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Time-dependent Hartree-Pock formalism for the dielectric function
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In this paper we derive a formula for the time-dependent Hartree-Fock dielectric function by using Green s-
function theory. We develop a set of self-consistent equations for the self energy, polarization, and Green's
function which can be iterated to obtain successively more accurate approximations for the polarization. In
this procedure the Hartree and Hartree-Fock approximations occur naturally as the first and second steps in
the iterations. As the iterations are carried out, we obtain not only the expressions for the polarization, but
also the one-electron Hartree-Fock equations, so that there is no question as to which polarization formula
corresponds to which-equation. In this way we obtain an expression for the dielectric function which clearly
and directly corresponds to the Hartree-Fock equation and which is therefore called the time-dependent
Hartree-Fock (TDHF) dielectric function. In this TDHF formula for the dielectric function, the first term is
the time-dependent Hartree or random-phase approximation dielectric function. We show that in order to be
consistent with the theory, one should use Hartree wave functions and energies to compute random-phase
appr'oximation dielectric functions and Hartree-Fock wave functions and energies to compute TDHF
dielectric functions. Numerical results are presented for the free-electron gas.

I. INTRODUCTION

In recent years there has been a great deal of
interest in calculating the dielectric response
function which is a basic quantity used to deter-
mine many physical properties of solids. In most
of these calculations the formula used for the
dielectric function is the randqm-phase approxima-
tion (RPA)" which is derived from the time-de-
pendent Hartree equation and thus contains no ex-
change terms. Since exchange effects play an im-
portant part in many physical processes, it is
desirable to go beyond the RPA to include such
effects in the dielectric function.

Attempts have been made by previous authors
to go beyond the RPA, which is also known as the
time-dependent Hartree approximation because of
its direct relationship to the time-dependent
Hartree equation. Hanke and Sham" have in-
cluded an infinite sum of la.dder diagrams in the
polarization and have chosen to call this expres-
sion the time-dependent Hartree-Fock approxima-
tion. However, there is no direct correspondence
between the infini;te sum of ladder diagrams and
the one-electron Hartree-Fock equation, and
therefore it is questionable to use the term "time-
dependent Hartree-Fock approximation" when re-
ferring to such an infinite sum. Also the sum of
ladder diagrams is only a partial summation, in-
cluding only one diagram in each order. There
are many other diagrams besides the ladder dia-
grams that contribute to the polarization.

In this paper we take a different approach.
Rather than attempt to make infinite partial sum-
mations of diagrams, we follow the method of
Hedin and Lundqvist' and develop a set of self-

consistent equations for the Green's function,
self-energy, and polarization. We then iterate
this set of equations to obtain successively more
accurate approximations for the polarization. In
this iterative procedure, the Hartree and Hartree-
Fock approximations occur naturally as the first
and second steps in the iterations. As these itera-
tions are carried out, we obtain not only the ex-
pressions for the polarization but also the corre-
sponding one-electron equations themselves, i.e.,
the Hartree and Hartree-Fock equations. Thus in
this procedure there is no question as to whi'ch

polarization expression corresponds to the Hartree
equation and which one corresponds to the Hartree-
Fock equati. on. In this way we obtain an expression
for the dielectric function which. clearly and direct-
ly corresponds to the Hartree-Fock equation and
which is therefore called the time-dependent
Hartree-Fock (TDHF) dielectric function. In the
set of self-consistent equations used to obtain this
TDHF formula far the dielectric function we have
included not just the ladder diagrams but all of
the diagrams that contribute to the polarization.
The expression that we obtain in this manner has
a completely different form from the result that
one gets by summing ladder diagrams. Our
Green's-function method yields an explicit formula
for the time-dependent Hartree-Fock polarization
that differs from the time-dependent Hartree po-
larization by the addition of a, term containing ex-
change effects, - just as the Hartree-Fock equation
itself differs from the Hartree equation by the ad-
dition of an exchange term. On the other hand,
the sum of ladder diagrams leads to an integral
equation in which case the polarization cannot be
written as the sum of the RPA term plus an addi-
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tional term.
As indicated above, there are several expres-

sions that one ean use for the dielectric function,
including the RPA and TDHF formulas. However,
there appears to be a great deal of uncertainty in
the literature as to which are the correct wave
functions and energies to use in a particular dielec-
tric function formula, . While the RPA formula is
in wide use, there is no uniformity of energies
and wave functions used to compute it, but instead
different authors have used a wide variety of dif-
ferent wave functions and energies, including those
given by the Hartree, ' Hartree-Fock, ' correlated
Ha, rtree -Fock, ' pseudopotential, ' and Hartree-
Fock-Slater" "approximations. In this paper we
show clearly that in order to be consistent with
the theory, one should use Hartree wave functions
and energies in the RPA formula and Hartree-Fock
wave functions and energies in the TDHF formula.

II. SUMMARY OF GREEN'S-FUNCTION FORMALISM

tl(t) =f d'(x)tt(x)d(x) dx

+ —- x x' v r, r' x' x dxdx'

+ x x xt dx+V„„„„,, (2. 3)

a(t) =e, +e,(t),

ll, (t)= f p(x)tt(xt)dx,

p(x) = q'(x)(I)(x) .

(2. 4)

(2. 5)

(2. 6)

and V„„„„,is the Coulomb repulsion of the nuclei
which is treated as a constant here. After the
final equations have been obtai, ned, the external
potential (t) will be set equal to zero.

Using the field operator ((x), the Hamiltonian
can be written in second quantized form as fol-
lows:

Following Hedin and Lundqvist, ' one can use
Green's-function theory to derive a set of self-
consistent equations for the Green's function,
self-energy, and polarization. As one of us has
treated this derivation in detail in a previous
paper, "it will merely be summarized here. In
order to derive an expression for the dielectric
response function, we consider a small external
potential (t) acting on a crystal containing N elec-
trons. Then in the linear approximation the
Ha, miltonian is given by

Let
i t) be the state of the N-particle system at

time t. Then the time-evolution operator U is
defined by

it) = U(tt') It' ) (2. 7)

It can be shown that the time-evolution operator
satisfies the equation

tg
U(t, t, ) = U, (t,t, ) —i f U (t;t, )/l, (t,)U(tt)dt, , (R.,8,)

t2

where U, is the time-evolution operator corre-
sponding to II,. Taking the functional derivative
of both sides of (2. 8) with respect to the external
potential, one can obtain the following equation:

(2. 1)

H=g t(x,.)+-g v(r, , r, )+ g .y(x, t)+V.„„, , .
i

where x includes space and spin coordinates (x)
= (r, &), it is the kinetic energy plus the interaction

of the electron with the nuclei, v is the bare Coul-
omb interaction given by

6U(t, t,) -i U(t, t,) p(x, )U(t, t,), t, ) t, ) t,
(

0

v ( r, , r, ) =e'/
i r, —r, i, . (2. 2)

Then defining the ground-sta. te expectation value
of a time-ordered product of Heisenberg operators
as

(2. 10)
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and using (2. 9), we have

5{r[o,(i,)o,(i,)" ])
5y(xi)

(2. ii)

= -i{r[p(xf)o, (f,)o,(f,) " ])

+ i( p(xf))(r[o, (f,)o,(f,) ]),

1—-3(x,) —V(()) G(12)
1

Z 13G32 d3 =512 . 2.22

Defining the vertex function I" by

p(xf) = q'(xi)q{xf), (2. 12)
5G '(l2)

1'(12, 3) = -
~( )

(2.23)

(2. 13)q(xf() = V(f,i)q(x) V(if,),
where ~&) is the Heisenberg ground state of the
N-particle system, 0 is a Heisenberg operator,
T is the Dyson time-ordering operator, and ((xt)
is the Heisenberg field operator which satisfies
the Heisenberg. equation of motion

I

Z(12) =r' f W(1'$)G(14)1'(42, $)d(34),

2(12) = —r' JG(23) 1'(34, 1)G(42')d(34),

(2.24)

(2.2S)

we can write the self-energy and polarization as

i —((xt) = [)1)(xt),H(t)] .. 8

at
(2. 14)

while the vertex function itself can be shown to
satisfy

The one-electron Green's function is defined as I'(12, 3) = 5(12)5(13)

G(xt, x't') = -i( T[P(xt)g'(x't'')]) . (2. iS) + G(46) r(67, 3)G(75) d(4567) .5Z (12)

Then using Eqs. (2. 3), (2. 11), (2. 14), and (2. 15),
one can show that the Green's function satisfies
the following equation:

iv(1'3)-d(3) = 5(12), (2. 16)
5G(12)

(2. 26)

In order to complete the set of self-consistent
equations, we combine {2.18) and (2. 19) to obtain
the following equation for the screened interaction:

W((2) v((2) 4=f v(1$) 2($4) W(4$)d($4). (2.$2)

v(1) = 4(1) +f v(13)( v(3) ) d($),

where we have used the notation

(1)= (x„i,),
(1')=(x„i,+q),
v(12) =v(r„r2)5(t„ t,),
5(12)= 5(x„x,)5(f„i,),

{2.17) The last four equations together with Eq. (2.22)
can be iterated to obtain a whole hierarchy of ap-
proximations for Z and y.

Now that the final equations have been obtained,
we set the external potential equal to zero in which
case the dielectric function becomes a linear re-
sponse function and the ground-state expectation
value takes the usual form

{&[o,(i,)o,(i,) .]) =(xi 7'[o,(i,)o,(i,)" ]i+).

W(12) = Jv(13)r'(32) d(3), (2. 18)

and lim„, is understood.
We define the screened interaction W, dielectric

response function e, and irreducible polarization
propagator g as follows:

When the Hamiltonian for the system is indepen-
dent of time, it is easily seen that the Green's
function deperids only on the difference of the time
arguments. Then taking the Fourier transforms
of (2. 15) and (2. 22) with respect to time, we can
write the Green's function as

r(12) = $(12) —f 2(13)v($2) d(3). ,

. 5G(22')
X(12)= -x

~( )

Then defining the self-energy Z as

2(12)= -1fW(1'$)G(14) d(34),
5G '(42)

(2. 19)

(2. 20)

(2. 21)

~ u„(x)u,*(x')
(2.28)

where cu is the frequency and the amplitudes I,
and energies e~ satisfy the equation

[3(x) + V(x)]u, (x)+f2(x, x', u)u, (x') dx'= r u, (x),

(2. 29)

Eq. (2. 16) becomes V(x)= fv(r, r')v(x')dx', {2.30)
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p(x)= Q uf(x)u„(x}.
k occ

(2.sl)

If the self-energy Z is independent of frequency,
then the amplitudes and energies given by Eq.
(2. 29) are one-electron wave functions and ener-
gies and one can work in the one-electron energy
band picture. Therefore in working with Eq.
(2.29) we will always choose expressions for Z
that are independent of frequency.

z,=0. (s. 1)

Then Eq. (2. 29) becomes the Hartree equation

[h(x) + &(x)]u,(x) = e„u„(x) (3.2)

while the vertex function, screened interaction,
and susceptibility are given by

HI. RANDOM-PHASE APPROXIMATION

Equations (2.24) —(2.29) can be iterated to obtain
successively more accurate approximations for the
polar'ization or susceptibility y. We start the
iterations by setting Z equal to zero

placed the one-electron index k by a wave vector
k restricted to the first Brillouin zone and a band
index n; K is the reciprocal lattice vector such
that k+ q+ K lies in the first zone; f„-„is the oc-
cupation number of the state ~kn); and V is the
volume of the crystal. Having determined y„pg,
we can then use (2. 19) to obtain the RPA formula
for the dielectric function

e„pA(q+ K»q+ K» (2))

g —v(q)X„„(q+K„q+K„(d), (3.8)

v(q) = 4me'/q'. (s.9)

As shown by Eq. (3.2}, the wave functions and en-
ergies that appear in the RPA formula for the
dielectric function are Hartree wave functions and
energies. Therefore, in order to be consistent
with the theory, one should use Hartree wave
functions and energies to compute RPA dielectric
functions.

IV. TIME-DEPENDENT HARTREE-POCK APPROXIMATION

r,(12, S) = ~(12)~(13),

2v (12) = v(12) 4fv(12)2 (2412'(42) d(24),

y (12)= -iG(12')G(21) .

(3.3)

(3.4)

(s. 5) Z 2(12)= iWO(1'2)G(12) . (4. 1)

Since the RPA dielectric function corresponds
to the Hartree equation, it contains no exchange
terms. In order to include such terms in the
dielectric function, we use I', to compute a higher-
order expression for the self-energy

The above formula for the susceptibility is a well-
known result called the random-phase approxima-
tion (RPA).

Taking the Fourier transform of (3.5) with re-
spect to time, we have

This expression for Z, is the first term of the ex-
pansion of Z in powers of the screened interaction

The screened interaction itself can then be
expanded in powers of the bare instantaneous
Coulomb interaction

s I
S"=v+ vyv+ (4.2)

xG(x„x„(o'—(d) chal'.

(3 6)

Then carrying out the +' integration and taking
the Pourier transform with respect to spatial co-
ordinates, we obtain

)(apA( q+ K2, q+ K, (d)

2 2 g ~)24(24K, 2)' )722

V ~ 617+q+g n

If we keep the first term in this expansion, then
W, becomes

Wo(1'2) = v(1'2)

= v(r„r,)5(t, t, +q)—(4 3)

g„p(x, x') = -p(x, x')v(r, r'), (4.4)

where p is the density matrix

and the corresponding expression for Z, is the
Hartree-Pock approximation for the self-energy

x(kn
~

e-' "'"2'"~k+ q+ K, n')

x{kn~e ' "~' '"~k+q+K, n')*,

(3.7)

p(x, x')= Q u,*(x')u,(x).
ft occ

(4. 5)

where q is a wave vector restricted to the first
Brillouin zone and K, and K, are reciprocal lattice
vectors. In the. above expression, we have re-

Putting 'E», which is independent of frequency,
into Eq. (2.29), we obtain the Hartree-Fock equa-
tion
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[a(x) + )x(x)]x„(x)+fZ,„(x,x')x„(x') dx'= xyc, (x) . y,(12)= -iG(12')G(21)

(4. 6) + G 23 G 42+ Wo 3'4 G 31 G 14 d 34,

The expression for Z, given in Eq. (4. 1) leads
to new expressions for the vertex function and
susceptibility:

r, (12, 3)= 6(12)6(13)+ fW, (1'2)G(13)G(32), (4. 7)

(4. 8)

where W, is given by Eq. (4.3). Taking the Four-
ier transform of g, with respect to time, we have

)(g(x» xk q c()) = — G(x» xk y QP ) G(xk q x) ) (() —(d)

(fan)

(4.9)

XTDRF( q + K» q + K» l() = XRpp( q+ Ky q+ K (())

2

G(x„x„&o'—&o) G(x„x„&u')W, ( r„r,) G(x„x„&u"—&u) G(x„x„v")der 'dv" .

Then integrating over e' and v" and taking the Fourier transform with respect to spatial coordinates, we
obtain the time-dependent Hartree-Fock (TDHF) formula for the susceptibility

(7'+qxK', m' fk')))'4, ,3 ~ kx((xK, rt fkn.+ 2 (2&)
Ir. +q+K, g' hfdf3nn mm

k'+q+K', ~' ~k'tp

x(k+ q+ K, n'
~

e-*&" '-"'" '
~

k'+ q+ K', m'&& kn
~

e-' "'-"' ~ '~ k'm) +

(4. 10)

x~(k'-k+K, )(kn~e-'"' ~' lk+q+R, n')(k ~~e-("'""'~k +q+K, m )~

which leads to the time-dependent Hartree-Fock
formula for the dielectric function

&TDRF(q+Ki q+Kk &)

= 6K- g —v(q)y»»(q+ K„q+K„(d), (4. 11)

e»„F(q+K„q+K., ~) = e»A(q+ K„q+K„(d)

—v(q)X, „(q+K„q+iY„~),

(4. 12)

)|,„(q+ K„q+ K„m) = XTD»( q+ K„q+ K„co)

)tRpp (q + K q + K l())

(4. 13)

As shown by Eq. (4. 12), the first term in the

TDHF dielectric function is the RPA dielectric
function. According to Eq. (4. 6), the wave func-
tions and energies that appear in all of the terms
in e»», including the first term E'RpAp are
Hartree-Fock wave functions and energies. There-
fore in order to be consistent with the theory, one
should use Hartree-Fock wave functions and en-
ergies to compute TDHF dielectric functions.

V. NUMERICAL RESULTS

In order to illustrate the importance of choosing
the proper wave functions and energies to use in a
particular formula for the dielectric function or
susceptibility, we have numerically computed the
RPA susceptibility for the free-electron gas. In
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FIG, &, XgpA computed numerically with Hartree ener-
gies, and the Lindhard susceptibility. Both yRpz and
the Lindhard susceptibility are normal. ized to 2 at q = 0
and are computed for co =0 at points along the 4 axis.
The units of q are chosen so that q = 2 at the point JI.
The dotted vertical line corresponds to q = 2k&, where
kz is the Fermi wave vector.

FIG, 2, )(RpA computed numerically with both Hartree
and Hartree-Fock energies. The formula for yRpA is
normalized so that it is equal to 2 at q = 0 when Hartree
energies are used. The susceptibilities are computed
for u = 0 at points along the ~ axis, where the units of
q agree with Fig. 1.

this system the exact answer is known and is given
by the Ljndhard formula' when Hartree energies
a,re used in the calculation. This provides an im-
portant check for our computer programs which
are quite complex due to the principal values which
must be taken in the expression for Xgpp For
crystals with band gaps such as insulators and
semiconductors the energy denominator in (3.7)
is never zero and the sum over k can be done by
simple numerical sampling of the Brillouin zone;
however, inthe case of metals or the free-electron

-ga,s, there is no energy gap between the filled and
empty states and hence the sum over k must be
converted to an integral so that principal values
can be taken. In order to evaluate these principal-
value integrals, we have employed the analytic
tetrahedron method" and have written the required
computer programs for this method which may be
applied to crystals with arbitrary energy band
structures.

As a, test of our prograins, we have computed
the RPA susceptibility for the electron gas using
Hartree energies, which are the ones that are
called for in the RPA formula. In Fig. 1 the re-.
sults are shown and are compared with the exact
answer as given by the Lindhard formula, . The
programs were set up for a body-centered cubic
Brillouin zone which was divided up i,nto tetrahed-

rons. In order to apply our programs to the free-
electron gas, we choose a Fermi wave vector equal
to O. 55 times the distance from I' to II in which
case the Fermi sphere and the points k+ q for all
values of q considered lie within the Brillouin
zone. The calculation was done for the diagonal
part of &@pe using a division of 24 poirits along
the & axis which corresponds to 3456 tetrahedrons
in —,', of the Brillouin zone. As shown by Fig. 1,
the results are in excellent agreement with the
Lindhard formula, indicating that our analytic
tetrahedron method progra, ms are working proper-
ly.

We then computed the RPA susceptibility for the-

free -electron gas using Hartree-Fock energies,
which are inconsistent with the RPA formula. The
required integrals are too complicated to evaluate
directly as Lindhard did, but the analytical tet-
rahedron method was easily applied. The resu1ts
differ substantially from the RPA susceptibility
computed with Hartree energies, as shown in Fig.
2. Thus different types pf. energies lead to sub-
stantially different results for QRpp and therefore
it is very important to use 'the proper type of en-
ergies and wave functions when one is computing
RPA susceptibilities. As clearly shown in 5ec.
III, the wave'functions and energies that are con-
sistent with the RPA formula are Hartree wave
functions and energies.

Although Xppp computed with Hartree-Fock en-
ergies .is ..inconsistent with the theory, %hen con-
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sidered by itself, it does have a proper use as it
is the first term in the TDHF susceptibility,
which is given by Eq. (4. 10). The full TDHF
susceptibility calculation will be presented in a
later paper, in which the convergence of the sus-
ceptibility function with respect tothe successive
approximations to Z will be examined.
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