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A mixed-basis method is developed for the calculation of the electronic structure of solids. The method is
shown to be capable of treating crystals with large complex unit cells. A combined set of plane waves and
Bloch sums of localized functions is employed as basis functions, thus leading to a very efficient
representation of systems which centain both highly localized (atomiclike) and delocalized (plane-wave-like)
electrons. The crystalline potential is determined in a fully self-consistent manner with no approximations
made to its shape. The present method has the flexibility of being easily applicable to the study of many
different systems (e.g., surface calculations with supercells). Specific application is made to bulk Nb and Pd
to demonstrate the efficiency and accuracy of the method. Very good agreement with experimental results
and with band structures calculated using other methods is obtained. It is found that, with a mixed basis,
only a relatively small set of functions is needed to obtain convergent wave functions for the electrons.
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I. INTRODUCTION

There has been a great deal of interest in the
electronic structure of systems involving transi-
tion-metal atoms in recent years. The reasons
vary according to the systems: transition-metal
surfaces! (Ni, Pd, Pt, . . . ) because of their cata-
lytic properties; A-15 compounds® (Nb,Ge,

V3Si, . . . ) because of their unusually high super-
conducting transition temperatures and their
unusual transport properties; and transition-
metal silicides® (Pd,Si, WSi,, . . . ) because of
their importance in Si technology. Since these
systems are composed of transition-metal

atoms situated in an open structure and/or

with group-IV elements which tend to form
covalent bonds, traditional approaches [e.g.,
augmented plane-wave (APW), tight-binding,

and plane-wave pseudopotential methods] are
found to be inconvenient when used to calculate -
the electronic properties of these systems. This
situation motivated us to develop and utilize a
mixed-basis approach for studying the electronic
structure of the above-mentioned and other re-
lated systems.

The main features of the present method in-
clude the following: (i) An energy-independent
basis set which contains both plane waves and
localized functions is used for the expansion of
the electronic wave functions. (ii) Infinite-range
interactions between basis functions are retained.
(iii) No shape approximations to the potential
(such as that of muffin-tin form) are made. And
(iv) the calculations are carried out in a self-con-
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sistent-field fashion with the effects of exchange
and correlation included via a local-density
theory.%®

The present approach has a number of advan-
tages over traditional methods. Because the
basis functions employed combine the important
physical aspects of a set of plane waves with
those of a set of Bloch sums of localized func-
tions, this approach is especially suitable for
systems characterized by electronic wave func-
tions which contain both highly localized
(atomic like) and delocalized (plane-wave-like)
components. Tight-binding methods have diffi-
culties in treating the electron wave function and
potential in the interstitial regions in a conven-
ient and unbiased way.® Plane-wave methods have
difficulties in reproducing the atomic character
of the d wave function near the atomic core. Also
since, unlike standard APW or Korringa-Kohn-
Rostoker (KKR) methods, muffin-tin or other
shape approximations to the potential have not
been made, electrons in systems with open struc-
ture or those at surfaces and interfaces can be
treated straightforwardly and accurately using
this method. Finally, the present method goes
beyond previous mixed-basis attempts’™!? in that
the Hamiltonian matrix elements are evaluated
accurately in a first-principles fashion and, more
importantly, the calculations are carried out self-
consistently within the pseudopotential formalism.
The calculations are therefore parameter free
and the method has the flexibility of being easily
applicable to the study of many different systems.

In this paper we describe the formulation of the
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method in some detail. As examples, the method
has been used to calculate the electronic struc-
ture of bulk Nb and Pd representing the two ex-
tremes of the 4d transition-metal series. The
results obtained are in very good agreement with
experiments and with results calculated using
other methods. It is found that only a relatively
small set of basis functions per atom!? is needed
to obtain convergent wave functions for the elec-
trons. This aspect of the method has the impor-
tant consequence of making self-consistent cal-
culations possible for systems which have large
numbers of atoms per unit cell (e.g., surface
calculations involving supercells!* or the A4-15
compounds'?).

The remainder of the paper is organized as
follows: In Sec. II the mixed-basis pseudopoten-
tial method is discussed. The important con-
cepts and various working equations in the form-
alism are derived. In Sec. III the results for
the electronic structure of Nb and Pd are pre-
sented and the accuracy and efficiency of the
method is evaluated. Finally, in Sec. IV a
summary and some discussions are presented.

II. MIXED-BASIS PSEUDOPOTENTIAL FORMALISM
A. The Hamiltonian

The starting point of all electronic-structure
calculations is the construction of the effective
one-electron Hamiltonian. In the self-consistent-
pseudopotential approach, the pseudo-Hamiltonian
for the valence and the conduction-band states
has the general form

H=p*/2m +V,  +V, +V,,, (1)
where
Vee=p, VIOF-R,-7) @
8,7

is a superposition of bare ionic pseudopotentials
(e.g., in the case of Pd, V1% is the ionic pseudo-
potential appropriate to the Pd!% ion). The ionic
- pseudopotential is screened by a Hartree poten-
tial V, and a local exchange-correlation poten-
tial V,, obtained from the pseudo-valence-charge
density p by

VIV (@) = drep() ®
and
V,e=—362(3/8m) ! 3ap®1/? , (4)

where a is a function of!® p(¥) or simply chosen
to be a constant (the Xa method).!” The energies
and wave functions of the electrons are obtained
by iterating Eqs. (1), (3), and (4).1®

The fundamental advantage of using pseudopo-

tentials'® is that the core states are eliminated
from the problem. Unlike the real wave func-
tions, the pseudo wave functions -are relatively
smooth. (They need not be orthogonal to the
core-state wave functions.) One consequence of
this is that the localized functions in the basis
set are quite simple since they, together with
the plane waves, are only required to reproduce
the behavior of the pseudoatom near the atomic
core. This feature therefore greatly simplifies
the evaluation of V, and V,, and the various
Hamiltonian matrix elements, making self-con-
sistent calculations feasible.

In the pseudopotential approach, the ionic

- pseudopotential is, however, in general a non-

local operator. For electrons with energies
over a range of 20-30 eV about the Fermi level,
the ionic pseudopotential for transition metals
is an /-dependent potential of the form

2

Vion:VO(Iﬂ)+;5V,(‘f|)Pzr ®

where P; is the projection operator acting on the
Ith angular-momentum component of the wave
function. Vg, 6V,, and 6V, are determined by
fitting to the energies and wave functions of an
all-electron calculation of the neutral atom in
various atomic configurations using the same
exchange-correlation functional.

B. Basis set and evaluation of matrix elements

In the mixed-basis approach, as in most band-

"theoretical methods, the electronic wave function

is expanded in a set of basis functions and the
solutions to the Schriidinger equation are ob-
tained by variational procedures. Since the
computational effort increases at least as fast
as the third power of the number of basis func-
tions used, it is of utmost importance, for compu-
tational purposes, to choose a small, yet
physically complete, set of functions. A judicious
choice, as discussed in the Introduction, is a
combined set of plane waves and localized func-
tions.

For each k in the Brillouin zone, the basis set
consists of plane waves

ST A%
vt ' ©)

and Bloch sums of local orbitals
-, 1 T (Bal > =
bl B =g 2T B F-R-T), (1)
R .

where G is a reciprocal-lattice vector, Risa
lattice vector, ¥; is a basis vector, u is a label
for the orbitals on the ith atom, and @ is the
crystal volume. In the present formulation, the
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localized functions f;,(¥) can be either simple
orbitals (such as Gaussian or Slater orbitals) or
numerical functions. The electron wave func-
tion is expanded in '

> 1 g '_’ "+" o - >
030) = L a@+8etE T4 0, Mo R D),
®)

which leads to the following matrix eigenvalue
problem

(H- ES)A=0, (9)

where H is the Hamiltonian matrix, S is the over-
lap matrix, and A is a column vector with ele-
ments Ay, . . ., A, corresponding to the expansion
coefficients o, in Eq. (8).

We find that the most convenient and accurate
way of obtaining the matrix elements of H and S
is to make use of the periodicity of the crystal
and evaluate these quantities in reciprocal
space.?™?! This procedure allows the inclusion
of the effects of long-range overlaps between the
basis functions without the complication of cal-
culating multicenter integrals in real space. The
¢’s are expanded in plane waves of reciprocal-
lattice vectors,

|60 & N=21,@ £, E+O[E+E), o)
G

where T; which contains the structural informa-
tion is
7,8) =e"%7i/M, (11)

where M is the number of atoms per unit cell

and f;,, (k +G) which is independent of the crystal
structure is the Fourier transform of the localized
functions,

fiu&+G) =é—f et ED»T () ddy, (12)
a

with &, the atomic volume. The expansion in
Eq. (10) usually involves many more plane waves
than those in the basis set because of the localized

nature of f;,. When f;, is chosen to be a Gaussian
or Slater orbital, f;,(k) is a simple analytic func-
tion of K. The three types of overlap matrix ele-
ments in this scheme are then simply

Sp.ai.g =k +G|K+3") =bgz. , (13)
5%.8,1. =K +G| 0, & P))=7,0) f;,K+35), (14)
and

Siu.,jv :<¢iu(E’ .f) , 4)]1;(1-;’ F»

=};‘ THO) fL&+8)T,(C) £, E+C) . (15)
G

The evaluation of the Hamiltonian matrix elements
is slightly more involved. To simplify the dis-
cussions to follow, we rewrite the Hamiltonian
[Eq. (1)] in the form (in Ry units)

H=- V4V, +Vy , (16)

where V,, is the local part of the ionic pseudo-
potential added to V,+V,, and Vy is the angular-
momentum-dependent part of the ionic pseudo-
potential. The matrix elements of H between

the plane waves are evaluated in the same way

as in standard nonlocal pseudopotential calcula-
tions,% i.e.,

E+G|H|k+C)=|k+G|*6z5. +VL(G- G
+Vy (K +G, K +3) . 1

The cross terms arev given by

&+G|H| ¢y, (&, P =2 [ |E+G %655, +V(G-8))

£
XT{(G) f;, (K +G")
+}:,VNL(E +G,k+3)
G
XT(E) fi,&+E) . (18)

And the terms between the Bloch sums of localized
functions are given by

(@5 &) H| ¢4, (&, 7)) =2 [R+G P78 S 3K +8) T, 11, E+T)
G

+ 2 THE £ E+E) V(G- T TS £, B +E)
G,G’

+) THO) A E+8) Vi K +G,K+8) T3 (@) £,k +G) . (19)

G,g*
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As seen from Eqs. (13)-(19), the matrix ele-
ments for both H and S can be calculated quite
straightforwardly with thé structural informa-
tion contained solely in the T,(a)’s and the struc-
tural factors in the Fourier coefficients of the
ionic crystalline potential. The most time-con-
suming part of evaluating these matrix elements
is the second and third term on the right-hand
side of Eq. (19) which involves N? operations if
N is the number of G vectors needed to expand
¢,u(1?, T). However, both terms can be reform-
ulated to reduce the computational effort by
orders of magnitude. The second term,

(gb,,,[ VLl ¢;,), may be evaluated by first trans-
forming ¢%(K+G), ¢,,(&+G) and V. (C) to real
space using the fast- Fourier-transform approach
(which involves N1nN operations) and then sum-
ming in real space (which involves N operations).
This procedure thus reduces the number of
operations from N? to N1InN , a huge saving if N is
large. Furthermore since 6V, is nonzero only

in the ionic core region, Vy, is a sum of ex-
tremely short-range operators centered on each
atomic site. Also, if N is large, the ¢,,’s are
then sums of short-range functions centered on
each atomic site. This feature of Vy, and the
¢’s allows the third term in Eq. (19), (¢, | Vye|®:.)s
to be calculated (at least for the case of the d
orbitals for transition-metal atoms) to a high
degree of accuracy using an on-site approxima-
tion, i.e.,

@l Varl o0 =g 2 [ F3@8VA(7)

XP,f;,(F)d*r 0, . (20)

Note that the above expression involves only '
single-site integrals and it is independent of the
k point under consideration.

C. Self-consistent procedure

To obtain self-consistent solutions to the ma-
trix eigenvalue problem, Eq. (9), we use the
following procedure. Equation (9) is first trans-
formed into the standard form

(H'- E)A'=0, (21)

where H' is also a Hermitian matrix. This can
be achieved by using the Choleski scheme,??
i.e., by decomposing the overlap matrix S into a
product of a lower triangular matrix and its
Hermitian conjugate

S=LL'. (22)
Then Eq. (9) is related to Eq. (21) by

H'=L"'H(L™")* (23)
and .

p=(LH'y’ . (24)

The matrix elements of L~! can be easily ob-

tained from the matrix elements of Sin a
straightforward, iterative fashion. (See Appendix
A.) If we have solved the problem for an nXn
matrix of S, then for this matrix extended to the

size (n+1) X(n+1) the additional elements of L~!
are given by the following recursion relations

i
(‘L?)i,ml:z (L-l)i.JSJ.ynl ’ (25)
¥=1

n -1/2 .
(L-i)ml,n*l :(Sml,ml _; (Lf,ml)*LI.nn) ’ (26)

and

(L-l)nfi,i == (L-i)m-l,m-ljz‘: (L;,m-}_)*(L-l)j,i . (27)

This scheme of transforming Eq. (9) into Eq.
(21) is computationally much faster than tradi-
tional schemes®:?? which involve the diagonaliza-
tion of the matrix S. It is of particular effi-
ciency for the case of the mixed-basis method.
In the present approach, S is a matrix of (M +N)
X(M +N) dimension where N is the number of
Bloch sums of localized functions and M is the
number of plane waves in the basis set. Since as
seenlater M is usually 5-10times larger than
N, alarge portion of the matrix Sis already in the
form of Eq. (22) with L-! being the identity
matrix for the first M rows and M columns.
Hence the recursion relations Eqs. (25)-(27)
are only needed to be applied to the remaining
part of the matrix to obtain the full L-! matrix.
This property of L! can also be used to simplify
the transformations in Eqs. (23) and (24). Once
Eq. (9) has been transformed into the standard
form, Eq. (21), H' is diagonalized to obtain the
energies E,(k) and the wave functions y,z(T) of
the electrons.

For the next step of the self-consistency pro-
cess, we calculate the total valence-charge den-
sity

o() :22; O(E - Ez) |z ()2, (28)

[here ©(x) is a step function which is unity for
x>0 and zero for x<0]. From p(¥), the Hartree
screening potential V, and exchange-correlation
potential V,, are calculated via Eqs. (3) and (4).
These two screening potentials are then added to
the ionic potential to form the new total crystal-
line potential for the next iteration. The whole



1778 STEVEN G. LOUIE, KAI-MING HO, AND MARVIN L. COHEN 19

process is repeated until the output screening
potentials are self-consistent with respect to the
input potentials.?®

We would like to point out here that the fast-
Fourier-transform techniques can also be em-
ployed to evaluate the Hartree and the exchange-
correlation potentials. For example, in solving
the Poisson equation in three dimensions to ob-
tain Vy, one either solves the integral equation
in real space

>
V() =e? f I—g—(_ﬁ?),—l d&r' (29)

or. transforms Eq. (3) to/reciprocal space
Vy(G) =4ne*p([@)/ |G (30)

In either case, the number of operations involved
is proportional to (mN)? where m is the number
of atoms per unit cell and N=N,N,N, is the size
of the mesh for each atom. For transition-
metal atoms, N is at least ~5000. Using the
fast-Fourier-transform approach, p(ﬁ) may be
obtained from the wave functions in the order of
(mN)In(mN,)In(N,)In(N,) operations: VH(§) can
then be obtained trivially from Eq. (30). Simi-
larly the exchange-correlation potential V, (G)
may be evaluated using the same techniques.

III. APPLICATION TO BULK Nb AND Pd

As examples, we have applied the formulation
in Sec. II to the calculation of the electronic
structure of bulk Nb and Pd. These two metals
are of different crystal structure and situated
near the beginning and at the end of the 4d tran-
sition-metal series, respectively. Thus they
will provide a good illustration of the accuracy
and efficiency of the present method.

A. Gaussian orbitals

For both Nb and Pd, we have used Gaussian
orbitals

Fu®) =Are™Y,,(6, 6) (31)

to supplement the plane waves in the basis set.
Here

A=[ £V 1/Vn)@,]'? (32)

is a normalization constant and » is an index
for the five angular-momentum components of
the /=2 spherical harmonics. Hence, in addi-
tion to the plane waves, the basis set consists of
five Bloch sums of the f,,’s for each atom in the
unit cell. The Fourier coefficients of the Gaus-
sian orbitals needed in the evaluation of the
matrix elements are then given by the following
analytic expression

7 T T T T
6 Ee B
° ° ° °
> 5 =
L
r
> 12
(] A A A
g af S
Z
i
r g
3 25. . . .
2 — —
1 ] ] 1 !
1.1~ 1.2 1.3 1.4 1.5 1.6
A

FIG. 1. Band-structure energies of Pd as a function
of the Gaussian parameter A. The ®, A, and ¢ indi-
cate the Fermi level and the energies of the lowest Iy,
and T, states, respectively. These values are cal-
culated self-consistently for each A with ~ 50 plane
waves in the mixed basis.

fm(E) :é—- f e-iE-?fm(-f) By
e .
4 ‘ ,
:Qi Yy,(65, o%) Af P2 dr v2e™, (ky)

dnvm

=————Aq*x""*exp(- ¢*/4N) Yy, (0%, b5) , (33)
169,

where j, is a spherical Bessel function.

The parameter A is to be determined in such a
way so that the set {|¢,,);|k +G)} will be the most
judicious set of functions for the expansion of
the crystalline electron wave functions. In tradi-
tional tight-binding schemes, one chooses A by
fitting to atomic wave functions. Such procedures
are somewhat ambiguous and do not necessarily
produce an optimum choice for A. In the present
mixed-basis approach, a A which optimizes a
given basis set is obtained by treating it as a
variational parameter in the band-structure cal-
culation. That is, for a given and fixed set of
M plane waves, we calculate the band structure
and vary A until we arrive at a A ;0 Which
minimizes the band-structure energy. However,
as seen in Fig. 1 the energy band structure is
not very sensitive to the exact value of A pro-
vided sufficient convergence is achieved.

B. Results

The calculated electronic structure for both
materials agrees very well with results calculated
using other methods and with values deduced from
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FIG. 2. Self-consistent pseudopotential band structure
of Nb. The solid curves are calculated using the mixed-
basis method and the circles are values obtained using
the plane-wave method.

-6

experiments. Figure 2 depicts the theoretical
band structure of Nb. The solid curves are self-
consistent energy bands® calculated using the
mixed-basis pseudopotential method and the
circles are results obtained using the standard
plane-wave approach.?® To obtain highly conver-
gent plane-wave results, ~160 plane waves were
used in the basis to expand the electron wave
function and an additional ~ 100 plane waves were
included via the Lowdin perturbation scheme.!
The mixed-basis results, on the other hand, were
obtained using a much smaller basis set con-
sisting of ~ 20 plane waves plus five Bloch sums
of the Gaussian orbitals (A =0.78 in units of
reciprocal Bohr radius squared).

For bulk Nb which contains only one atom per
unit cell, the calculations can be carried out with
no difficulties using either methods. However,
since the numerical effort in both approaches
increases as the third power of the number of
basis functions used, the saving in computation
time is enormous for systems with many atoms
per unit cell. For example, in the case of sur-
face calculations with supercells which usually
contain ten or more atoms per unit cell, we are
dealing with the difference of diagonalizing
matrices of the size of a few thousands to that
of a few hundreds. A reduction of two to three
orders of magnitude in computational effort is
achieved with the mixed-basis method.

TABLE I. Comparison of the Nb energy levels at high
symmetry points between results calculated using the
mixed-basis method and resuts calculated using the
plane-wave method. (Er=1.78 eV.)

. Energy (eV)

k point Plane-wave basis Mixed basis

r 1, —4.05 -4.00
Ty 1.94 1.89
Ty 4,79 4.75

N N -1.67 -1.75
N, 0.12 0.12
Ny 3.67 3.75
N 418 4.62
N, 5.42 5.37
Ny 7.4 7.59

P P 0.46 0.42
P, 5.53 5.51

H H, ~1.56 -1.52
Hyg 7.00 6.82

Table I displays the energy eigenvalues of
bulk Nb for the various symmetry points in the
Brillouin zone. For energies near the Fermi
level (Ep=1.78 eV), the eigenvalues from the two
calculations agree extremely well. The largest
discrepancy is 0.18 eV which occurs at H,; at
4.0 eV above the Fermi level. Typically the
values from the two calculations are within
0.05 eV of each other. This agreement is quite
remarkable considering the small number of
basis functions used in the mixed-basis approach
and the very different approximations used in the
two methods. The calculated band structure is .
also in good agreement with experiments and with
results calculated using other methods.?® A de-
tailed comparison of the pseudopotential results
to other results has been presented in Ref. 25.

Another critical test for the mixed-basis me-
thod is the accuracy of the calculated electron
wave functions. Figure 3 shows the calculated
valence-charge density as a function of distance
between nearest-neighboring Nb atoms. Since
these are pseudopotential results, the charge
density is smooth in the core region and is at a
minimum at the atomic site. As seen from Fig.
3, the two calculated charge-density distributions
are essentially the same with the density from
the mixed-basis calculation slightly more lo-
calized near the atom cores. This small differ-
ence results from the fact that, for a basis set
of finite size, the plane waves tend to emphasize
the delocalized character of the wave function
whereas the Gaussian orbitals tend to emphasize
the atomiclike character of the wave function

- near the core. With an increase in the size of

the basis set in both approaches, the charge
density will converge to a density distribution
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""" Plane wave
3 — Mixed basis _|

Valence charge density

Nb Nb

FIG. 3. Total valence-charge density along the direc-
tion between nearest-neighbor Nb atoms. The solid
curve is the self-consistent pseudo charge density cal-
culated in the mixed-basis approach. The dash curve is
calculated using a plane-wave basis. The charge density
is normalized to one electron per unit cell.

intermediate between the values shown in Fig. 3.

Similarly, by going from the plane-wave basis
to the mixed basis, a large reduction in the
number of basis functions can be achieved for
the case of bulk Pd. Because the d electrons
are much more tightly bound to the atomic core
for Pd than Nb, in the plane-wave approach,
approximately 400-500 plane waves are needed
to obtain convergent wave functions. Comparable
results may be obtained in the mixed-basis ap-
proach by using a basis set consisting of ~ 40
plane waves plus five Bloch sums of Gaussian
orbitals (x=1.37). The calculated results for
the k points T" and L are shown in Table II to-
gether with experimental values deduced from
angular-resolved photoemission measurements?®
and with theoretical results from previous cal-
culations.?’3% As seen from Table II, the agree-
ment appears to be excellent.

IV. SUMMARY AND DISCUSSIONS

In summary, we have formulated a mixed-
basis method for the calculation of the elec-
tronic structure of solids. Results for the band
structure of bulk Pd and Nb are presented. It is
shown that the present method combines the ad-
vantages of many traditional methods and avoids
many of their disadvantages. As in the plane-
wave pseudopotential method,? the calculations
are carried out in a self-consistent-field fashion
with no restrictions on the shape of the crystalline
potential. The number of basis functions, on the
other hand, has been greatly reduced by the pre-
sence of the localized functions in the basis set.
Because of these features, the present method is
ideally suited for calculating the electronic pro-
perties of systems with complicated, open struc-
ture which contain both highly localized and de-
localized electrons.

In the cases of Nb and Pd, upon the inclusion of

_ d-like Gaussian orbitals in the basis set, the

number of plane waves needed is found to be re-
duced by an order of magnetitude. The physical
basis for this reduction is the following. The
higher-component (i.e., the short wavelength) G
vectors are required mainly to reproduce the
short-range, atomiclike character of the elec-
trons near the atomic cores. In the mixed-
basis approach, this role is taken over by the
localized orbitals. The function of the plane
waves is to complement the localized functions
in forming the crystalline wave function in all
space. Since, even for the pure d states in the
band structure, the localized orbitals are not
exact solutions of the crystalline potential, the
limiting factor on the number of plane waves in
the basis set is then the number of intermediate
wavelength G vectors required to supplement the

TABLE II. Comparison of energy levels at I and L between the present calculation of the Pd band structure and pre-
vious theoretical results. Also indicated are the latest experimental results from angular-resolved photoemission

measurements.
Andersend
Band Present Moruzzi et al.®? Muller et al.® Christensen®
k point number Experiment 2 work SCKKR 4d1V HFS RAPW
r 2,3,4 —2.55+0.15 -2.56 —2.68 -2.59 ‘S'Zg
r 5,6 -1.15+0.1 -1.21 -1.23 -1.19 -1.17
-2.98
L 2,3 -2.4 +£0.2 -2.66 -2.78 -2.70 _2.62
-0.4 +£0.2 -0.14
L 4,5 01 +01 -0.09 -0.05 -0.06 +0.05

2Reference 26.

bReference 27. SCKKR: self-consistent KKR.
°Reference 28. HFS: Hartree-Fock-Slater.
dReference 29.

®Reference 30. RAPW: relativistic APW.
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localized orbitals in providing a convergent ex-
pansion of the crystalline wave functions.

From our experience with Nb and Pd, we find
that, in addition to the five local orbitals, ap-
proximately 20-40 plane waves per atom are re-
quired to form a convergent basis set for transi-
tion metal atoms. This number is comparable
to the size of the basis set in traditional APW and
KKR calculations. However, as mentioned
earlier, the muffin-tin approximation to the
crystalline potential is removed in the present
method. This aspect of the method enables one
to obtain reliable results for a number of in-
teresting systems with open structure.’! Re-
cently, the present approach has been applied
successfully to study the electronic structure
and photoemission properties of clean'43? and
chemisorbed® transition-metal surfaces and to
examine some of the unusual properties of the
A-15 compounds.'®

Finally we would like to remark that the pre-
sent formulation is not necessarily restricted to
using pseudopotentials. It can be extended
straightforwardly to perform rigid-core, ab initio
calculations. In this case, the core states
must be incorporated into the basis set either as
additional basis functions or through orthogonali-
zation procedures.
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APPENDIX A

Equations (25)~(27) can be easily derived from
the definition of the matrix L. L is defined to be
in the lower triangular form, i.e., L;;=0 if j >i.

Let us define S(n) to be a »Xn matrix which is
composed of the first » rows and first » columns
of the overlap matrix S and define L(n) to be the
Choleski decomposition of S(n), i.e.,

S(n) =L@)|[Ln)]F. (A1)

We would like to find the Choleski decomposition
for S(n+1) assuming that we know L(x).
Since L(n+1) is lower triangular, we have

L(n) 0\ (L)' b
Lin+1)[L(n+1)]"= )

bt «x 0 x
(S(n) a) ’
= at y (A2)

where a'=(S,.y,1, . -

+ . ’Sn+1,n)’ y:Sn+l,n+17
B =(Lpoy gy - - -

’Lm-l,n)? and x:Lml,nﬂ' We

therefore immediately arrive at

b=[L)] " a, (A3)

which is just Eq. (25), i.e.,
{

(Lf)i,nﬂ :Z (L-l){,j Sj,nq . (A4)

i=1

Next we write the identity matrix in the form

(I(n) 0) L(n) 0)(1;1(") o)
0o 1/7\» « et z) (A5)

-1 -1 -1
where ¢'=(L;}, 1, . . ., Lok, and 2=(L7")q, s

z is then equal to %! which is (y - %5)"*/2. Hence

1 ot e
(L- )m-l,m-l = Sn+1,n+1 - Z; (Li,nﬂ)*LI,m-l) . (A6)
LA

Finally from

b'L(n) +xct =0 (A7)
we have
cT=—b"L' (n)/x (A8)

and therefore

(L-l)m-l,i:— (L-1)n+l,n+1__z (L;,ml)*(L-i)j,i . (AQ)
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