerical
studies should help distinguish between these
possibilities.

APPENDIX A

In this Appendix we follow Ref. 10 in developing
a linear-response theory for two-dimensional
elasticity for the triangular lattice from which we
can calculate the reduction of the elastic constants
due to screening by dislocation pairs.

Our starting point is the Peach-Koehler" formu-
la for the force I', on a dislocation due to a uni-
form external stress o„„. This states that

~O~X+)tv~ vu & (A l)

where &„, is the antisymmetric tensor with non-
vanishing elements q„,= -q,„=1. The energy E of
a pair of oppositely oriented Burger vector sepa-
rated by r due to the stress is obtained by integrat-
ing up (Al) so

0 )t )tv~su u (A2)

This energy must also equal the integral over all
space of the stress times the strain" so the total
strain U „"due to the pair is given by

(A3)

[We are grateful to Halperin for an illuminating
discussion on this somewhat tricky point. U~„ is
not the integral over all space of the local strain
u,„(r) because the displacement field is multi-
valued and so has a cut between the dislocations.
One must therefore include the contribution to
U;„'""from the discontinuity in the displacement
across the cut. A misunderstanding of this point
led to an incorrect evaluation of the renormalized
elastic constants in a preliminary version of this
paper. ]

The inverse elastic constant tensor C,~,„can be
expressed in terms of the total strain U,„as

where U,„ is the sum of the total strain due to har-
monic lattice vibrations plus the dislocation pari
which is a sum of terms like (A3) over all pairs.
The harmonic contribution gives the bare elastic
constants p, 0 and B0 while the cross term vanishes. '
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As in the Kosterlitz- Thouless approach it is useful
to introduce a scale-dependent elastic constant
tensor C„B,„(h) which includes the screening effect
of pairs of separation between a and y. We there-
fore generalize (A4) to read

(All) together with (2) imply that

)('(x)=K„'+2m'f [n (x')+n (r')]

&&n(r', 8)h dr d8, (A12)

2

+ o n(r', 8)n„z,„(h')r'dr'd8, (A5)
4k~ T

where n(r', 8) is the number of pairs of opposite
Burger vectors with separation x' whose displace-
ment vector makes an angle 8 with one of the Bur-
ger vectors. n„z~„ is given by

n„]]~„=((b„e~„h,+ bzE»r, )(b,e„,r, + b,q„r,))

which is equivalent to

K(r) =K,/~(r)

with

r
e(r) = 1+4v n(r')n(r', 8)r' dh' d8,

a

where the polarizability n(r') is given by

n(r') = —,'vK, (r')'(1 ——,'( cos 28)„,) .

(A13)

(A14)

(A6)

where (~ ~ ),devotes an average at fixed r over
the distribution arising from the angular interac-
tion between the pair. From Eq. (1) this is
exp[7]K(h} cos28), where we have inserted the
value of K on the length scale r to include screen-
ing of this pair due to smaller pairs. Averaging
over the directions of x gives

(r„r,)~ =r'[5„,/2+(b„b, ——,'5~„) (cos28),„,]. (A7)

It is also convenient to average over directions
of the Burger vector b. On the triangular lattice
the only second- and fourth-rank invariant tensors
are the same as for an isotropic system so we
find

(b,b,) = 25„, , (A8a)

(b„b, b,b,)„=8(5,5„,+ 5„„5,~+ 5„~5,„). (A8b)

Equation (A8b) is incorrect for the square lattice
and the renormalized elastic constant tensor has
only cubic symmetry even if we assume the un-
renormalized elastic constants have isotropic
symmetry. From (A6}—(A8) and the identity

q, q, ~
= 5„„5,~ —5 ~ 5„ it is straightforward to re-

n,~,„(r)= ns(r) 5„,5,„

Equations (A12) and (A13) are the results used in
Sec. II to derive scaling equations for K(r).

APPENDIX B

where the elastic constant tensor is given by

Ca(]]) ()
= &o(5()(h586+ 5()65)]] 50(85) e)

++o~ t3 ~7 6 + yo~ 8 ~r 6 (B2)

and the m z are unsy mm et' red strains defined by

ZU~g = ~~Qg q (B3)

where u is the displacement field. 'The substrate
appears through the term in (B2) involving y,
which is proportional to thy square of the local
rotation 8(r) defined by

Nelson and Halperin" have discussed the melting
of a solid layer on a periodic substrate and con-
cluded that there exist values of the parameters
where the substrate applies an orientational bias
to the adsorbate but does not give any pinning of
the translational degrees of freedom. In this case
the solid is described by an elastic Hamiltonian of
the form

+ n„(h) (5„,5,„+5„„5„5„,5,„), - (A 9) 8(r) = g[S„u„(r)—S,u„(r)] . (B4)

where

ns(r} = —,'r'(1 —( cos28)„,), (A10a)

n„(r) = —,'r'. (A10b)

From (A5) and (A9) the scale-dependent elastic
constants are given by

g2 ~r
i(, '(r) = i],,'+ ' n„(h')N(r', 8)h' dr' d8, (Alla)

kg 4g

08 '(r) = B,'+ '
n~ (r')n(r', 8)r' dk' d8. (Allb)

a

r ~ ao P'o+o P oyo
2

&o+ +o &o.+ yo

2
+o &o+o &oyo

2~ ka~ I"o++o ~o —yo

(B5a)

(B5b)

Denoting the total unsymmetrized strain by @'
~ it

follows straightforwardly that the analogs of (A3)
and (A4) are

The dislocation Hamiltonian arising from (Bl) has
the form given in Eq. (1) but now"
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and

W"~~ ——a,b &~~r~ (B5) u v'dy-~
= 3~@'[z,(wz') +r, (~z')] .a' dl (B10)

1c-.'„„= (w„w,„) .
Vk~T

(B7)
It is now straightforward to show that Eqs. (45),
(B5), and (B10) are equivalent to Eqs. (71) and
(72).

Since the inverse elastic constant tensor must have
the form

C~s~„(r) =
)

(6 ) 6s + 6 6s~ 6 s6),„)4p. r
1

~ ~
1

+4II( } Ss xv+4
( )

Rs xv (B8)

a„(r) = ,'r'(I +(—cos28)„,) . (BS)

'The recursion relations for p, and B are therefore
still given by Eq. (45) (with K in the argument of
the Bessel functions) and the corresponding equa-
tion for y is

it is easy to project out the parts of (B7) which
correspond to the different elastic constants. Pro-
ceeding as in Appendix A we find that p, '(r) and
B '(r) are still given by (All) with the same o's(r)
and o.' (x), while y '(r) has an analogous expression
but with
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