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The properties of the one-electron density matrix of one-dimensional potential arrays have been studied

using the transfer-matrix formalism. The potential arrays are constructed from square-well potentials with

only the lowest even and odd states bound in order to facilitate an extension of the results to three-

dimensional sp" bonded systems. Infinite ordered arrays with filled bands (semiconductors, insulators) and

with partially filled bands (metals), finite arrays and disordered arrays with structural, compositional and
localized disorder are considered. It is shown that the one-electron density matrix, its spatial average

(autocorrelation function or Fourier-transformed Compton profile), and the density of states converge rapidly
with the cluster size irrespective of the boundary conditions or surface potentials used. The influence of
disorder on the density matrix is investigateQ in detail for the discussion of real amorphous materials. It is

concluded that localized disorder (point defects such as vacancies and iterstitials) has a more pronounced

effect on the density matrix than -extended disorder (structural or compositional). In addition, the relation

between the autocorrelation function and the microstructure of the system is discussed and correlated with

experimental findings. Finally, several new aspects for the interpretation of experimental autocorrelation
functions are considered.

I. INTRODUCTION

Recently, it has been suggested to use Compton
spectroscopy as a probe for the electronic states
and the microstructure of molecules and solids. ' '
In Compton spectroscopy one measures the dif-.
ferential cross section for inelastic x or y rays.
In the impulse approximation"' this cross sec-
tion is related to the ground-state momentum den-
sity N(p) of the electron system. The one-dimen-
sional Fourier transform of the Compton profile'
(FCP) is given by

p (t) = f ch ' p, (r, r + t) = ]( dp' N(p)e ' ',
which shows the direct relation to the off-diagonal
terms of the one-electron density matrix I'i In
the quantity B(t), also called the autocorreiation
function of the one-electron density matrix, core-
state contributions are important only for very
small values of t and may thus be separated from
the valence-state contributions. Hence |ompton
scattering provides direct information on the
properties of the valence-electron wave functions
of molecules and solids.

Experimentally a large number of systems have

been investigated r'anging from the relatively sim-
ple atomic and molecular systems' to various
metals, semiconductors, and insulators in ordered
and disordered phases. ""'" For atoms and
small molecules the Compton profiles may be
understood quantitatively in terms of the Har-
tree-Fock approach. '" For large molecules and
solids quantitative calculations, in the sense of,
e.g. , the local-density-dependent self-consistent
formalism, are also possible but seem less satis-
factory. The reasons for this are twofold: first,
the application of these methods is extremely
complicated, and second, the reproduction of
the experimental results does not necessarily
improve the physical understanding of the sys-
tem because of the complicated computational
procedures involved. The situation is somewhat
similar as if one would attempt the interpretation
of the optical spectra of idal crystals directly
from the band structure without using selection
rules, critical-point analysis, and van Hove sing-
ularities. It seems imperative to develop sim-
ilar procedures for the analysis of wave-funetion-
dependent quantities such as the Compton profile
or the autocorrelation function. A first insight
along these lines has already been found for peri-
odic solids. For insulators or semiconductors it
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follows from Bloch's theorem and full bands' that

8 = (t= R„40)=0

for lattice translations H„. Any further step re-
quires basically complete knowledge of the one-
electron density matrix. Therefore, one would
like to know how the microstructure of a system
in general influences the density matrix and, es-
pecially, what the role of order, structural or
compositional disorder, and defects is. This
would then, on the other hand, lead to an answer
to the question on the nature of the information,
which may be deduced from experimentally de-
termined autocorrelation functions.

For periodic solids one may, of course, analyze
the autocorrelation function by using the standard
methods of band theory i4-i A more sophisticated
analysis has been performed for the chalcogenide
semiconductor selenium" based on the local-den-
sity-dependent self-consistent orthogonalized
plane-wave approach. The results are in excel-
lent agreement with experiment and show that for
filled bands also other zeros of B(t) may be in-
terpreted as atom separations, ' a property which
by no means is trivial from the definition in Eq.
(I). It has thus been shown that, for ordered semi-
conductors or insulators the autocorrelation func-
tion contains information on the ground state to
be read off directly.

For more complicated systems, such as dis-
ordered or large molecules, the situation is quite
different. At present, one is not in a position to
calculate autocorrelation functions with an ac-
curacy comparable to that of the crystalline sys-
tems. Therefore, one has to resort to simple
models and, in addition, to rather severe mathe-
matical approximations. Two of the present
authors have performed a first study along these
lines using a generalized Koster-Slater impurity
potential as the basic scattering potential. " In
this work the amorphous phase was modeled by
the random distribution of atomic scatterers and
then compared with several crystalline phases.
There is, however, an intrinsic problem as-
sociated with the Koster-Slater potential: the
autocorrelation function of an isolated bound state
of this potential is positive definite. As a result
no direct extension of the results to, e.g. , sp"
bonded systems is possible.

In this paper we present an analysis of atomic
scatterers with nonpositive definite autocorrelation
functions. However, in order to be able to study
various kinds of disorder, defects, interstitials,
and vacancies, the dimension of the system must
be limited to one. This is not a serious restric-
tion, , since the autocorreI. ation function is contin-

uous and does not contain any dimension-depen-
dent singularities, as may be demonstrated easily,
e.g. , by considering the free-electron gas in one to
three dimensions. We want to stress in this con-
text that although a number of studies on the en-
ergy spectra and density of states for a variety
of one-dimensional systems have been performed, "
wave-function-dependent properties have rarely
been studied.

The plan of the present paper is as follows. In
Sec. II the one-dimensional model system is pre-
sented. Section III contains a brief description
of the mathematical methods used and the accuracy
achieved. In.Sec. IV the results for ordered and
disordered systems are given. The paper ends
with a conclusion including the extensions of the
results of the model study to real three-dimen-
sional systems.

II. MODEL

When looking for suitable scattering potentials
we must have in mind that for sp" bonded systems
the contributions of s- and p-type states to the
autocorrelation function are positive and non-
positive definite, respectively. A simple one-
dimentional potential, for which the bound states
fulfill this requirement, is the square well. Hence
we take it as the atomic scattering potential in
our model. The total potential energy is written

V(x)=g U, (x-x,).

The sytems is then characterized by the set of
coordinates fx,}and the corresponding square
wells (U,}. Each well is completely defined by
its width a, and depth V;. However, in order to
have at least one odd bound state for the isolated
well, the relation V,a', &-,'m' must be fulfilled. As
boundary conditions we assume either periodic
boundary conditions or free decay conditions at
the ends of the chain. In addition, for free states
a surface potential V, at a distance x, large com-

vs

x ~

t

+
xs

FIG. 1. Square-we11 potential array defined by the
set of well parameters (x;,a;, V;) and the surface .par-
ameters (x~, V~} .
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FIG. 2. Spatially averaged one-electron density mat-
rix (autocorrelation function) &~(t), &2(t), and B3(t)
for a system of one, two, or three wells (curves 1, 2,
and 3, respectively) in atomic units. For each well a
=2 a.u. and V=3.6 a.u. The nearest-neighbor separa-
tion measured from the well wa11s is 5 = 0.5 a.u. The
norm is in all cases B(0)= 2 a.u.

III. METHOD

The one-particle Schrodinger equation associ-
ated with a piecewise constant one-dimensional
potential is usually solved by applying the trans-
fer matrix formalism. " Consider a discontinuity
joining two intervals of constant potential i and
i+1 on the left- and right-hand side of the discon-
tinuity, respectively. Then the continuity con-
ditions for both the wave function and its deriva-
tive may be written

T,X,- —T;„X,,~ . (4)

Here the 2 x 2 transfer matrices T and 2 x 1 so-

pared to the dimensions of the system is intro-
duced (Fig. 1). Of course, the actual choice of the
boundary conditions does not affect the bulk prop-
erties of our model in the thermodynamic limit
when the size of the system becomes sufficiently
large.

As well for simplicity as to facilitate an extra-
polation to sp" bonded systems, we restrict the
parameters of the isolated square well such that
only the lowest even and odd states are bound.
As our standard well we take a= 2 a.u. , and
V= 3.6 a.u. The associated autocorrelation func-
tion B,(t), normalized such that B,(0)=2, is shown
in Fig. 2. B,(t) becomes negative at distances
larger than t, =1.6 a.u. , which is comparable with
the well width a, because the localization length
of the odd state is greater than that of the even
state.

lution vectors Xdepend on the energy of the state.
Working through all discontinuities and applying
the chosen boundary conditions at each end, one
obtains a linear homogeneous system of equations
for the amplitudes, i.e., the components of the
vectors X. For example, for a periodic system
the associated matrix A(E) is cyclic with 2x 2

blocks on the main diagonal, the lower subdiagon-
al, and in the upper right-hand corner. The di-
mension of the determinant of A(E), which fixes
the energies E„is then two times the number of
discontinuities in the unit cell. Since, however,
the inverses of the transfer matrices T exist, the
determinant of A(E) reduces to a 2 x 2 nonlinear
determinant for the energies. Having solved the
reduced determinant for the eigenvalues, one
generates the solution vectors from the chain
of equations (4). Since ground-state properties
are strived at, care must be exercised in the case
of degeneracies in order to find all state vectors.

As the procedure outlined above contains no
mathematical approximation, the results are
exact. Using only relative coordinates in the pro-
ducts of transfer matrices and double precision
arithmetic with 18 significant decimal digits, high
accuracy is achievable in practice too. The zeros
of the reduced determinant were found by using
Mueller's rapidly convergent iteration scheme of
successive bisection and parabolic interpolation. "
The autocorrelation function is calculated from
the set of occupied eigenstates g, according to

d(t)=Q f dx(xd) x(xd+t)

by performing the integral over x analytically.
For infinite periodic systems the resulting in-
tegral over the wave vector k is evaluated using
the six-point Qauss-I egendre quadrature for
each interval of k. With a 36-point sampling the
relative convergence for B(t) associated with this
k integration is typically less than 10 ' even for
distances as large as three times the width of the
individual scatterer a, . The overall numerical
accuracy is best described by the following: using
for a periodic system with three wells per unit
cell a relative energy threshold of 10 "and a
36-'point k sampling, the relative error B(R,)j
B(0) for the autocorrelation function at the first
Bloch zero R, [Eq. (2)] is of the order of 10 ".

IV. RESULTS AND DISCUSSION

A. Molecular systems

The effect of interatomic interactions on the
autocorrelation function ean best be demonstrated
by comparing the results B,(t), B,(t), and B,(t) for
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=m~t~+ m2t2 .

f, denotes the ordered sequence of zeros of B(t),
b, is the neighbor separation in the system, n,
is the associated number of neighbor separations
of type b&, and m, and m, denote appropriate in-
tegral numbers. Equation (7) is the most approx-
imate of the above equations.

The translation relation of Eq. (2) is no longer
valid for periodic structures with incompletely
filled bands. There are essentially two ways of
introducing partly filled bands into the infinite
arrays considered. The first is simply to vary
the occupation (rigid-band metal) and the second
is to increase the interactions between the bound
states until part of them are pushed into the con-
tinuum (interaction metal). The results for both
metallic systems based on a unit cell with three
wells are displayed in Fig. 5. In both cases about
one third of the states in the uppermost band are
unoccupied. Comparing Figs. 3 and 5, one real-
izes that the effect of the partial occupation is
small for correlation lengths below the dimen-
sions of a single well, but that for larger values
of I, bot;h the amplitudes and phases are essentially
influenced. In addition, it is evident that the cor-
relations. in the metallic systems on the average are

0.2—

larger than for completely filled cases. For the
one-dimensional free-electron gas the autocor-
relation function is

B„(f)=B(0)sin(p t)/p f,
where the Fermi momentum P~ only depends on
the density of electrons. The zeros of B(t) for
the interaction metal, contrary to those of the
rigid-band metal, are equidistant as for the free-
electron gas. However, only by using an effective
Fermi momentum, corresponding to a 10% higher
density, in combination with Eq. (10) a fit for the
zeros may be obtained, but even then the ampli-
tudes deviate markedly. Therefore, it is evident
that the interatomic interactions reduc'e the elec-
tron-electron correlations.

C. Finite-ordered systems

Consider now finite ordered arrays of the
square-well scatterers. The key issue is to find
out to what extent infinite systems may be mod-
eled with finite clusters, if density-matrix-de-
pendent quantities, such as the autocorrelation
function, are of interest. There also remains
the question of the choice of the boundary con-
ditions and surface potentials. Examples of auto-
correlation functions of finite ordered systems are
given in Figs. 6 and 7 for 21-well arrays corres-
ponding to the infinite periodic systems of Fig.
3. In Figs. 6 and 7 the free decay and the peri-
odic boundary conditions, respectively, have been
used. A more exact comparison of the key quan-
tities associated with these finite and infinite sys-

p

0

—O.a
0

j

2

t (a.u. j

—0.2—

FIG. 5. Autoeorrelation function of infinite ordered
arrays with three wells per unit cell and partially
filled bands in atomic units. (a) Rigid-band metal:
parameters a = 2 a.u. , &=3.6 a.u. , b = 0.5 a.u. , d
=1.0 a.u. , and c =8 a.u. , as in Fig. 3, but Fermi mo-
mentum at kz= 3(7r/c~), i.e., uppermost band filled up
to 3 of total band. Norm is B(0) = 3 (17/3) a.u. (b }
Interaction metal: parameters a =2 a.u. , V= 3.6 a.u. ,
b=0.25 a.u. , d=0.25 a.u. , and cp=7 a.u. k'~ is at 3(+/
c&) and norm B(0)= ~(17/3) a.u.

-pl.
0

t (a.u. )

FIG. 6. Autocorrelation function for finite ordered
arrays of 21 wells with one (curve 1) or three (curve 3)
well, s per unit cell. Free decay boundary conditions
have been used and the parameters of the unit cells are
the same as those in Fig, 3. Norm B(0)=2 a.u.



19 ELECTRON STATES, ONE-ELECTRON DENSITY MATRIQ AND. . .

TABLE I. Convergence of autocorrelation function B(t) as a function of t and the cluster
size. The unit cell contains one well with the parameters a =2 a.u. and V=3.6 a.u. The near-
est-neighbor separation is b =0.5 a.u. The column labels (N, FD) or (N, PB) define the number
of unit cells N and the boundary conditions FD (free decay) and PB (periodic boundary).

t(a.u. ) (5, FD) (12, FD)
B(t) (a.u. )

(21, FD) (38, FD) (21, PB)

1.8
2.5
3;0
5.0
7.5

-0.3213
-0.0547

0.1159
-0.0231
-0.0109

-0.3532
-0.0229

0.1515
-0.0098
-0.0048

-0.3629
-0.0131

0.1624
-0.0056
-0.0028

-0.3687
-0.0072

0.1688
-0.0031
-0.0015

-0.3756
0.0000
0.1768
0.0000
0.0000

-0.3759
0.0000
0.1768
0.0000
0.0000

tems as well data on the convergence as a function
of the size of the finite cluster is given in Table

Comparing Figs. 7 and 3, one realizes that
the 21-well cluster gives an almost complete
quantitative convergence with respect to the in-
finite counterpart, if appropriate periodic bound-
ary conditions are used for the cluster. The in-
formation from Fig. 6 is that the influence of the
boundary conditions on the finite cluster remains
small for correlation lengths t much smaller than
the cluster size, just as one expects. The dif-
ference in the autocorrelation function induced
by the boundary conditions for equal t is, how-
ever, somewhat larger than the convergence er-
ror resulting from the cluster size.

A similar good convergence, as for the auto-
correlation function, can also be observed in the
behavior of the density matrix itself (Table lI)

0.2—

and the density of states. For the latter the ef-
fects of the infinite resolution width has to be
taken into account for all systems in a similar
manner (Fig. 8). For example, the 21-well
ordered array with three wells per unit cell the
variance of the density of states with respect
to the crystalline counterpart is 0.5/g. " The ex-
tremely good convergence properties of the en-
ergy spectrum can even better be demonstrated
by considering the separation ~ between two
eigenvalues associated with the finite system,
which correspond to E(k) and E(-k) in the infinite
case and which therefore tend to degenerate in
the infinite limit. For bands associated with the
bound states and periodic boundary conditions, one
has maximally ~=0.005 E~, where E~ denotes
the width of the corresponding band.

Interesting effects associated with the averag-
ing property of the autocorrelation integral are
found for compound arrays (alloys). The results
for two ordered alloys, which differ either in
well depth or well width, are presented in Fig. 9.
In both cases the unit cell comprises two wells
with different characteristics but with equal near-

0-

—0.2—

gABLE II. Convergence of one-electron density matrix
1 ~(x,x+t) as a function of t and the cluster size. The
unit cell contains one well with the parameters g = 2 a.u.
and V =3.6 a.u. The nearest-neighbor separation is b
=0.5 a.u. The origin of the coordinate system x is at the
inversion center of the arrays. The other columns are
labeled as in Table I .

-0.4
x,x+t
(a.u. )

I'& (a.u. )

(1, FD) (9, FD) (15, FD) (21, FD)

t (a.u. )

FIG. 7. Autocorrelation function. for finite ordered
arrays of 21 wells with one (curve 1) or three (curve 3)
wells per unit ce11. Periodic boundary conditions have
been used and the parameters e.re the same a8'those in
Fig. 6. Norm B (0) =2 a.u.

0, 0
0, 0.2
0, 1.0
0, 3.0

0, 10.0

0.708 602
0.690 444
0.299 554

~ ~ ~

0.765 868
0.740 891
0.251 337
0.067 702

-0.005 497

0.766 095
0.741 086
0,251 129
0.067 973

-0.004 147

0.766 101
0.741 091
0.251 124
0.067 980

-0.004 113
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FIG. 8. Density of states n(E) in atomic units for a
resolution width of 0.05 a.u. In all cases the structure
is based on the same unit cell with three wells and with
the parameters used in Fig. 3: a =2 a.u. , V= 3.6 a.u. ,
b=0.5 a.u. , d=1.0 a.u. , and c=8 a.u. , (a) infinite order-
ed array of unit cells with periodic boundary conditions,
(b) finite ordered array with a total of 21 wells and
periodic boundary conditions, and (c) structurally dis-
ordered array with a random modulation of 50$ of the
parameters b and d and free-decay boundary conditions.

est-neighbor and next-nearest-neighbor separa-
tions measured from the well walls. A compari-
son with the corresponding elemental systems in
Fig. 6 shows that the autocorrelation integral,

—0.4
0

I

2

t (a.u. )

FIG. 10. Autocorrelation function for finite ordered
arrays with partially filled bands. In all cases there
is one well per unit cell and a total of 21 wells in the
array. Free-decay boundary conditions have been used
for bound states. (a) Higid-band metal: parameters a
=2 a.u. , V=3.6 a.u. , b =0.5 a.u. and Fermi level such
that five states of all 42 are unoccupied. Norm is B(0)
=37/21. (b) Interaction metal: parameters a =2 a.u. ,
V= 3.6 a.u. , b = 0.115 a.u. and states 1—37 of 42 bound.
Norm is B(0)=37/21 a.u. (c) Metal with free states:
parameters a =2 a.u. , V=2.9 a.u. , b =0.5 a.u. , surface
potential V~=10 a.u. , and surface positions x~= 50 a.u.
symmetrically from center of system for the free
states. States 1—37 are bound and five additional ones
free. Norm is B(0)=2 a.u.

0.2— r. yb

—0.2—

—0.4
0

l

2

t (a.u. )

FIG. 9. Autocorrelation function of finite ordered
two-component aQoys with free-decay boundary condi-.
tions and two wells per unit cell. Length of chain is
11 unit cells; (a) parameters a~=2 a.u. , a2=2 a.u. , V~
=3.8 a.u. , V2=3.4 a.u. Separation of wells is b =0.5 a.u.
from well walls and separation from unit cell boun-
daries I = 0.25 a.u measured from the well walls; (b)
parameters a&=1.65 a.u. a2=2.35 a.u. , V&=3.6 a.u,
V2= 3.6 a.u. Separations defined as for ease (a): b
=0.5 a.u and I =0.25 a.u. Lattice translation c=5 a.u.
and norm B(0)= 2 a.u. in both cases.

indeed, averages over the unit cell of the alloy
in a straightforward geometrical sense defined by
the corresponding unit cell potentials. The zeros
of B(t) for compound systems are also given by
Egs. (7)-(9).

Partial occupation of the isolated well derived
states for the finite ordered systems has qual-
itatively a similar effect on the autocorrelation
function as for infinite ordered arrays. In Fig.
10 the results for two finite metallic systems
corresponding to the infinite insulating arrays
of Fig. 6 are given. Figure 10 also shows a true
metallic system with the number of the occupied
states equal to the number of the original states
of the isolated scatterers. For the free states
the surface potential introduces the boundary con-
ditions. It is interesting to note that the autocor-
relation function for the latter states is of the
slowly varying type, which for small values of
t can be considered as an additive positive con-
stant. This effect can easily be understood by
considering the autocorrelation function of the
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first few states of a particle in a box bounded by
an infinite surface potential (see Fig. 1). One
obtains for the even and odd states, respectively,

B'„(t)= cos[(n--,')vt/~x, -x,'~],
B'„(t)= cos(nvrt/tx, —x,'~),

(11)

(12)

both of which are constants for t/~x, —x,'
~

«1.
D. Finite disordered systems

Finite disordered systems with any kind of dis-
order, whether structural, compositional, or in-
duced by defects, vacancies, or interstitials,
may be studied using the model potentials of Eq.
(8}. The comparison of the results for these sys-
tems with the corresponding. properties of ordered
counterparts facilitates conclusions on the in-
fluence of the various types of disorder on the
one-electron density matrix of real three-di-
mensional materials. The restriction to finite
clusters has no effect on these conclusio*ns, since
the cluster convergence was found to be almost
complete.

Consider first pure structural or compositional
disorder simulated by a random modulation of
either the neighbor separations or the well .

depths. Results for arrays based on one type of
well are given in Tables III and IV. Similar re-
sults may also be obtained for compound systems
even with partially filled bands. The modulation
percentages for the uniform symmetrical distri-
bution have been chosen such that no excessive
formation of localized states occurs, since the

B21;20 B2i;20
1 i

+B2i.20 +B2i.50 (1-21) (22-42)
(a.u. ) (10 4 a.u. ) (10 4 a.u. ) (10 4 a.u. ) (10 .

4 a.u. )

0.5
1.0
1.5
2.5
3.0
5.0
8.0

-8.7
-24.8
-15.3

31.8
10.4
6.8

-1.0

-38.9
-105.3
-44.3
126.4

3.0
45.8
-8.0

1.5
0.6
7 ~ 1

-24.3
-20.0

6.2
-1.3

-10.1
-25.3
-8.2
56.0
30.4
0.6
0.2

TABLE III. Influence of structural disorder on the
autocorrelation function B(t). As reference the finite
ordered array of 21 wells with a unit cell of one well is
used. The parameters are a=2 a.u. , V=3.6 a.u. , and b
=0.5 a.u. The columns denoted by &Bz.z give the differ-
ence of the autocorrelation function of the structurally
disordered array with ~% modulation of b and the order-
ed array in units 10 4 a.u. In the two right-most columns
the contributions of the lower (states 1-21) and upper
(states 22-42) band groups, ,respectively, are listed.

TABLE IV. Influence of compositional disorder on the
autocorrelation function B(t). The well parameter V has
been modulated by. MQ. For additional information see
caption of Table III.

&B2i-s &B2i.s1 1

t &B2i.5 &B2i.s (1-21) (22-42)
(a.u. ) (10 4 a.u. ) (10 4 a.u. ) (10 4 a.u. ) (10 4 a.u. )

0.5
1.0
1.5
2.5
3.0
5.0
8.0

6.5.
14.9
10.9
-4.6

0.6
-3.4
-0.6

10.9
25.8
19.2
-7.5

2.7
-6.1

0.7

3.6
12.9
20.1
1.6

-14.3
-1.6
-4.1

7.3
12.9
-0.9
-9.1
17.0

4.7

applied transfer-matrix approach begins to break
down for a predefined accuracy of the floating
point arithmetics if a certain level of localiza-
tion is exceeded. Surprisingly enough, even a
large amount of a structural or compositional
disorder, which has profound effects on the den-
sity of states (Fig. 8), has a vanishingly small
influence on the autocorrelation function. A more
detailed analysis shows that although each state
changes even by orders of magnitude, the net
effect on B(t) cancels approximately both between
states of a band group and between band groups.
In addition, configuration averaging even more
reinforces the cancellation effect. This behavior
can be understood, if one assumes that the occu-
pied eigenstates of the disordered systems may
obtained via an unitary transformation from the
corresponding eigenstates of the ordered system.
There is, however, no obvious justification for
an assumption like this. As to the present case,
the disorder is introduced in such a manner that
no mixing between the occupied and virtual states
occurs. Consequently, one can justify the above
assumption with the aid of perturbation theory.

From the above discussion, it also follows that
vacancies and interstitials should have a more
pronounced effect on the autocorrelation function.
This is precisely what happens, as may be seen
from Fig. 11, where the results for two concen-
trations, 5% and 10%%u~, of vacancies or interstitials
are given. Two interesting features may be
learned from these results. First, as expected,
the effect of localized disorder on B(t) scales
roughly with concentration, and second, the
influence is maximum at-correlation lengths t,
where the autocorrelation function of the ordered
counterpart becomes zero. The latter behavior
follows from the fact that the zeros of B(t}are
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FIG. 11. Difference of autocorrelation functions of
finite arrays with either vacancies (a) or interstitials
(b) and the corresponding ordered arrays. The unit
cell contains one well and the length of the array is
21 wells. Parameters for the ordered array are a
=2 a.u. , V'= 3.6 a.u. , and b = 0.5 a.u. (a) One vacancy of
width vv=2 au. at center of system (curve 5), two vac-
ancies of width zv =1.5 a.u. symmetrically in the array
(curve denoted by 10). (b) One interstitial with para-
meters a; = 2.4 a.u. and V; = 3.2 a.u. has replaced well
13 at center of system (curve denoted by 5), two inter-
stitials with parameters a&=2 a.u. , and V;=3.2 a.u.
have replaced wells 6 and 13 symmetrically from cen-
ter of system (curve denoted by 10). Number of bound
states is in all cases 42 and norm B(0)= 2 a.u.

associated with the geometrical structure of the
underlying system.

V. CONCLUSIONS

The results of our model study can be summar-
ized as follows.

(i) The density of states, the one-electron den-
sity matrix, and the autocorrelation function con-
verge with the system size such that a reasonable
convergence is reached when the size of the sys-
tem exceeds the maximum correlation length of
interest by a factor of 2, as may be read off from
Figs. 2, 3, 6, and 7 and Tables I and II. Con-
sequently, these quantities are mainly determined
by the microstructure within a relatively small
part of the total system.

(ii) For molecules the number of zeros of B(t)
is related to the number of zeros of the atomic
autocorrelation function and the number of atoms
per molecule. Especially in the present one-
dimensional case, we find the relation given in
Eg. (8). The relation was also found to be valid

for the unit cell of infinite ordered systems with
filled bands. Similar relations exist also for real
three-dimensional materials with completely
filled bands. '

(iii) The zeros of the autocorrelation function
of an ordered elemental insulator or semiconduc-
tor are related to characteristic separations,
such as the atomic separations, of the system
[see Egs. (7)-(9)]. This has also been observed
for real materials both experimentally and theo-
retically. ' For ordered systems with partially
filled bands (metallic systems), the zeros are re-
lated to the Fermi momentum (Fig. 5). An experi-
mental verification has been given earlier. "

(iv) For metallic systems the oscillations of the
, autocorrelation function are on the average strong-

er than for the corresponding insulators, indicat-
ing an increase of the electron-electron correla-
tion (Fig. 5).

(v) The autocorrelation function of a compound
insulator or semiconductor performs an arithmetic
average over both the atomic separations [Eqs.
(7)-(9)] and the atomic potentials, as is evident
from the comparison of Figs. 3 and 9.

(vi) The influence of pure structural or compo-
sitional disorder on the autocorrelation function
of insulators is negligible (Tables III and IV). This
results from a cancellation effect between the
occupied states, clearly in contrast with the be-
havior of the density of states, which responds
quite sensitively to both types of disorder (Fig. 8).

(vii) Defects and inter stitials in moderate concen-
trations affect the autocorrelation function most
at correlation lengths corresponding to the zeros
of B(t) (Fig. 11). These effects scale roughly with
concentration. A low concentration of nearly free
states introduces a slowly varying background to
the autocorrelation function (Fig. 10).

The state of art in experimental brompton spec-
troscopy may be characterized by the following
two numbers, namely, a typical overall momen-
tum resolution (FWHM) of 0.3-0.5 a.u. , and a
statistical accuracy of the order of 1/o at the cen-
ter of the brompton. line. ' Via the convolution
theorem the resolution function appears for the
autocorrelation function as a multiplicative fac-
tor, which, e.g. , for a Gaussian resolution func-
tion has a half width of 9.2-5.5 a.u. , respectively,
on the f axis. Since a statistical resolution of 10%%ug,

1%, and 0.1/o has a 5(P%%d effect on the autocorrela-
tion function of an isolated well already at 4.5,
8.0, and 9.5 a.u. , respectively, it must be con-
cluded that at present reliable experimental data
for B(f) may be obtained at most up to values of
t of the order of four times the width of the near-
est-neighbor separation. The consequence of the
above conclusions for the interpretation of the
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experimental autocorrelation functions derived
from inelastic scattering spectra of molecules
and solids are then obvious.

First, it seems relatively easy to reproduce
experimentally determined autocorrelation func-
tions of large molecules and solids using the clus-
ter approach, because of the good convergence
properties with respect to the size of the cluster.
This implies that the autocorrelation function may
be used for testing various models for the micro-
structure of large molecules or solids. Second,
the zeros of the autocorrelation function offer a
relative straightforward procedure for the de-
termination of the Fermi surface of metals" and
of characteristic separations in semiconductors
or insulators, the interpretation of which is not
yet completely resolved. And, finally, it seems
promising to use the autocorrelation function as a
probe for localized defects such as vacancies,
interstitials, donors, and acceptors, etc. , in
ordered or disordered host materials. ' Qne might,
for example, determine the concentration of these
defects as well as the nature of the involved elec-
tronic states. First attempts along these lines
have already been attempted for- hydrogen in
metals' ' and for hydrogenated amorphous sili-

con. '4 In the latter case the hydrogen concentra-
tion has been determined from the comparison
of the Compton profiles of hydrogenated amor-
phous silicon and polycrystalline silicon, and
reasonable agreement with previous estimates
has been obtained.
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