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Multiple-scattering theory of intensities in inelastic-electron-tunneling spectroscopy
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A short-range multiple-scattering theory of the observed intensities in inelastic-electron-tunneling
spectroscopy {IETS) is developed and compared with previous long-range theories. The scattering molecular
potential is calculated using the Xa approximation to the exchange-correlation potential and the Bardeen
transfer-Hamiltonian approach is taken to calculate inelastic-tunneling cross sections. Predicted short-range
cross sections are strongly energy dependent and could be quite large for tunneling electrons at a molecular
bound-state energy, However, comparison of the predictions of the two theories for higher-harmonic
amplitudes and opposite-bias-voltage asymmetries indicates that the long-range interactions dominate in
IETS.

Inelastic- electron-tunneling spectroscopy
(IETS)' ' is a sensitive technique for measuring
the vibrational spectra of molecules adsorbed on

the oxide surface of metal-oxide-metal tunneling
junctions. In this technique, peaks in the second
derivative of the current-voltage characteristics
(d'I/d V' vs V) of these junctions appear at vol-
tages V~ given by the quantum relation eV; =Sv;,
where &; are the vibrational frequencies of the
absorbed molecules. These peaks occur because
of small increases in the conductance of the junc-
tion due to the presence of additional tunneling
channels when the bias voltage exceeds the inelas-
tic threshold. When e V&e V& =Su&, electrons can
tunnel inelastically, losing energy to a vibrational
excitation of the molecule, and still find empty
final states in the second electrode. The positions
(in energy) of the peaks give information about the
structure and bonding of the molecules on the oxide
surface. Recently, there has been a great deal of
interest in the amplitudes of the peaks, which may,
for example, give information about the orienta-
tion of the molecules on the surface.

Previous treatments of intensities in IETS"
have used simple model potentials that have been
essentially long range in nature. These treatments
assumed that the primary interaction of the tun-
neling electron is with the intrinsic or induced di-
pole moments of the vibrating molecule. One
major objection to these treatments is that they
ignore the contribution of the short-range part of
the molecular potential to the inelastic-tunneling
process. We present here for the first time cal-
culations of the short-range contributions to IETS
intensities. Comparisons of the predictions of
our short-range model and previous long-range
models with experimental measurements of (a) re-
lative intensities for o'pposite-bias polarities and

(b) higher harmonic intensities indicate that the
long-range interactions dominate in inelastic
electron tunneling. This conclusion clears the
way for a more confident detailed comparison of
the long-range theory with experiment.

The calculations to be described in this paper
employed the multiple-scattering Xa approach, "
which has enjoyed some success. in applications in
the area of surface spectroscopies. ' In this for-
mulation, the molecular potential for fixed nuclear
positions R& is given by

V„+r, R &) = VH(r) + V„(r,Rz) + V, (r) . (1)

The static electron-electron interaction or Hartree
term is given by

d'r e'n(r )
Ir —r'

I

where n (r ) is the electron density at position r .
The nuclear-attraction term is given by

z 2

V„(r, R„)= p, -
lRx

where Z& is the screened nuclear. charge. The ex-
change-correlation term is approximated by

V„(r) = -3o.e'[3n(r)/8v]' ', (4)

where n is a parameter of order 0.7. In the muf-
fin-tin approximation the molecular potential is
spherically averaged within spheres centered on
the individual atoms in the molecule, and outside
an outer sphere surrounding the molecule. The
intersphere region is volume averaged. An initial
guess is made for the molecular potential, the
wave functions are found by numerical. integration
and matching wave functions at the muffin-tin
boundaries, and the potential is recalculated,
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iterating to convergence. Finally, the molecular
potential found using this procedure is exponential-
ly attentugted at large distances and replaced with
a polarizability potential (as discussed in Daven-
port, Ho, and Schrieffer ) to fit gas-phase inelas-
tic- electron- scattering data better.

The molecular potential found in this way was
placed a distance a from one metal electrode in a
metal-insulator-metal sandwich geometry with
insulator thickness I [Fig. 1(a)]. Since the Xe po-
tential falls off rapidl. y with distance, we placed a
sphere of radius 8 on the molecule, within which
the potential was made up of both the barrier oxide
potential and the Xn molecular potential. Outside
the sphere the total potential was given by the
oxide potential. The actual value of R drops out of
the calcul. ations, so one need only assume that
there is some & for which the oxide potential. dom-
inates (for CO, V„=—0.064 eV at R = 2 A, much
smaller than the oxide potential of -2 eV). It
seems reasonable to assume that the one electron
potential in the vicinity of the molecul. e is simply
the sum of the gas-phase molecular potential and
the barrier potential. . In the language of the muf-
fin-tin approximation this means that the position
of the muffin-tin constant with respect to the top
of the barrier for the oxide-embedded molecule
is equal to its position with respect to the vacuum
level for the gas-phase molecule. Once the bar-
rier height is chosen, this assumption determines

the energy of the tunneling electron with respect
to the mean molecular potential. Rather than be
constrained by this assumption we have chosen to
calculate the inelastic current for a range of pos-
sible tunneling energies measured with respect to
the mean molecu1ar potential. In this way we are
able to discuss both resonant and nonresonant tun-
neling; we find, as discussed below, that. the char-
acter of the inelastic-tunneling current depends
critically upon the value of this energy.

The inelastic-tunneling matrix element is calcu-
lated by combining the Born-Oppenheimer princi-
ple with standard multiple scattering and transfer
Hamiltonian techniques. Much of the formalism is
similar to that employed by Pendry" in his layer
KKR techniques and by Davenport, Ho, and
Schrieffer' in their study of gas-phase inelastic
scattering. It is easily shown that, in the Born-
Oppenheimer approximation, the amplitude for in-
elastic tunneling is proportional to the matrix ele-
ment of the elastic scattering amplitude (as a func-

I

tion of the molecular geometry) between the ap-
propriate vibrational wave functions.

The tunneling matrix element is calculated for a
given internuclear spacing by matching wave func-
tions across all boundaries. The wave functions
in region I (see Fig. 1) can be expanded in plane-
wave states as

P, = f k„[e(k„)Aexp(ek„r„)expik, e

+&(k()) exp(ik„r((}exp(-ik. z)], (5)
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with a similar expression for region II. The wave
function just inside the oxide region (but outside
the molecular sphere) at z= z, is expanded in de-
caying plane waves:

@III e
Z z&)

(6)

(b)

Zp

where

K'= k, x+kpy aigz, Q = t(2m/5')(U- e —k)()]'~',

(7)

with a similar expression at s =s, . The wave func-
tion on the sphere boundary (at & =&) can be ex-
panded in spherical harmonics:

F
/&////

FIG. l. Assumed tunneling junction geometry (a) in
cross section and (b) in energy as a function of s.

Ax~ kxe (k))) rx(r) eg xxek'ee (kp)r (r)),

(6)

where (using Johnson's" notation)
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k = [(2m/fP)(U —e)]' ', k'g'(kR) = —i "kg'(kR), we find that

k'„'(kR) are spherical hankel functions, Fq (&)
= Y, (x) are spherical harmonics, and the sums
A. and L are taken over all l and m indices.

Matching boundary conditions at )r j=R, z =z„
and z = s, are most easily accomplished by finding
the general expression for the wave function in
region III using Green's theorem:

~l I

(
~~BG(r, r) ~ 80(r)

(10)

The Green's-function expansion in spherical har-
monics is

6 (r, r ) = ik g-Yz (r) YI (r )j, (kr&)ki, 'i (kr)),
L

while in plane-wave expansion one obtains

kq (r-r')~I e

)
(12)

4'err(r) =Q Ax(& '~~i -& 'S~i)k'i'(k&)Fc(&)
X. ,L

+ d'kti ki) e '+ski( ~

(13)

By comparing this expression with the expression
for @qqq at

~
r (=R [Eq. (8)], and using the expansion

e' = 4s Q i' YI, (r) Y~ (K )j, (kr ),
L

we find that

(14)

A ~ = -2w g (-1)"S i'~ d'kii[ ~ (K') ("g)

+ Yv(1~ )~(kg)].

(15)

Similarly, by comparing Eq. (13) with the, ex-
pressions for 4'»& at &=&„and s=z, and using the
expansion

fY, (r)ki» (kr)

Summing the contributions to the surface integral
in Eq. 10 from s = z„z= z'„and & = ~, we find that

u(kg) =u(kI) +2 Q A q(8„1 —5qI) (- I)' FI(K'),
XI

(17)

v(kg) = v(k„)+2
k g Ax(Sxz, —5xz, )(-1)'FI,(K ) .

W

~0(kg) = &z'"" ""~(kii —kii»

(k„) = y '"" "5(k'„—k„),
(I /~2L3 ~')k

k +Q
(18)

where the normalization is done in a cube of side
L. Substituting these expressions into Eqs. (13),
(15), and (17) and using the Bardeen expression
for the tunneling matrix element,

In Eqs. (14)-(17) the functions FI, (K') of complex
arguments are unambiguously defined by expres-
sing the spherical harmonics in terms of the
Cartesian coordinates k, /k, k„/k, and fQ/k and
substituting in the corresponding complex values.
One can see from the form of Eqs. (15)—(17) that
the scattering is defined for a given junction geo-
metry by the scattering matrices Sq&, which are
functions of internuclear spacing and incident elec-
tronic energy. The 8 matrices were found by
solving the Schrodinger equation for a scattering
state of negative energy -E in the presence of the
Xa potential, using the procedure followed for
finding molecular wave function.

The system of equations (15) and (17) represent
a complete solution of the tunneling wave function
inside the oxide barrier. Matching boundary con-
ditions to incoming and outgoing plane waves of

. the form of Eq. (5) would in principle give an exact
expression for the tunneling matrix element. How-
ever, this approach would be quite complex and
time consuming. A substantial simplification of
the problem can be made by using the Bardeen
tunneling formalism. Consider left to right tun-
neling. In the Bardeen picture the initial wave
function is calculated by extending the right-hand
side of the oxide barrier to +~. This is equivalent
to setting. v(k„) =0. The final wave function is
similarly calculated by setting N(k„) =0. The cor-
rectly normalized coefficients of an initial plane-
wave state with wave vector kI and a final plane-
wave state with wave vector k„parallel to the in-
terface are

(2~)' ~' kq

FI, (K')e', z) 0

Y~ (K )e ', z (0

dzdy(e'„se„, /sz e„, se'„/sz). . .

(19)
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M)', i), d = (V ~Mq ~i ~0), (21)

where ~0) and (v) are, respectively, the ground
and relevant excited vibrational wave functions of
the molecule and M» is a function of the molecu-
lar coordinates.

If we define the inelastic T matrix element as

T~i =(-1)' '(&~S iI (5viSyi)10&

we obtain for the inelastic matrix element
squared

~Mi l 2 167( +
I
y'zf'

I yz I'
)4) O' I 2

' $II2

(22)

x l. Yv(K") Y~(K")T~vzT~z Yi(K'")

we find the following expression for the total ma-
trix element:

«g nM„„~= (4z 5'i/m)yz yz @

x ((—1)" ' Y~d(K")S))'~(SxL, —5„L)

x Y (K+dd) f(Nz-Q') Ky j(k-z-Q") d2/y "q'd ]

(2o)

(we follow the convention that repeated indices are
summed over). The inelastic matrix element is
approximately given by

The total inelastic current through the junction
is found by summing over all initial and final
states using Fermi's golden rule:

x N, (e„.)N, (e~ d+e V)5(e~ —e~d +k(d))

(24)

We assume for simplicity a 5-function spectral
weight function for the vibrational frequencies,
since we are interested in the integrated intensity '

rather than the specific l, ine shape. Similarly we
assume that the metal electrodes are hormal so
that the tunneling density of states functions N,
and N, can be taken to be constants. Supercon-
ducting electrodes affect the observed line shapes,
but not the integrated intensities. The Fermi
functions take the form shown because at low tem-
peratures the molecules are in their vibrational
ground state and only inelastic tunneling with elec-
trons losing energy is allowed. Taking the l.ow-
temperature form for the Fermi functions

'p» 0

x YW (K+II)e 2)Q zye2do K2] (23) and taking two derivatives of (24), we find

~" — " I'~l —~l (e')'i'(e" +e V)'
d(e V)' 5 z ] F'p

2 'll' 2 7l' 1

dp d(cos8) d(cos8 ) i M,',„ '
i5( 'il(d—) eV),

0 0 0 0

(25)

where the matrix element is evaluated with initial
and final electron energies on the Fermi surface
(which is assumed spherical).

The integrations over solid angle can be con-
veniently separated by writing

4o Jjd(e V) „( '), , (28)

The change in total conductance due to the excita-
tion of a given vibrational mode per molecule/
(unit area) is given by

with

II i 2
16m'8' i j

~M)) d) ~

=
2~2 (ly ypzI, dTiy&z T~ i

&mk

(26)

where n is the surface density of mol. ecular scat-
terers. A convenient expression to compare with
experiment is obtained by dividing (28) by the total
conductance of the junction predicted using the
same square barrier as above:

avx= QQ yz Yv K Yx K+' e

d I = f dQ )ysl YI(K* )FI'(K )&

(27)
e 2m(U —ed,)&' '

g 2nl
(2z)'hl' I' ) 8'

(29)
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FIG. 2. Predicted Xn first-harmonic cross section for
CO as a function of assumed orientation on the surface,
for three different tunneling energies. Vertically upward
(0') corresponds to CO oriented normal to the oxide sur-
face with the carbon atom down. The cross sections are
strongly dependent on tunneling energy, reaching a res-
onance of E=—1.8 eV.

The inelastic cross section is then b.+/n&, and the
ratio of the change in conductance divided by the
total conductance is obtained by multiplying by n.
The angular integrations in (27), the evaluations
of the spherical harmonics of imaginary argu-
ments, the evaluation of the S matrices, and the
summation of (26) were all done numerically. In
all cases we assumed t/"=2 eV and i=20 A. The
ratio of inelastic to elastic conductances does not
depend strorigly on these parameters.

lVe have employed this formalism to study the
inelastic tunneling current when CO is imbedded
in the oxide layer. The potential describing the
molecule was the one used by Davenport et at'. ' in
their study of gas-phase scattering. There is no
reason why exactly the same molecular potential
is appropriate to these two very different situa-
tions; fortunately, the nature of the conclusions
we draw is independent of the details of the poten-
tial. For completeness we mention that the poten-
tial is that of a CO molecule with one-half addi-
tional electron. This generalization' of the transi-
tion-state method was meant to simulate the short-
range polarization processes that presumably oc-
cur during the scattering process. The potential
smoothly approaches the standard polarization
form I/r' in the outer regions of the molecule;
again the details do not effect our conclusions.
The angular-momentum expansions were truncated
at E = 2 for the atomic spheres and at l = 3 for the
outer sphere.

Figure 2 shows the predicted inelastic cross
sections for the v = 0 to v = 1 transition for CO as

IOO-
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HARMONIC

b
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NIC

O.OI-

-I.O -2.0
E(eY)

-3.0

FlG. 3. Predicted Xe inelastic first-and second-har-
monic cross sections for CO as a function of energy,
compared with long-range (KSH) theory. The predicted
Xe cross sections become large near a bound-state en-
ergy, but the ratio of second- to first-harmonic inten-
sities becomes much larger than when observed experi-
mentally.

a function of the assumed orientation of the mole-
cules on the surface, for three different tunneling
energies. In these polar plots the point at 0 (ver-
tically upward) corresponds to CO oriented normal
to the oxide surface with the carbon atom down.
The orientation dependence of the cross section
does not depend strongly on tunneling electron en-
ergy. However, the dependence of the amplitude
of the cross section on tunneling energy is quite
strong, peaking at E=-1.8 eV.

Figure 3 shows the predicted inelastic cross
sections for both first- and second-harmonic tran-
sitions as a function of the energy of the tunneling
electron with respect to the vacuum level. of the
molecule, assuming CO orientation normal to the
interface with the carbon atom down. There is a
bound-state energy level 1.8 eV below the vacuum
for the Xe potential used. %hen the tunneling
electron matches the bound-state energy, the pre-
dicted first-harmonic intensity is greatly enhanced.
The crucial point, however, is that the second-
harmonic cross section increases also, so that at
resonance the second-harmonic term is as large
as the first-harmonic term. Included for compari-
son is the predicted cross section for the long-
range theory of Kirtley, Scalapino, and Hansma'
(KSH) (which is independent of energy, assuming
CO orientation normal to the interface, an oxide
dielectric constant of 3, an rms displacement of
0.034 A, and a dipole derivative of 1.32e. Direct
comparison of these cross sections with experi-
ment is difficult, since the absolute surface den-
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sities are not yet known. (The experiments of
Hansma, Kaska, and Laine for CO on Rh-doped
alumina give values for n, &/& of 0.1%, which would
indicate a surface density of 0.016 f/A' if the long-
range cross section dominated. This is a factor
of 3 smaller than one might expect from a close-
packed square array of hard spheres. ) However,
comparison of the Long-range with the short-range
cross sections shows that the long range dominates
off resonance, and that on resonance higher har-
monic excitations should be seen. Experimentally,
the second-harmonic intensities are very small"
(-200 times smaller than the first-harmonic inten-
sities for benzoic acid on aLumina), much smaller
than would be expected if resonant scattering
played an important role in IETS. Note that these
conclusions are not dependent on the assumed
orientation of the CO molecules on the surface:
for example, for CO oriented parallel to the sur-
face the KSH cross section is reduced by a factor
of 10; off resonance the short-range cross section
is reduced by a factor of 2; and the long-range
cross section still dominates except near reso-
nance, where higher harmonic components would
be expected.

A second clue to the relative contributions of the
long- and short-range interactions in lETS comes
from measurements of the ratio of intensities for
opposite-bias voltages. For Al-A10„-Rh-Co-Pb
tunneling junctions the intensity of the CQ stretch
mode is smaller for Al biased positive then for Al
biased negative: the ratio (b(rl&')/(ncr/e ) is

0.68. The reason for this asymmetry is c1.ear.
for Al negative the electron tunnels through the
oxide before interacting with the CO on the sur-
face and losing energy, but for Al positive, the,
electron must tunnel after losing energy. The
asymmetry results since less energetic electrons
are less likely to penetrate the barrier. A short-
range interaction could be expected to predict a
large asymmetry, since the interaction is localized
close to one electrode, but a kong-range interac-
tion would give less asymmetry. This is indeed
the case: the calculation described here predicts
an asymmetry ratio of 0.23, while the 1.ong-range
(KHS) theory gives 0.59, in better agreement with
the experimental value of 0.68.

ln conclusion, we have calculated for the first
time the contributions of the short-range interac-
tions to intensities in IETS. Experimental obser-
vations of very small second-harmonic intensities,
and relatively small opposite-bias-voltage asym-
metries in intensities, indicate that the long-range
interactions dominate in IETS.
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