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Electronic structure of one-dimensional alloys
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The notion of a particular kind of ordering (Markovian) in one-dimensional alloys is introduced. It is shown
how, within the context of the tight-binding model, one may obtain a hierarchy of ever better
approximations for the electronic density of states of a Markhoff alloy. Some detailed calculations for the
case of 1:1 binary alloys with varying degrees of diagonal and off-diagonal disorder are presented. It is
found that the second approximation of the hierarchy already gives very fair agreement with known exact
results for the density of states. Generalizations of the method to calculate near-neighbor Green's functions
and to apply to alloys with more elaborate (generalized Markovian) orderings are discussed,

I. INTRODUCTION

The theory of the electronic structure of alloys
is of interest both for its direct application to al-
loy systems and. because of its bearing upon the
solution of certain many-body problems. ' ' Much
work has naturally been directed towards three-
dimensional alloys, but the recent interest in
quasi-one-dimensional materials, such as the
charge-transfer salts of tetracyanoquinodimethane
(TCNQ), has focused attention on one-dimensional
alloys, particularly in connection with the many-
body application. ' Because of the very different
eonnectivity, one may expect the electronic struc-
tures of one- and three-dimensional alloys to be
markedly different; on the other hand, the low
connectivity in one dimension permits consider-
able theoretical progress to be made in this case.
Indeed, exact, methods are known' ' for obtaining
the electronic density of states in one-dimension-
al alloys; these methods are, however, very
tedious in practice, requiring the solution of
functional equations. It would be useful to have an
efficient and accurate approximation scheme for
obtaining the electronic structures of one-dimen-
sional alloys. It is the purpose of this paper to
present such a scheme, albeit restricted to a
particular kind of ordering of the alloy.

Actually, what will be described is not a single
approximation, but a hierarchy of approximations
of increasing accuracy (tending in the limit to the
exact result). These approximations are formu-
lated within the context of a tight-binding model;
indeed, in the theory presented here only nearest-
neighbor transfer integrals are allowed. The
method ean be generalized to take into account
more distant transfer integrals, but the formulas
are more complicated and the utility of the meth- '

od decreases rapidly as more distant transfer
integrals are included; the scheme is not very
suitable for free-electron-like bands.

The approximation scheme ~ermits partial (or
complete) ordering of the alloy to be taken into
account provided the ordering is of a particular
kind which will be called Markovian (by analogy
with a Markhoff process). The requirement that
the ordering be of this kind does not seem to be
very restrictive since it encompasses the whole
range of order from separation of phases through
random alloys to completely ordered alloys (see
Sec. II). In the limit of perfect order all the ap-
proximations of the hierarchy coincide with each
other and with the exact result (see Sec. III).

The importance of the partially ordered alloy
problem in connection with the solution of the
Hubbard model has been pointed out by Econo-
mou4 and White who have investigated an approxi-
mation scheme somewhat different from that des-
cribed here. ' An approximate method for the
treatment of partial order in the three-dimension-
al case has been described by Brouers et al.';
this approach is closely related to that used here;
in fact, the simpler approximations of our hier-
archy are very close to a one-dimensional ver-
sion of this method.

In Sec. II of this paper the nature and proper-
ties of what we call Markovian and generalized
Markovian ordering are described and illustrated.
Section III gives the derivation of the hierarchy of
approximations for the density of states, making
use of a formula of the continued-fraction kind. ' '"
In the Appendix a new derivation (related to But-
ler's method" ) of this formula is given which may
be easily adapted to obtain certain other results
required in Sec. V.

In Sec. IV, by way of illustration, some detailed
calculations of densities of states .are presented,
some new, and some corresponding to examples
previously considered in the literature for which
exact results are known. ' These calculations
are all for 1:1binary alloys with varying degrees
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of order (from nearly separated phases through
random alloys to alloys with nearly A.NABAB ~

ordering) and disorder of either a diagonal or off-
diagonal kind. Where comparison with exact re-
sults can be made, it is found that the second ap-
proximation already gives very fair agreement.

In Sec. V it is shown how the method may be
adapted to obtain a hierarchy of approximations
for near-neighbor Green's functions. Finally,
in Sec. VI some conclusions and some comments
on the method and the results obtained are given.

II. MARKOVIAN ORDERING

Consider a one-dimensional substitutional alloy
chain with M sites. Suppose the alloy contains s
different species of atom which will be numbered
1, 2, . . . , s. Then a particular configuration of the
alloy may be specified by M numbers En„a„.. . ,
a„} (where I& a; & s) indicating that site 1 is oc-
cupied by an atom of species n„site 2 by an atom
of species n„etc. The nature of the ordering in
the alloy is then specified by some distribution
function f(a„n». . . , n~) giving the probability
of the occurrence of the particular configuration
E &a~ &2~ ~ ~ ~ r W ~

In the case of purely random alloys, the distri-
bution f is entirely determined when the propor-
tions N„X„.. . , N, of the different constituents
are given. These N must satisfy the relation

, N„=1, and the distribution function is given

by

f (nz~ a2& ~ y as) =Nn, Pn, n &n n Pn n
' ' 'Pn

3 3 4 &-1 N ~

I et us give some examples of Markovian order-
ing.

(i) A purely random alloy corresponds to the
choice P„z =Nz as may be seen by comparing (1)
and (4).

(ii) An "alloy" with separated phases corre-
sponds to the choice p „z = &„z, f(n„n„... , n„)
then vanishes unless 0., =n, =+3= =o.„, and
when this condition is satisfied it takes the value

(iii) A binary 1:1 alloy with ABABAB ' ' order-
ing corresponds to the choice s =2 with P» =p»
=0, p» =P» ——1; similarly one could represent
1 1 1 ternary alloys with the ordering A.BCABC ~

The way in which other kinds of ordering (e.g. ,
AABAAB ) may be brought within the scheme
is discussed in Sec. II.

(iv) If the distribution function is determined by
some potential W according to

f(n„a„.. . , a„)=exp[- W(a„a„.. . , n„)], (5)

then the ordering will be Markovian if to an ade-
quate approximation Wean be represented in the
fOI'm

W= W, n, + 8', n&, o.;,,

For what we will call Markovian ordering the
distribution is entirely determined when a set of
"transition probabilities" P„z (1 & a, P & s) are
given; p 8 determines the probability that site
n+I is of species P given that site n is of species
a (whatever the nature of the species at sites
n —1, n —2, . . . ). The P „z must satisfy the con-
straint

QP„s =1 for all a,
8=&

which implies that the matrix of the P„8 has an
eigenvalue 1 with corresponding right eigenvector
(1,1, . . . , 1). The corresponding left eigenvector is
just (N„N„. . . , N, ):

i.e., only nearest-neighbor interactions contribute
significantly to W.

As will be seen, the restriction. to Markovian
ordering is not too severe since it encompasses
a wide range of the cases of interest. Further,
a specification of the p 8 will often represent the
limit of the information available concerning the
na.ture of the ordering.

In the remainder of this paper we shall be prin-
cipally concerned with the averages of functions of
the E a,}over the En, }with the weight function

f (n, ); both with complete averages of the form

S

Q N+ns =Ns . g (X ~ ~ ~ Dt

The distribution function is easily written down
for this kind of ordering; it is

and with conditional averages for which we use the
notation
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(h(a a )) 8&sn'
~ ~ ~ 4y

( h(agI ' ' i aN)f (ayp ~ ~ ~ i aN)5 0 8 5N' 826n] sn
Q n ~ n CX@ ~1 1 g22

flak

so (h&"„ is the average of h over all configurations
in which site n is of type a, (h&„" is the average
over all configurations in which site n is of type
a and site m is of type P, etc,

Certain relations between conditional averages
over Markovian distributions will be needed.
These relations, which may be easily derived
from (7), (8), and (4) using (2) and (3) are the
following: (a) if h is some function of the a„ then

a~)=N~Pn ~ P
2 1

P 0 ~ ~ *naa Pn
3 4 . N-2 JIf 1 N (14)

where P„8 =QyNypy„s, (9) and (10) still hold
good, but (11) is replaced by

&no n+t =gP &8 y& &n.n ~ i, n+ n =QPyme & &n-g ~ n, n+ y

y

(h) =+N„(h)"„ for any n; (9) (15)

(10)
and (12) is replaced by

n~ n1n ~ n~n2, n-1, n ~ n~n-3, n-2sn-1, n

(h&n, n+1 +Psy( &n, n+l, n+2 QPyn(h&n-l, n, n+1 ~

y

(b) if h„(a„,a„„.. . , a„) is a function of the a,
with s~ n only, then

(h„&„"=&hg„",'„, =(h„&„,'„',, „„etc. (12)

i.e., for such a function once the condition that
site n is of type e is specified, the specification
of further conditions at sites i &n is of no conse-
quence; this is the most essential feature of
Markovian ordering Likew. ise, if /„(a„a„.. . ,
a„) is a function of the a; with i & n only, then

n a nyn+1 I +e ~+1eff+2 (13)

The notion of Markhoff ordering described
above may be quite simply generalized. One may
most simply generalize it by introducing a set. of
"compound transition probabilities" P ~zz which
give the probability that site ++1 is of type y
given that sites n —1,n are of types a, p (irre-
spective of the species at site n —2, s —3, . . . ).
Such a situation would arise, for example, if the
distribution function has the form (5), but it is
thought necessary to include in 8'not only the con-
tribution of nearest-neighbor interactions, but also
next- nearest-neighbor interactions. The above
results may all be generalized in an appropriate
way for this "generalized Markovian ordering. "
The distribution function is

(16)

and so on. Obviously one could further general-
ize, introducing transition probabilities P &8~„ in
which the probability of a species at site n+1 de-
pends upon the species at sites n, n-1, and n —2
and obtain further generalizations of the above
formulas. These generalizations depending upon
compound transition probabilities P~&z, P~8»,
P 8 &e, .. .will be ref erred to as general-
ized Markovian orderings of the first, seco'nd,
third, etc. kinds.

III. ELECTRONIC DENSITY OF STATES

Consider an open chain of ~+N'+1 sites which
will be labeled —N', —(¹—1), . .. , —1, 0, 1,2, . . . ,
N —1,X; the limit N, N' -~ is always contemplat-
ed. The Hamiltonian for an electron of a sub-
stitutional alloy on this chain can be written in the
tight-binding approximation (with nearest-neigh-
bor overlap integrals only) for a particular con-
figuration of the alloy as

e„e n

where the sums over n run from —N' to N, I n) is
the tight-binding orbital at site n, e„ is the diag-
onal energy at site n (for the particular configura-
tion), and t„„„andt„„,are the transfer inte-
grals between sites n and n+1; in fact t„„„
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= t„„„,but it is convenient to distinguish these
quantities for the moment. If the alloy is a sub-
stitutional one with s species and the configuration
to which the Hamiltonian (17}corresponds is that
represented by (a „a, „~,.. . , a„.. . , a„) in the
notation of Sec. II, then e„=&, where &„&„.. . ,
e, }are the diagonal energies corresponding to
the species, and t„„,„=t„,„„=t~~ where
t „8 is the transfer integral between species n and

P. Pure diagonal disorder corresponds to having
all t „& equal but distinct E~, pure off-diagonal dis-
order to having all &„equal but distinct t

The electron Green's function g „(z}for the
particular configuration to which (17) corresponds
are defined as the matrix elements of the resol-
vent (z —H) '.

Cohen and Economou derived (21}by a graphical
analysis; it may also be obtained by the continued-
fraction method'4; for the reasons explained in the
Introduction we have given an alternative derivation
in the Appendix.

The simplest of the hierarchy of approximations
may be based directly upon (21) and (23). We in-
troduce the average (using the notation of Sec. II)

4„(z}=&6„(z))"„,n~ 1 (24)

which is independent of n (in the lin))tt=N, N'- ~).
We assume the ordering ta be. of a Markovian kind
and combine (23), (24), and (10) to obtain

Z, (z) =(~l (z —II) 'In), (ls) (25)

where H is given by (17}and z is a complex fre-
quency. One is, of course, ultimately interested
not in the Green's function for a particular con-
figuration, but rather in the averaged Green's
functions

(z) =
& g .(z)), (19)

where the average is over all configurations with
the appropriate weight i.e., just an average of the
kind defined in Sec. II. In particular, the average
electronic density of states per site p(e) for the
alloy can be expressed in terms of G»(z):

1
p(e) =—Lim ImG»(e —iq),

8~0+
(20)

where Im means the imaginary part and the limit
N, N'- has been taken.

A formula for the Green's function goo (in the
limit N, N'-~) has been derived by Economou and
Qohen, "namely,

The simplest approximation is now obtained by
approximating the right-hand side of (25) accord-
ing to

t) (z)=gp 8(z —& -t't)&6. „&.",'.„) '
8

(26)

and using (11}to write

«...( )&.",'.„=&6.„( )&.'„=& ( ) (27)

since 6„., (z) is a function of a„„,a„„,. . . , but
not of the n, with i &n. Then the approximation
(26) gives the equation

(26)

for t) (z).
By a similar argument one may also show that

(for n & 1)

(29)
g„(z)=[z —e, —t0,6, (z) —t', ,6,(z)]-', (21)

where 6,„(z) (for n =1, 2, 3, . . . ) are the infinite
continued fractions

To obtain G»(z) one starts from (21) and uses (9)
and (10) to write

G„(z)= 2 p, .N„p„„&[z-e, —t, ,o, (z)
nay

z —e kn
~ + (n+ 1)& + n

t3+(n+2) ~ ~(n+ I)e y(n+ 1) e a(n+ 2)

(22)

= Z pe N p )[z —~ —&t'ns6-)(z)
net

satisfying the recurrence relation

6,„(z)=[z —e,„—t',„,(„,) 5,(„., )(z)] ' . (23)

(30)

where an approximation corresponding to (26) has
been made at the last step. Since 6, (z) depends
only upon the a, with t ~ 1, and 6, (z) only upon
the a, with i& —1, one may now use (ll), (12),
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(13), (24), and (29) to write

G ( ) g Ps+N~Pn,
„s, z —e„—t'„sb, s(z) —t'„its, y(z)

(32)

(tn 5, (z) its„6,(z))s,"~, , =t'„sb, s(z) +t'yes. y(z)

(31)
and (30}becomes

Equations (28), (32), and (20) now form a com-
plete set to determine b „(z), G (z), and p(e),
and together constitute the simplest approxima-
tion of the hierarchy.

To obtain the next approximation for b, „(z) one
iterates (23) once, substitutes the result into
(24), and makes an approximation similar to (26),
obtaining

-1,
&„(z}= z —e„—

n+ y n+3, n~y n+2 & n

n8P&sPs'f + z e ts (6 )+s&
Sy 8 Qy n+2 n, n+&, n+2

i.e., using (12),

PeSPBva„(z)=g
8 g —6 tnt

z —cs —tns a„(z}
(33)

which replaces (25) in the second approximation.
By a similar analysis, the corresponding approx-
imation for G(z) is

found that the second approximation derived above
ip already in quite fair agreement with the exact
results.

The formulas derived above may be modified to
apply to cases with generalized Markovian order-
ing. For example, in the case of generalized
Markovian ordering of the first kind (see Sec. II),
one would introduce instead of n. (z) the quantity

& s(z) =(&.&."', .
=((z =e„-t'„„,&„,) ')„s, „

P ~ sp s ~ N~ P a n P ns

z —&
tn8 C7}

g —e, —t28„~„g—e.„-t'„,~,
(34)

Obviously one can proceed in this way to obtain
a whole hierarchy of approximations for 4„(z)by
iterating (23) some number of times, substituting
the result in (24) and then carrying out an approx-
imation of the kind used in deriving (26) and (33).
In each case one. may obtain a corresponding ap-
proximation for G«(z) and the density of states.
As one continues this process to higher and higher
orders, one approaches more and more closely to
a direct evaluation of the average of the expres-
sion (21) for g«(z) with 6„(z) substituted from
(22), so in the limit this hierarchy of approxima-
tions tends to the exact result. In fact, where
comparisons have been made (see Sec. IV) it is

using (23}. Now, making use of the approximation
(26) and the formulas (15) and (16) one may obtain
the equation

& s(z)=Q--
8 Sy 8y

for h„s, the generalization of (25). Likewise (32)
is generalized to

z —es —t'„s A„s (z) —tssyAs„(z)

In a similar way any of the approximations of the
hierarchy may be generalized to the case of gen-
eralized Markovian ordering of the first kind, or,
indeed, generalized Markovian ordering of any
kind.

In some eases when the Markovian ordering
tends to perfect order the simplest approximation
becomes exact (as do all the higher-order approx-
imations). Consider, for example, a 1:1binary
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IV. DENSITY OF STATES FOR BINARY ALLOYS

In order to illustrate the approximations de-
rived in Sec. IG and to assess the accuracy of the
method by comparison with known exact results,
a number of detailed calculations of the density
of states have been carried out for 1:1binary
alloys. For such alloys the p~8 satisfying the
constraints (2) and (3) may all be expressed in
terms of a single parameter p on the range (0, I)
according to

p li p22 p ~ p12 p21 (38)

The limit p =1 corresponds to the formation of
separated phases, p =0 to an alloy with
ABABAB ~ ~ ordering and p =& to a random
alloy.

The first of the calculations to be described are
concerned with cases of purely diagonal disorder,
i.e., we take t» =t12=t21 =t22=- t (with t 0), but
allow &, and &, to differ. In fact, with a suitable
choice for the origin of energy one may take

alloy; possible ordered states are states with
separated phases and states with AHAB' ~ ~ ~

ordering. In each case when it is given that site
m is of type A or B the species at all other sites
are completely determined by the P„a, since
p„=p„=1 and p„=p„=0 in the one case and p„
=p„=0 and p„=p„=1 in the other case. Thus
in these cases only a single configuration contri-
butes to an average of the form (h)„and approxi-
mations such as (26) actually become exact, mak-
ing the simplest approximation exact.

The same remarks apply to any "alloy" which
is ordered in the sense that it has separated
phases. Also to three-, four, . . . , component
alloys with orderings of the type A. BCABCAjPC. . . ,
ABCDABCD. . . , etc. However„ the same is not
true, for example, in the case of a 2:1 binary
alloy with the ordering AABAAB&48 ~ ~ ~ . In this
case p„=p„=2, p„=0, p„=l, and given that site
& is of type A. the p 8 no longer determine unique-
ly the species at other sites. The truth of the
matter is that ordering of this kind cannot be
specified as a limit of a simple Markovian order-
ing. It may, however, be specified a,s a limiting
case of a generalized Markovian ordering of the
first kind (with P», =P», =P», =I and other P„2&
=0), and so can be treated using the generaliza-
tion to this case discussed above, which one can
now show to become exact in the ordered limit.

By similar arguments one may show that any
perfect ordering is a, limit of a, generalized Mark-
ovian ordering of some kind and that the corre-
sponding generalized approximations become ex-
act in the ordered limit.

C~ =—62 = p~t

so the degree of disorder is defined (relative to
the transfer integral t) by the parameter 6. In
the limit ~ =0 of no disorder, one would obtain
an ordinary one-dimensional tight-binding band
of width 4t with the dispersion relation e(&)=
—2t cosk and density of states per site

(1/11)[4- (~/t}'] ' ' if!e/tj & 2
t p(&}=

0 if!e/t! &2 (40)

which diverges at the ends of the band because of
the Van Hove singularities at 4 = +m.

In the limjt of separated phases (P =1) and fin-
ite 6, p(e) is a superposition of the densities of
states for the separate A and B bands, each of
which is of the form (40) but displaced by a-, 6t:

2, -1/2 I " (e Q 2 -1/2
tq(E) =—4 —

!
—+— + —4 —

!
———

2g (t 2 2F

(41)

(with the understanding that each term is to be
replaced by 0 if the argument of the square root
becomes negative); the two bands overlap if
en 4. In the opposite limit (p =0) of it2484B
ordering, the density of states is that appropriate
to the corresponding band structure:

!! ('-):('-)'-(l)'. '"."(l)'-(-')'. "
tp(e) =& .

!if 6/2&!e/t! & [4+(6/2)'] ' '

i0 otherwise; (42)

it consists of two bands symmetric about the or-
igin, the upper band extending from 2&t to 2t [I—
+(6/4)2]'/2; again there are Van Hove singulari-
ties at the ends of the bands. It will be seen that
in all these cases p(e) is an even function of e
[relative to the origin of energy determined by
(39}];in fact, one may show that for this model
p(e) is even for all values of P.

In order to solve equations like (28) and .(33)
numerically, the procedure suggested by White
and Economou' was adopted. Actually these equa-
tions are equivalent to polynomial equations for
4„(a) with coefficients which are polynomials in
z. Thus b „(z) is a many-valued function of z.
However, all the branch points lie on the real
axis, so it suffices to introduce branch cuts along
the real axis in order to ensure that |~(z}has the
correct analytical properties. It is still necessary
to ensure that one has found the correct branch of
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05-

oo~

.p(g) 0 5- (b)

(c)

„ I 'w

o . 1 2

e/t

FIG. 1. Various calculations of the density of states
p(e) for the case 6=4, P =& (see text); (a) calculated
using the first approximation and coarse grained with
g= 0.02t (see text); (b) calculated in the second approxi-
mation-with same coarse graining; (c) calculated in the
second approximation with little coarse graining
(q =0.002t }.

h„(z). In order that G«(z) have the correct be-
havior as z -~ it is necessary that &„(z)-0 as

One may show that there is just one branch
of h„(z) with this property and that for this
branch n „(z)-1/z as z -~. The equations (28)
and (33) were accordingly solved by the following
procedure: starting at a large value of & with the
asymptotic solution h„(z) =1/z the equations
were solved at a succession of points on the line
z = e +0.05i (e real) in the complex plane by a New-
ton-Raphson procedure; then, starting at each of
the points &„+0.05i thus calculated they were sol-
ved at points &„+x& with x decreasing from 0.05
towards 0 (again by a Newton-Raphson procedure)
to obtain 4„(z) at the points e„+i@with q very
small. G«(e+ i@) and p(e) were then evaluated
using the formulas (30) or (34) and (20).

The p(e) calculated by this procedure can in
some cases show very sharp peaks [see, for ex-
ample, Fig. 1(c)], making graphical presentation
difficult and requiring the use of a very fine mesh
in e to faithfully represent them. Furthermore,

in this form they are not directly comparable with
precise results' which are only available as histo-
grams giving p(e) averaged over some interval b, e.
To circumvent these complications we have mainly
calculated not the true p(e), but a slightly coarse-
grained average p(e), obtained by the simple ex-
pedient of calculating p(e) =(1/w}lmG«(e +iq) at a
small finite value of q (usually q =0.02t). The ef-
fect of this coarse graining is illustrated in one
(fairly extreme} case by a comparison of Figs.
l(b) and 1(c), calculated in the second approxima-
tion for the case ~ =4, P =-,' with q =0.02t [Fig.
1(b)] and with q =0.002t [Fig. 1(c)]. In all the other
figures presented here, coarse graining with

q =02t has been used. This coarse graining intro-
duces one rather irritating artefact which may be
noted in a comparison of Figs. 1(b) and 1(c),
namely, the nonvanishing of P(e) for some values
of e at which p (e}actually vanishes; this arises
because the averaging is of a I orentzian kind with

long wings.
Calculations were carried out using both the

first and the second approximations of the hier-
archy described in Sec. III. Comparison with re-
sults' obtained by the Schmidt method' showed the
second approximation to be far better than the
first. All the results presented here were calcu-
lated in the second approximation with the excep-
tion of Fig. 1(a). In Fig. 1(a}the first-order ap-
proximation for p (&) is shown for the case 5 =4,
P =2 for the sake of comparison with the corre-
sponding second-approximation result of Fig. 1(b)
(actually, of all the cases examined, this is the
one in which the first approximation is at its
poorest compared to the second).

In Fig. 2, p(e) has been plotted for varying de-
grees of diagonal disorder & and for varying de-
grees of order ranging from p =0.9 (close to sep-
aration of phases) through P =0.5 (random alloy}
to P =0.1 (close to ABABAB ~ order). The re-
sults corresponding to P =0.9, 0.5, 0.1 are com-
parable to the exact results. for these cases given
by White and Economou' which are also shown in
Figure 2. Such comparisons show that the second
approximation gives quite a fair account of p(e);
some peaks of p(e) in the exact result are missed
by the approximation and the troughs given by the
approximation are not as deep as they should be;
the greater height of some peaks in Fig. 2 when
compared with%hite and Economou's exact re-
sults is simply a consequence of the fact that we
have used averaging over a smaller width (M
=0.02t) than was used in the Schmidt calculation
histograms (Ae =0.05t).

It would be possible by an examination of addi-
tional data available, such as, for example, the
partial densities of states p„(e), pz(c) at the A
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case can be interpreted as due to wave functions
localized on isolated clusters and with energies
not matching those of the bands. Regarding the
question of the formation of gaps in the spectrum,
some systematics can be observed. For & &4 a
gap forms around e =0 for all values of P as ex-
pected. For P =O.i this tendency is strong for all
values of &, reflecting the fact that there is a gap
in the spectrum (42) for all values of &. There is
a systematic tendency for a gap to form close to
2&t for all values of P other than those close to l.
Beyond this, the formation of gaps seems to be
associated with the i.ncreased peakiness as & in-
creases, i.e., the tendency to form an isolated
line spectrum.

Calculations were also carried out for some
cases of purely off-diagonal disorder. Again the
1:1binary alloy was studied, but in this case we
set ~i =~2 =0 a"d

FIG. 2. Coarse-grained (g =0.02t) densities of states
p(e) calculated in the second approximation for several
values of the order parameter p and varying degrees of
diagonal disorder 6 (see text) (solid line). The broken
lines give the comparable exact results obtained by the
Schmidt method. 8

t» = ft, t» = t» t, t»--=t/g (48)

so the disorder was measured by the single par-
ameter g. In the limit P =1 of separated phases
the density of states is a superposition of two
bands of the form (40) but different widths:

and B sites and the near-neighbor Green's func-
tions to be discussed in Sec. V, to ascertain in de-
tail the physical features giving rise to the com-
plicated structures shown in Fig. 2, but this would
seem to serve little purpose. We shall therefore
make only a few very. general comments on these
results.

The peaks in p(e) arise from two causes. I or
small values of & they are ghosts of the Van Hove
singularities of (41}and (42) and occur for P near
to 0 or 1. As & increases p(&) becomes increasing-
ly peaky, especially for middle values of P, be-
cause of increasing localization of some alloy wave
functions. Clusters of atoms of a particular con-
figuration will occur with various frequencies;
wave functions strongly localized on a frequently
occurring type of cluster will give rise to a peak
in p(e) at the appropriate energy. The width of
this peak will reflect the degree to which this en-
ergy is affected by the environment of the cluster
and how easily it may communicate with similar
localized wave functions of nearly matching energy
on neighboring clusters. So, as localization be-
comes stronger, the peaks willbecome narrower
and higher. In the cases P =O.l and P =0.9 the
bands corresponding to (41) and (42) can be seen
forming, reflecting in the first case the presence
of regions of the forms AA.AA. ' ' and BBBB
and in the second case regions of the form
A.MMB ~ ~ . The additional peaks in the P =0.1

(44)

with Van Hove singularities at e/t = +2 g, + 2/g.
In the limit p =0 the density of states is again
given by (40).

The calculations were all carried out in the
second approximation by the numerical procedure
described above and averaging with q =0.02t was
again used; p(e) remains an even function of e.
The results for the values g=& 2, )=2, and var-
ious P are shown in Fig. 3. Again some strong
peaks can be seen. In this case one would not ex-
pect the development of systematic gaps in the
spectrum, and the gaps found are associated with
the peaky parts of the spectrum.

6fg„(z}=—
d

ln( z H~, —
01

(45)

V. NEAR-NEIGHBOR GREEN'S FUNCTIONS

The theory of Sec. III may be extended to calcu-
late other averaged Green's functions G „(z), but
the method appears to be convenient only if & and
mare close neighbors. Consider first the nearest-
neighbor Green's function G, o(z) =(g»(z)) were
g„(z}is given by (18). As discussed in the Ap-
pendix, g, 0 may be expressed as
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is obtained by using the expression (A9) for lz —Hl,
namely,

lnlz —HI =ln(z —e, —t»t»6, —t, , t, ,&,)+X,

(46)

where X represents terms not depending upon to, .
Differentiating (46) with respect to to, (note that
~ «do not depend upon t»), using (45) and aver-
aging

0
1

p = 0.5

= Z N P y P g (&os~i (z
ngy

p = 0.25

0
1

+nP Y nP nsfn8 +8
g —e~ —t ~86 8

—t ~ 6 (47)

0
0 2 3 0

e/t
2 3 4

p = 0.1 using an approximation of the kind used in (26);
this is the simplest approximation for G„.

To obtain the next approximation in the hierarchy
for G&0 one uses instead of (46) another expression
for Iz -HI, namely (see Appendix),

FIG. 3. Coarse-grained (g = 0.02t) densities of states
p(e) calculated in the second approximation for several
values of the order parameterP and two values of t)ie
off-diagonal disorder parameter $ (see text).

where lz —Hl is the determinant of the matrix
(ml z —H ll} in the notation of Sec. III.

The simplest approximation for G«[equivalent
in accuracy to the first approximation for p(e)]

lnl z -H I

-to g
02

t-s, o ~ -~0 -tso
0 -to~ &-eg-t 2

+X, (48)

where X again stands for terms not depending
upon to, . Differentiating (48), averaging, and ap-
proximatirig in the usual way one obtains

( ) g Pe.P. & P 8Pe.~ s.. .[z s. f'„./(z -e, —f'„,~,)](z -s, -P,„~„)-f'. , (49)

2e a$ tag m2'5m2

ggo(z) = ln
x

to~ -i 0
Z -ep -tgp

2
-tpg 8 —e ) —t)262

(50)

where one must put x=0 after differentiation.
Again a hierarchy of approximations can be ob-

Proceeding in this way one can obtain a hierarchy
of approximation for Gyp analogous to those for
Gpp ~

In the case of G20 the simplest approximation is
that corresponding to the second approximation of
the hierarchy for Gpp

' It is obtained by averaging
and approximating the expression (see Appendix)

I

tained for G20. One finds by similar arguments
that the simplest approximation for G„p corre-
sponds to the nth approximation in the hierarchy
for Gpo and as n increases the calculations be-
come increasingly complex.

Figure 4 shows some examples of (he spectral
weight function p&0(&) (per site) calculated using
the approximation (49) [and hence comparable for
the corresponding eases with the p(&) shown in

Figs. 2 and 3]; p, o(s) has been averaged in the
same way as p(&), taking q =0.02t; p~p(&) can be
shown to be real and to be an odd function of ~.
In general, pgp(s) appears to be of the form
p(s)x(&}, where r(s) is a comparatively slowly
varying function of &, although some exceptions
to this rule can be seen.
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FIG. 4. Coarse-grained
(q =0.02t) spectral weight
functions pro(c) of the near-

4 est-neighbor Green's func-
tion Ggo calculated in the
second approximation for
several values of the order
parameter p and varying
degrees of diagonal (5) and
off-diagonal ($) disorder.

0 4 0

VI. CONCLUSIONS AND COMMENTS

It has been found that, within the context of the
tight-binding model and Markovian ordering, the
approximation scheme of Sec. III provides a
means of obtaining very good approximations to
the density of states (becoming exact in the limit
of perfect ordering} at a rather low cost in numer-
ical effort. The equations of the approximation
scheme [e.g. , Eqs. (28), (32), (33}, and (34)] are
natural and have a simple physical interpretation,
as will be explained later in this section. The
method may be readily generalized to more elab-
orate orderings and to calculate near-neighbor
Green's functions.

One of the motivations for the construction of
this approximation scheme is its possible applica-
tion in connection with many-body problems, so
some comment upon such a.pplications is in order.
First, it should be noted that the one-dimensional
many-body application often leads to subsidiary
alloy problems in which the ordering is of a
Markovian or generalized Markovian kind. For
example, the method of Cyrots for the Hubbard
model leads to distribution functions of the form
(5) and (6) which it has been shown represent
Markovian orderings in the one-dimensional case.
One may also show that to a good approximation
the distortions associated with charge-density
waves or- Peierls' instabilities are of a Markovian
nature.

Some of the results obtained in Sec. IV sound a

note of warning concerning the approximations
often used in passing from a many-body to a re-
lated alloy problem (in the one-dimensional case,
at least). It was noted in Sec. IV that the density
of states may sometimes be very peaky and the
peaks very narrow. This is characteristic of the
true alloy problem in one dimension and depends
upon thy fact that the ~ and t z are fixed and un-
varying in time. In the many-body application,
however, the quantities equivalent to the ~ are,
in fact, really time-dependent fields; the approxi-
mation usually made is to replace them by static
fields. However, if these fields should really vary
on a time scale &, peaks in the density of states
with widths less than k/v are artefacts of the use
of the static approximation. In the case of the
Hubbard model one is faced with the problem of
dealing with what was called the "resonance-
broadening" problem. ~

Finally we remark that, within the limitations of
the particular model studied here, the hierarchy
of approximations derived in Sec. III represents
a complete solution of what is sometimes called
the "cluster embedding" problem. This embedding
problem is concerned with the question of finding
a way to adapt precise calculations on small clus-
ters of atoms to somehow represent the influence
on the cluster of the rest of the system, this in-
fluence being calculated self-consistently from
the solution for the cluster; the Bethe-Peierls
method" is an example of such a theory. To
see how the approximation scheme of Sec. III
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is connected with this embedding problem, con-
sider what one would get if, for example, one put
6„=hp =0 in (34). One would obtain exactly the
on-site Green's function for the middle atom of a
cluster of three atoms. The role of the A„4 is
clearly to approximately represent the influence
of the rest of the chain on this cluster (insofar as
it affects this particular Green's function). Equa-
tion (33) is then, in effect, the self-consistent
equation to determine -the quantity 4 representing
this influence. As one passes to higher-order ap-
proximations of the hierarchy, one is in effect
studying the embedding of larger and larger
clusters. "iae scheme proposed by Brouer et al.~

has the same character, but implementation is

much more difficult in three dimensions than in
one dimension.

d
gpp(z): lnI z -HI

dep
(Al)

where Iz -H l is the determinant of the matrix
(m lz -H In) with H given by (17). It is convenient
to introduce the notation

APPEXDrX

In this Appendix the derivation of formulas (21),
(22), (23), (45), (48), and (50) is outlined. By the
ordinary rules for differentiation of determinants
and the definition (18) one has

a- Ni
I

t-N (-ar

DN. , N(a N )a& „, , a ~, ap, a&, .. . , aN &, aN) =
™i,p

to, -s ap tsp .
t«a&

(A2)

tN, N- f aN

for the determinant (A2). Then Iz -H I is simply
DN, ,N(a „.. . .. , a„)with a; replaced by z -e, for

~
' IS~N) ~ ~ ~ y¹
By pivotal condensation on the (N, N —1) element

one finds
1a;

if i&1

where the a,' are defined by the recurrence rela-
tions

I
DN', N( -N' ~ ~ ~ N) DN', N- 1(a-N' aN-2 N-2) N

t,'; gt;);
a]-g

if i ~-1 (AS)

where
I

aN &
——aN &

-t„& &t& «y'a„. (A4)

together with (A4) and (A5).
If one now substitutes a, =z -e; in (A7), only the

first term on the right depends upon ep so differ-
entiating and using (Al)

ID'-NN2( aN2' 2- N' ' ' aN)a-N' (A5)

where
I

2 N' 2-N' f-N', - '2i N- '2NN'Ia-N' (A6)

Repeatedly carrying out pivotal condensations of
these two kinds one may arrive at the formula

tpitip ~p, -it-~, p
»»a» . (a .. .a„)=»n(a»—

ag a-g
N N'

+ in@';+ lna'; „
~=j

Similarly, by pivotal condensa. tion on the (1 -N',
-N') element

DN', N(a-N' ' ' ' aN)

m $
to~~~p tp, -~t-~, oa»»)»)=(» a) a (A9)

If one now lets N, N'- ~ the quantities I/a', pass
over into the quantities 5; satisfying (22) and (23)
[which are equivalent to (AS)], and (AB) becomes
(21).

Again from the definition (18) and the rule for
differentiating determinants one may obtain (45).
Equation (48) is obtained by simply stopping the
repeated pivotal condensations which led to (A7)
one step (on each side) before the last step, and
then letting N, N' -~: X in (48) represents the
sums in (A7) but now taken from i = 2 to i =N or
N', so X does not depend upon tp&. Equation (50)
is obtained by introducing an additional element
x into D„, „at the (2, 0) position, so that differen-
tiation with respect to x will generate g2p, and then
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stopping the pivots, l condensations at the point
which gave (48).

These manipulations are made possible by the
fact that D„. & is a tridiagonal matrix, which in
turn is a consequence of the assumption that only
nearest-neighbor transfer integrals need be con-
sidered. If one included next-nearest-neighbor

transfer integrals, one would obtain instead a de-
terminant with five nonvanishing diagonals. One
could reduce its size in the same way by pivotal
condensation, but would now obtain recurrence
relations for the new elements of the middle three
diagonals, and consequently much more compli-
cated formulas.
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