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Linearized augmented plane-wave method for the electronic band structure of thin films
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We present a new method for treating the electronic structure of thin films Which is based on a
generalization of the bulk linearized augmented-plane-wave (LAPW) method, This method avoids using the
slab-superlattice geometry and combines the advantages of energy-independent muffin-tin Hamiltonian

methods [fast root evaluation and rapid convergence for d-band metals as well as for nearly-free-electron

(NFE) crystals] with the simple matrix element determination of the original augmented plane-wave (APW)
method. As in the bulk LAPW method, the asymptote problem of the APW method is avoided, and the
basis functions are everywhere continuous and differentiable. In addition, the film LAPW method retains

such desirable features of the APW method as the ability to treat general potentials with no shape

approximations, the ease with which relativistic effects can be included, and the fact that the basis size does
not increase substantially for heavier elements. As a first application and test of the method, non-self-

consistent calculations are performed in the local-density approximation for exchange and correlation and

with the one-electron potential constructed from a superposition of atomic charge densities. A semirelativistic

formulation is employed in which the Dirac equation is Wived in the limit of zero spin-orbit coupling inside

the muffin-tin spheres. Results' are reported for up to five atomic layer thin films (slabs) of the transition

metals Fe, Co, Ni, and Cu and a nine-layer film of the NFE metal Al. The results are in generally good
agreement with other theoretical calculations-. Some trends in the transition-metal band structures are
discussed. A surface-state surface-resonance band for Al(001) is found to completely account for and clarify

I

behavior observed in very recent photoemission measurements.

I. INTRODUCTION

Studies of surface electronic phenomena have
made rapid advances in recent years mostly be-
cause of (i) the development of novel powerful ex-
perimental methods and theoretical computational
schemes, and (ii) the strong interaction which has
developed between them. On the experimental
side, the development of high-vacuum techniques
for the preparation of stable and well-controlled
surfaces together with high-resolution spectro-
scopic and other methods' 4 for studying surface
phenomena have provided (in many cases) a wealth
of reproducible experimental data for a variety of
materials, notably, the important free-electron
metals, semiconductors and transition metals. On
the theoretical side, a variety of powerful and suc-
cessful energy-band methods for treating bulk
structures have been adapted for the study of the
electronic structure of surfaces. ' '

Regardless of the geometrical model used to
represent the surface (thin-film or slab geometry,
slab- superlattice geometry or the semi-infinite
crystal), the many different theoretical approaches
have one feature in common: they all face the
necessity of treating large unit cells containing

many inequivalent atoms. For such calculations,
reciprocal lattice or plane-wave (PW} based meth-
ods enjoy an important adVantage, namely, simple
matrix element determinatiori and corresponding
ease of programming. Of the PW methods, only
pseudopotential'7' or supplemented-orthogonal-
ized plane wave (OPW)-type"' calculations have
been performed to date. For treating d-band sys-
tems, these methods" '" have primarily relied
on a slab-superlattice geometry ' in which the slab
is periodically repeated and separated from ad-
jacent slabs by several layer spacings of vacuum.
In this manner periodicity is artificially retained
normal to the slab, thus permitting the use of
standard bulk electronic methods. Aside from the
usual difficulties associated with pseudopotential
methods, there are two disadvantages in this ap-
proach. Because of the large size of the perpen-
dicular lattice parameter (the sum of the slab
thickness plus the thickness of the vacuum region),
convergence of the basis in reciprocal lattice space
can be made significantly worse if many vacuum
layers are required to prevent the slabs from in-
teracting with each other. In addition, the PW-
type basis is required to yield the correct behavior
of the wave function inside the slab as well as to
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correctly represent the decay into vacuum.
In this paper we present 2 a new method for

treating thin films which avoids the above-men-
tioned difficulties, is very accurate, and suffers
little, if any, loss in computational speed com-
pared to pseudopotential methods. This method is
based on a generalization of the bulk linearized aug-
mented plane-wave (LAPW)"" method and com-
bines the advantages of energy-independent muffin-
tin (MT) Hamiltonian methods" ""[fast root eval-
uation and rapid convergence for d-band metals as
well as for nearly-free-electron (NFE) crystals]
with the simple matrix-element determination of
the original APW" method. The full one-electron
potential is used and is constructed using the local-
density approximation' for exchange and correla-
tion. The main advantages of the LAPW method
over the APW method are: (i) The secular deter-
minant is linear in energy, which permits the si-
multaneous determination of both eigenvalues and
eigenvectors by standard matrix diagonalization
with very little loss of accuracy. (ii) Singularities
in the matrix elements are eliminated, i.e., the
asymptote problem of the APW method is avoided.
(iii) The basis functions are everywhere continuous
and differentiable. In addition, the LAPW method
retains such desirable features of the APW method
as the ability to treat general potentials with no
shape approximations, the ease with which relativ-
istic effects can be included, and the fact that the
basis size does not increase substantially for heav-
ier elemerits.

The characteristic feature of the bulk (L)APW
method-is that a, PW basis function in the interstiti-
al region (where variations in the potential are
relatively smooth} is augmented inside the MT
spheres by functions constructed from the exact
solutions in these spheres (where variations in the
potential are large). By an extension of this idea
to the film geometry and using the film-muffin-tin
(FMT)'0'"'6 potential, a suitably defined PW basis
function in the interstitial region of the slab is ad-
ditionally augmented in the vacuum region by func-
tions constructed from the exact solutions of
Schrodinger's equation (SE}there. In the film-
LAPW formalism, the two vacuum regions (above
and below the film) are treated in a manner which
is completely analogous to the MT spheres. There
is no problem in optimizing the thickness of the
vacuum region; to obtain the solutions of SE in
this region we essentially integrate SE inward
from a~. We want to emphasize that the FMT po-
tential is used only for the purpose of constructing
the film-LAPW basis functions. Once defined,
however, this basis can be used to treat general
potentials with no shape approximations.

The formalism for the film-LAPW method is

presented in Sec. II and in the Appendix. Some re-
sults using this method are presented in Sec. III.
As a firSt application, and test of the method, cal-
culations for Fe, Co, Ni, Cu, and Al were per-
formed, these being representative of d-band and
NFE-like metals. " A semirelativistic formula, -
tion'~ is used. in which Dirac's equation is solved
in the limit of zero spin-orbit coupling inside the
MT spheres. Results for one-, three-, and five-
layer Cu (001) films are found to be in good agree-
ment with other theoretical calculations for thin
films and for bulk. Effects due to the neglect of
self-consistency are discussed, and it is found

that, as in bulk calculations, adjusting the value
of the exchange-correlation parameter can lead to
results (for the band eigenvalues) which are close
to those obtained self-consistently. Some trends
in the transition-metal band structures are dis-
cussed.

Although the aluminum calculation was originally
performed primarily to test the method and to
demonstrate the wide range of the applicability, we
subsequently found" that we could completely ac-
count for and clarify behavior observed in a very
recent photoemission measurement' of an occupied
surface state (SS}and surface resonance on clean
AI (001). Essential aspects of these measure-
ments, which could not be understood by comparing
with previously calculated band structures, ' "are
reproduced and accounted for by results obtained
for a nine-layer Al film. In particular, we find a
SS-surface resonance "band" which agrees very
well with the measured dispersion relation,

II. FORMALISM

The LAP% basis functions are obtained from
solutions of the FMT potential. It must be empha-
sized, however, that this potential is used only for
the purpose of constructing the basis functions;
once defined, these basis functions can be used to
treat general potentials with no shape approxima-
tions. The FMT potential is schematically de-
picted in Fig. 1. While we restrict ourselves to
films with z-reflection symmetry, this is not a re-
quirement of the method. Since the film is periodic
in the x-y plane and nonperiodic normal to the film
(the z-direction), a unit cell can be defined extend-
ing to a~ in the z-direction, as indicated by the
dashed lines in Fig. 1. Inside the muffin-tin
spheres (region I) the potential is spherically sym-
metric; in the interstitial region (region II) the
potential is constant. Finally, in the exterior or
vacuum region (region III is defined by planar
boundaries at a-,'D) the potential is dependent only
on z.
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FIG. 1. Schematic representation of the film-muffin-
tin (FMT) potential for a three-layer film. The unit cell,
indicated by dashed lines, extends to z= + ~. . There are
two boundary planes at z= + 2D.

A. LAPQ-basis functions

In analogy with the bulk (L)APW method, a plane-
wave-like basis function in the interstitial region
is augmented by functions constructed from exact
solutions in the MT regions (I) and the exterior
regions (III}of Fig. 1. These functions must be
matched onto the plane-wave-like basis function
(and its derivative) at the MT sphere surfaces and
at the boundary planes at z =

& D. The resulting ba-
sis functions are then everywhere continuous and

differentiable.

For the antisymmetric case, k„ is defined as
shown in order to avoid having a node at the bound-
ary plane.

There is a fair degree of freedom in the defini-
tion of k„, since we require the plane-wave form
of the basis function only for ~z I

~ ,'D. T—hus k„
could have been defined in terms of some other
length D' & D. This in turn permits a redefinition
of k'„', e.g. , k'„'=n2n/D', since a node no longer
automatically occurs at z = + &D in this case.
Other variations are possible. For example, in an
independently developed version of a similar film
LAPW formalism, Jepsen et aI.' have defined k'"

1
n

=(n+ 2)2m/D' and k'„'=n2n/D'(D'&D), thus forcing
a node at z =+,D' for b-oth (+) and (-) states. This
choice has the feature that there is ho constant
plane-wave in the basis set (in contrast to the sit-
uation in bulk). For the first test of our method,
we have adopted the definition given by Eq. (2),
since it slightly simplifies the matrix-element de-
termination. On the other hand, this choice forces
the first derivative, 8/Bz, to be zero at z =+zD.
In future (particularly self-corisistent) calculations
we will test the effect of choosing D' &D.

2. Muffin-tin spheres

Inside the +th MT sphere in the unit ce1.1, the ba-
sis function is expanded in spherical harmonics
times a radial function and its energy derivative:

1. Interstitial region

In the interstitial region the basis function is de-
fined as a product of a two-dimensional plane-wave
and a one-dimensional symmetrized plane wave:

„(k, r) = Q I'A~ „(k)u, (E, r)
L

+8~ (k) u, „(E„r)]

Zx Y~(r)

„(k, r) =(2/0)' 'exp[i(k+g„) r]x
sin(k~); (-)

Here (+) and (-) denote states which are, respec-
tively, symmetric and antisymmetric with respect
to z reflection; k is a two-dimensional crystal mo-
mentum vector, g is a two-dimensional recipro-
cal lattice vector, 0 equals the volume of the unit
cell between z =+&D, ,and k„ is defined in terms of
the distance D between the boundary planes:

where fl(E, ) =-(su/sEjjz, I, -={I,m), and E, are
.constant energy parameters. The significance of
using the energy derivative function is that to a
good approximation the function u, (E) is linear
over an energy range centered on E, :u,(E) =u, (E, )

+(E —E,}d,(E, ) 'T2he radial function u, is ob-
tained by solving the Dirac equation in the limit of
zero spin-orbit coupling. We use a formulation
developed by Koelling and Harmon2~ for solving the
Dirac equation, which drops the spin-orbit inter-
action but allows all other relativistic kinematic
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effects (mass velocity, Darwin and higher-order
terms) to be included. The A~ and B~ coefficients
are determined by matching onto Eq. (1) so that the
basis function and its derivative are continuous
across the MT-sphere boundary (cf. Appendix).
Essentially because two radial functions are used,
the LAPW method avoids the asymptote problem
encountered in the conventional APW method. The
constant energy parameters E, are generally set
equal to a value in the center of the energy range
for the bands of that l character. The resulting
band eigenvalues are very insensitive (typically
over a range of about 1 Ry) to the particular choice
of these parameters. For example, in the case of
Cu three- and five-layer films, variation in the
E, , parameter (the most sensitive parameter in
d-band films) by about a0.2 Ry causes eigenvalues
to shift by only 1-2 mRy.

the secular equations (cf. Appendix),

g [ff.,„,.„-E(k)O. ,„,.„]c.„=0. (6)

The Hamiltonian matrix here consists of three
terms,

H = PF~& + API, V +
JOHNS

where PF~~ is due to the FMT potential, AH, ~ is
due to the non-FMT correction potential in the in-
terstitial region and in the vacuum region, and

hH„z is due to the nonspherical (NS) correction
inside the MT spheres.

The most important feature of the LAPW secular
equations in Eq. (6) is that the Hamiltonian and

overlap matrices are energy independent. This
permits the simultaneous determination of the
eigenvalues and eigenvectors and represents a con-
siderable savings of time and effort.

3. Exterior or vacuum region

xexp[i(k+g„) r], ~ (4a)

where z = 1, 2, respectively, for the upper or lower
vacuum region and u& „(E„,z) is a solution of the
one-dimensional SE in region III with the z-depen-
dent potential, V(z),

c
8

, ~ V(z) —(E„—tP))u „(E„,z)=0. - (4b)

The'basis function in region I'II of Fig. 1 is de-
fined as a product of a two-dimensional plane-wave
and a z-dependent function and its energy deriva-
tive:

ig'"„(k, r) =tA„'"„u~ „(E„,z)+a&'&„uf (E„,z)]

III. APPLICATIONS

Since our primary aim is to test the method and
to demonstrate the wide range of its applicability,
the calculations were performed in the non-self-
consistent FMT approximation. The film potentials
were constructed by overlapping atomic Coulomb
potentials and using the local density approxima-
tion2' to obtain the exchange-correlation potential
from overlapping atomic charge densities. Self-
consistent nonrelativistic atomic wave functions
were obtained using a Herman-Skillman type pro-
gram. Except where otherwise indicated, the ex-
change-correlation potential was computed using
the value e=-,'. The resulting potential was spher-
ically averaged inside the MT spheres, volume
averaged in the interstitial region and planar aver-
aged in the exterior region.

The A „and J3 „coefficients are determined by
matching onto Eq. (1) so that the basis functions
and its derivative are continuous across the bound-
ary planes at z =+2 D (cf. Appendix}. As stated,
the final results are found to be very insensitive to
the particular choice of the vacuum constant energy
parameter E„.

B. Secular equations

As defined above, the basis functions are every-
where continuous and differentiable, and the Ray-
leigh-Ritz variational principle is then easily ap-
plied. Expanding the electronic wave function in
this basis,

and applying the variational principle then yields

A. Transition metals

We present here results tall for the (001) sur-
face] for one-, three-', and five-layer fcc Cu
films, and for five-layer films of bcc Fe and of
fcc Co and Ni. The band structure of the Cu mono-
layer along lines of symmetry in the two-dimen-
sional Brillouin zone (BZ) is shown in Fig. 2. The
two-dimensional BZ for the (001}surface is pictured
in the insert. The solid and dashed lines represent,
respectively, states which are symmetric and anti-
symmetric with respect toz reflection. Symmetries
are labeled following Ref. 7. Milli-Rydberg conver-
gence was obtained using about 50 basic functions for
each symmetry type. For thicker films -30 basis
functions per atom were sufficient to obtain sim-
ilar convergence. As noted in Sec. II, the E, , pa-
rameter is the most sensitive one in the case of
Cu films (variations of about 1 Ry in the others has
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-.2

FIG. 2. Band structure for the Cu monolayer. Solid
and dashed lines represent bands which are, respective-
ly, symmetric and anti-symmetric with respect to z re-
flection. The two-dimensional Brillouin zone for the
(001) fcc and bcc surface is shown in the insert.

Wang and Freeman" have very recently shown that
such d holes (located in a pocket centered at M, )
disappear on going to self-consistency. We return
to this point below.

The density of states (DOS) for the monolayer
film is shown in Fig. 3. We have used a two-
dimensional generalization'9'" of the bulk linear
analytic tetrahedron method. " The DOS was

. obtained using 15 k points in the irreducible
of the two-dimensional BZ and then smoothed

with a Gaussian (FWHM=0. 1 eV) to suppress
noise. Compared to the DOS in bulk Cu, the
d-band width has been reduced by about 30%—
4(P/p. This narrowing of the d-band is in good
agreement with other calculations.

Changes in width have also been observed" in
angle-resolved photoemission spectra taken at
grazing angles in Cu. Mehta and Fadley~ have
shown that this, is directly related to the variation
in d-band width of the local DOS in the outermost
layers. This behavior can be qualitatively seen in

Fig. 4, where we show the DOS for one-, three-,
and five-layer Cu films. In this figure the d-band
width substantially increases on going from the
monolayer to the three-layer films, but increases

essentially no influence on the total results). For
the monolayer E, , was set equal to 0.31 By above
the constant interstitial potential. The band struc-
ture in Fig. 2 is in good general agreement with
other thi oretical calculations. "' ' ' There are
no d holese'8 in Fig. 2; the Fermi energy E~ bare-
ly cuts above the M, symmetry point. This feature,
however, is particularly sensitive to the potential.
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FIG. 3. Density of states for the Cu monolayer,
FIG. 4. Density of states for the Cu (a) monolayer,

{b) three-layer film, and (c) five-layer film.
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respectively, symmetric
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only slightly on going from three to five layers.
This indicates that the d-band width of the second
layer local DOS is already becoming close to that
of the bulk DOS.

The band structure for the five-layer film is
shown in Fig. 5. For the five-layer film, E, , was
set equal to 0.4V By. The circles and crosses in-
dicate states which are, respectively, symmetric
and antisymmetric with respect to z reflection.
Our results are generally in good agreement with
the parametrized tight-binding calculation of the
energy bands of a 33-layer Cu film of Sohn et al."
In Fig. 5 we identify SS occurring in absolute band
gaps by curved lines. Ther'e are two at X, an oc-
cupied state at --0.3 Ry and an unoccupied one at
W.2 Ry. These SS were also found in Ref. 35. The
SS at M near E„was not found, however, in Ref.
35. We have also found this SS at M in Co and Ni
(discussed below).

The DOS for our three- and five-layer Cu films
are compared to the bulk DOS in Fig. 6. All curves
have been smoothed with a Gaussian of FWHM
=0.1 eV. The bulk band structure is a non-MT,
self-consistent LAPW calculation'6 using the same
exchange-correlation parameter, e = —', . While
there is rough agreement with respect to shape and
width, the d-band width of the five-layer film is
greater than in bulk, and the distance between the
d-band edge and E~ is smaller by about 0.6 eV in
the film results than in bulk. " Possible explana-
tions for these discrepancies include: (i) the neg-

2"
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V3

C3

C3

0
(c)

2-.

0-8 -6 -2
ENERGY (eV)

FIG. 6. Density of states for (a) bulk Cu (Ref. 36), @)
the three-layer Cu film, and (c) the five-layer Cu film.
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lect of non-FMT contributions to the potential, (ii)
size effects which would become smaller on going
to thicker films, and (iii) the use of a non-self-
consistent potential.

Regarding (i), the potential in the five-layer film
interstitial region varies over a range of about, 0.8
Ry with the average value falling near the middle
of this range (this is also true for the Fe, Co, and
Ni films). Nonspherical potential terms inside the
MT spheres and ~-y dependent terms in the vacuum
region are both substantially smaller, so that we
focus attention on the nonconstant terms in the in-
terstitial region. While these terms are large in-
deed, one would expect that the neglect of these
terms wouM lead to an overall ~ay j ozgjng of the d
bands and adonm~axd shift of the d bands relative
to the sp bands. This is because the volume aver-
age of the interstitial potential in the atomic
Wagner-Seitz cell of a central plane atom is Iozve&

in energy than the total film average taken over all
layers. The use of the total film average in the
FMT potential should, therefore, introduce a rela-
tive narrowing in the central plane DOS compared
to, for example, a warped-MT calculation. We
have, in fact, observed an indication of this behav-
ior (discussed below) in a calculation employing an
exchange parameter a = 1,

Size effects (ii) can manifest themselves in the
following way. We find that the overall sp-band
width in the five-layer Cu film is about 0.1 Ry
smaller than in bulk. Similar behavior was found

by Wang and Freeman" in a self-consistent LCAO
calculation for a five-layer (001) Ni film. They
found that the overall sp-band width was about 0.05
By smaller than in bulk, although the d-band width
was essentially the same as in bulk. In addition,
they found a lowering (by about 0.05 Ry) of the film-
derived I', state relative to the bulk value of l, .
Since EF falls inside the d bands in Ni, such size
effects do not significantly affect the location of
EF. By contrast, this behavior in Cu could con-
tribute to the relative position of EF and the d-band
edge, although it does not account for the differ-
ence in d-band width between the five-layer film
and bulk.

The third possibility (iii) is supported by results
obtained by Wang and Freeman' in a self-consis-
tent LCAO calculation for a Cu monolayer. They
find that on going to self-consistency the d band is
narrowed by 0.16 eV and its center of gravity is
lowered by approximately 0.4 eV with respect to
EF. As noted, this causes the d holes in their non-
self-consistent calculation to disappear. In non-
self-consistent bulk calculations for d-band metals,
the use of a variable exchange-correlation param-
eter u (with n taking a value near or equal to 1)
leads to results (at least for the eigenvalues) which

TABLE I. Comparison of LAPW results for the Cu
monolayer with the self-consistent (SC) results of Ref.
19 (energies in eV).

Non-SC (19) LAPW
2
3

LAP%
~ = 0.722

SC (19)
2
3

E
EF-M3
M3-M4
EF —I'g

-3.74
-0.18

2.71
5.16

-3.82
0.02
2.52
4.68

-4.23
0.31
2.39
4.58

-4.92
0.29
2.55
4.85

are close to those obtained self-consistently" with
e = —,'. Thus one can try to simulate the effects of
self-consistency on the film band structure by
varying n. We found for the Cu monolayer, that a
value of n =0.72 more closely approximates (Table
I) the self-consistent results of Wang and Free-
man. " The effect of a similar variation of a for
the five-layer film is shown in Fig. 7 which pre-
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CL pl
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CQ
e

C3

C3

0
(c)

0
-8 -4 -2

ENERGY l eV I

FIG. 7. Density of states for (a) five-layer Cu film
with n = 0.82, (b) bulk Cu (Ref. 36), and (c) the five-layer
Cu film with &= & [same as F~. 6(c)].
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FIG. 8. Band structure
for the Co five-layer film.
Two surface states at X
and one at R are identified
by curved lines.
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sents several of the same curves as in Fig. 6 ex-
cept that the film DOS has been computed using n
=0.82 to achieve better agreement with the bulk re-
sults. A11 the SS identified in Fig. 5 remain in the
n = 0.82 calculation. The agreement between Fig.
V(a) (e =0.82) and Fig. V(b) (bulk) is remarkably
good. This is somewhat surprising at first, since
Wang and Freeman' found that their total DOS for
a five-layer Ni (001) film differs substantially
from the bulk DOS, although their central plane
DOS closely resembles the bulk results. They at-
tribute this to the fact that their surface plane DOS
is substantially more narrow than their central
plane DOS. The d-band width is greater in Ni than
in Cu, however, and it is possible that the broader
Ni d band suffers more severe narrowing (com-
pared to Cu) on the surface-plane relative to the
central plane. While we have not cal.culated planar
DOS's, this behavior seems to occur for Cu in Ref.
35; compare with Ref. 20 and Ref. 39 for Ni.

A calculation for a five-layer Cu film using n =1
resulted in a d band which was narrowed by about
1 eV compared to the pulk result with the distance
between E~ and the d-band edge equal to about 2.5
eV. While non-self-consistent bulk calculations
with & =1 generally yield good agreement with bulk
self-consistent calculations with e = -'„ thi. s behav-
ior for the five-layer film with n =1 confirms the
expectations discussed above concerning the neg-
lect of the nonconstant potential terms in the film
interstitial region. The successful use of e =0.82
suggests that this intermediate value represents a
trade-off between (i) compensating, to a degree,

2" (a)

X:
C)I—

0

2"
0
M

(b)

(0
0

Cl ~ ~ {c)

0 -6 -4 -2
ENERGY ( GV )

FIG. 9. Density of states for five-layer films of (a)
Co, (b) Ni, and (c) Cu.
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for the neglect of the nonconstant potential, and (ii}
simulating self-consistency. We believe, there-
fore, that in a marped-MT calculation, the use of
an exchange parameter nearer n =-1 would more
closely agree with the-bulk self-consistent results.
A similar trade-off may be present for the Cu
monolayer. In this connection, it is interesting to
note that in Ref. 24 a Cu-monolayer calculation us-
ing a bulk MT-potential with n =1 yields results in

generally good agreement with our e = —,
' Cu mono-

layer band structure.
Keeping in mind the characteristics of the n = —,

FMT calculations discussed above, we now present
our results for Co, Ni, and Fe. In Fig. & we show
the band structure for a five-layer fcc Co film.
Here we have identified three SS which are the
counterparts of those shown in Fig. 5 for Cu (the
upper SS at X in Fig. 8 is just below vacuum}. We
also find these SS in the five-layer Ni bands. The
SS at 1P) in Cu (Fig. 5}was not found in Ref. 35, but
this state was found in the ferromagnetic Ni bands
of Ref. 40. In the majority spin bands of Ref. 40,
this state belongs to a band of SS which was used
to account for the reversal of photoelectron-spin
polarization just above threshold.

Figure 9 compares the total DOS for five-layer
films of fcc Co, Ni, and Cu (all calculated with 0'.

= —,'}. With regard to such general features as d-
band width and the location of E~, these results
show trends which are similar to those in bulk.

In Fig. 10 we show the band structure for a five-
layer bcc-Fe film. General features of the energy
bands are in good agreement with the supplemented

3 0 s ~ ~

2.5"
I—
CC

I

2.0 "

4

EF

l.5 "

l.0.-

CQ

0.5-

0 ~ ~

-lp -8 —6 —4 —2 0 2
ENERGY (eV)

FIG. 11. Density of states for the five-layer Fe film.

OPW calculation of Caruthers et a/. ' We identify
at X two clear examples of SS occurring in absolute
bulk energy gaps. These mere also found in Ref. 8.
In Fig. 11 we show the DOS of the five-layer Fe
film. This DOS has the characteristic signature of
the bcc structure and is in good agreement with
Ref. 8.
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B. Aluminum

For NFE-like crystals the number of basis func-
tions required for convergence is mtfuch less than in
d-band metals. In Fig. 12 we show the band struc-
ture along the symmetry line I -X for a nine-layer
AI (001) film. In this calculation 110 basis func-
tions were used to obtain convergence ta about 10
mRy. A s before, plus and minus signs in this fig-
ure label states which are, respectively, symme-
tric and antisymmetric with respect to z reflec-
tion. All the bands shown in Fig. 12 have the same
two-dimensional h, symmetry, so that the only al-
lowed crossings are between states of different z-
reflection symmetry. The "oscillatory" behavior
is thus due to anticrossings of bands wi. th the same
two-dimensional symmetry. Upon going to the lim-
it of an infinitely thick film, the anticrossings will
look more and more like true crossings, and the
bands will look more and more like NFE parabolas.

This can be seen from consideration of the band
structure in this limit, i.e. , the bulk projected
bands, shown in Fig. 13 (taken from Ref. 31). Be-
cause all the bands in Fig. 13 have the same 6,
symmetry, bands with the same value of k, (the z
component of the three-dimensional Bloch momen-
tum) must repel one another, thus causing the bulk

energy gaps shown. Bands with different values of
k, may cross, however, since P, is a good quantum
number in the bulk.

In a film, by contrast, there is no periodicity in
the z direction, and k, is no longer a good quantum
number. Thus crossings of bulk bands with differ-

.9 .8 0
I.0~%F6.5,43 2 I hi( I

(~i'll I I I ,~(' i ir i,

Il

Ir

l.o""',"' I~i~lI~I r(

~ ~ gl

~ 1 ~ ~ ~
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~v
~ 1

0""
x

&3.2—

-O.B-
O. I

I'IG. 13. Projected bulk
bands for Al (001) along
T'-X (aef. 31). The num-
bers which label the bands
represent values of k» in
units of 27j /A, where A is
the bulk lattice parameter.

ent values of k, must become anticrossings in the
film calculation. As the film becomes thicker,
however, k, is more and more nearly a good quan-
tum number, and the anticrossings begin to look
more like true crossings. In the light of these re-
marks, one can see the close similarity of our
nine-layer film bands (Fig. 12) and the bulk pro-
jected bands (Fig. 13).

0.2—

EF +

-0.2—

-0.4—

FIG. 12. Band structure
for the nine-layer Al film
along F -X. A pair of
surface states are identi-
fied by heavy lines. The
(+) and (-) signs denote
states which are, respec-
tively, symmetric and
anti-symmetric with re-
spect to z reflection.

C. Surface and resonance states in Al (001 )

This similarity (particularly with regard to the
NFE-like behavior which emerges from the ex-
treme anticrossings in our bands) is crucial to un-
derstanding a very recent photoemission measure-
ment by Gartland and Slagsvold" of an occupied SS
and resonance on clean Al (001). We identify the
relevant pair of SS by heavy lines in Fig. 22. These
SS states run from I' to about one'-half the distance
to X. They then persist as a resonance into the re-
gion of bulk continuum states. Note that the re'so-
nance "hops" across different film energy bands
following a free-electron-like dispersion. The 88
has previously been found in Refs. 30 and 31, but
the existence of the. surface resonance was first
reported by us. Gartland and Slagsvold29 have
identified this SS in their angular resolved photo-
emission spectra. They found a parabolic disper-
sion relation which starts in the bulk band gap at
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TABLE Il. Comparison of the experimental and theoretical (nine-layer film) surface state-
surface resonance (SS-SR) for Al (001) along I'-X (energies in eV).

E~ Ess(r)
~*pm

(-) SS SR

2.53

1.04 + 0.03

(+) SS-SR

3.41

1.04 + 0.03

Average

2.97

1.04

Expt. (Ref. 29)

2.80 + 0.2
1.03 + 0.1

I'and continues smoothly up in the bang gap through
the continuum region [which starts in Fig. 13 at k„
= (0.5, 0) in units of r/a, where a is the surface lat-
tice parameter] to E~. Up to k~, =0.5 the measured
dispersion relation agrees well with all the film
calculations. At larger values of k, (, however,
these authors were not able to correlate the ob-
served peak behavior with the existing surface
state calculations. ' ~' By contrast, the experi-
mental dispersion relation agrees extremely well
with the heavy curves in our band structure in Fig.
12. The comparison is summarized in Table II.
The average values listed in Table II are probably
reliable indicators of the limiting values as the
film gets thicker and thicker (and the energy split-
ting between the SS approaches zero), and the
agreement with experiment is remarkably good
here. The experiment, which is sensitive to states
localized at the surface, thus detects a true SS for

~ 0.5 and a surface resonance for large k ~).
" In-

spection of previous surface calculations for Al
shows no hint of this essentially free-electron-like
behavior, which is evident in our results because
of the extreme anticrossing behavior of our bands.
Theoretically, the observed tr:ansition from a
true SS to a surface resonance is explained" in
terms of a mechanism in NFE metals for the
formation of surfair resonance states in "partial"
Bragg reflection energy gaps. This and a more
complete discussion of the SS resonance is pre-
sented in Ref. 28.
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APPENDIX: DETAILS OF THE FILM LAPW' FORMALISM

1 8'(xu) l(l+1) u
r2 +2m(E —V) u+h u =08

(A.1)

where the relativistic correction terms are con-
tained in h~,

(A.2)

and M = m+ (1/2c')(E —V). Differentiating (A.1)
with respect to energy yields a differential equation
for the radial energy derivative function

+t»»t ( El » +)»,

1 s'(ru)
Br

&(1+1)u +2m(E —i»') u+ k~u

=-2mg»', -hsu. (A.3)

If the functions u, are first normalized inside the
MT spheres as

A. Identities for the relativistic radial functions inside the

MT spheres

The radial function u, (E„r) is taken to be the
large component radial function of the solution of
the Dirac equation in the limit of zero spin-orbit
coupling. In this limit, we follow the formulation
of Koelling and Harmon" for solving the Dirac
equation and obtain solutions for a coupled pair of
linear differential equations exactly as in Ref. 27.
For the purpose of deriving some useful identities,
however, it is convenient to replace this coupled
set of equations by a (completely equivalent) single
Pauli- like equation:
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0

R~
Q) ~ dt'=1, (A.4)

A~ Q -- — Q —Q Q

then u, and u, will be orthogonal [as can be
seen by differentiating (A.4) with respect to ener-
gy]. Multiplying (A.l) by r'u, and (A.2) by r'u„
subtracting (A.2) from (A. l), and integrating J"~ dr

0
then yields the identity

Y~ „(m, n} =2 '~'[e '~a&~~ Y (K +k }

ye '"nl'ngY (K f ) ]

g, (m, n) -=[j,'(G „R„}u,„—j,(G „R )u,' „],

5( „(m,n) -=[j)(G „R )u) „—jq(G.„R.)u, „1.

(A.9c )

(A.9d)

(A.9e)

, r'. e
R'„Iu -u —u uIBr Br jR„

(A.6)

B. Identities for the z4ependent functions in the vacuum regions

A relation similar to Eq. (A.6) can be obtained for
u„- JE„,z) and its energy derivative, u& (E„z).
u& is first normalized as

u„~dz =& (A.7)

to insure the orthogonality of u& and j-, . A dif-
ferential equation for u& is then obtained from the
SE for u& „[cf.Eq. (4b) in the text]. Repeating
essentially the same steps described above then
yields the identity

(A. 5)

where we have used (A.4). In obtaining (A.5) we
have neglected terrors in the integrand proportional
to sM/sE, since these are smaller by a factor of
I/c2

The integral appearing in (A.5) is essentially the
expectation value of the energy derivative of the
relativistic corrections, h„. This term is extrem-
ely small, and an excellent approximation to (A.5)
is the identity (in Rydberg a.u. ):

A'"' = (2/0)' '(-1)"u+ (-'D)

B.",': =-(2/Il)"'(-I)" u-„',.(-.'D) .
(A.10a)

(A.10b)

Note that, formally, Eqs. (A.10a) and (A.10b) are
valid for both (+) and (-) symmetry types, although
the index n refers to different definitions of k„' and

k„(Eq. 2). The expansion coefficients on the low-
er-boundary plane (z = —,D) are sim—ply related (by
symmetry) to those at the upper plane:

gtt Sl, ff 0

B(2&& —&B(&)
Sl pf Nl ~ff

(A.10c)

(A.10d)

Here y is the position vector of the eth atom in
the unit cell,

=k+g„, k„-=k„z, and G, = IK k. I= IK knl

The (+) and (-) denote states which are, respec-
tively, symmetric and antisymmetric with respect
to z reflection. In Eqs. (A.Qa) and (A.9b) there is
no denominator which can vanish, thus eliminating
the asympote problem of the conventional APW
method [actually the "denominator" is (uu' —uu'),
which is s(mply replaced, from (A.6) by 1/R' ].

Similarly, using Eq. (A.8), expressions for the
expansion coefficients A~"„and B~"„can be ob-.
tained by matching Eq. (4) onto the symmetrized
plane wave at z = +2D. For the upper-boundary
plane (z = —,'D) we have:

~ ~8 ~ . 't = —1.
uk m u'k a u%, m

I
z„-n g2

C. Expansion coefficients

(A.8)
D, Hamiltonian and overlap matrices

The overlap matrix is given by

Using the relation (A.6), expressions for the ex-
pansion coefficients A.~ and B~ can be obtained
by matching Eq. (3) onto the symmetrized plane-
wave basis function and requiring that each angular
momentum term be continuous with a continuous
derivative:

A~ =4''„Q '~'e' '&K~ a, (m, n}Y~ (m, n), (A.Qa)

B „=4''0 '~'e'" ~b, (m, n}Y'' „(m, n), (A Qb)

where

o, , „=&y', ,(k, r}Iy„'„(k,r))

= p„',„,„„+ " +exp[ i(g„—g —.) i ]

xR4 Q (2l+1)S,„P',„+S„„i„„.
(A. l la)

The first two terms come from inside the boundary
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planes, Iz I
( —,'D: the first term is the contribution

from the interstitial region, and the second term
is the contribution from all the MT spheres. The

third term in (A. 1 la) comes from the exterior or
vacuum regions, IzI~ ,D.—Thequantities in Eq.
(A.1la) are defined as follows:

.„.,„„~„'—
& +exp[ i(-g g—„.) y ]R'„fcos[k„-k„,)y„,]Z„(G',„,, 6'„„)

icos[(k„+k„,)y, ]J„(G'„,„,, G „)7, (A. 1 lb)

with

(A.1 le)

8, „=a,„(m'n')a, „(mn)

+ b, „(m' n')b, „(mn)N, „, (A.1lc)
P =(cos[(k„-k„.)y, ]P,(G'.„. G'„)

a cos[k„+k„.)y, ] P, (G'„„G „)), (A.lid)

N -=ul, „(z)dz',
D

and A is the cross-sectional area of the unit cell.
The Hamiltonian matrix is given as the sum of

three terms (Eq. 7):

H „=HFMT +~» ~+~
= (pm ~ n~ I&FuT I9-mn)

J(x, y) '=j,(Ix--yIR )/Ix-yI .

R

0
O'„=-K ~k„~,

P, (r", .r", ) is a Legendre polynomial,

(A.l lf) (9 m'n'I I,'v I 0 mn)n n(

+ (gm'n'I ~l Ns I 0 mn)g

vrhere g, ~ is the correction potential in the inter-
stitial and vacuum regions (II and III in Fig. 1) and
gV» is the nonspherical correction potential in the
MT spheres (I in Fig. 1). We present here expres-
sions for HFMT.

H'", ",T„=G2,„,IJ',„,„„+—"g exp[ i(f„-g) -yn]R'n g(2&+ I)[E&~&,a+a&, nbrn]P~. n,
CX

(A.12)

Here, the E, are the constant-energy parameters
inside the MT spheres, and E„ is the constant-
energy parameter for the vacuum regions. Indi-
vidually, the first two terms are not Hermitian
[the fourth term is Hermitian, as can be seen by
inspection of Eqs. (A.10a) and (A.10b)]. The non-

C

Hermitian parts can be combined, however, to
yield an expression which is manifestly Hermitian,
for the first two terms. This is done using a stan-
dard identity" for a Bessel function summation
occurring in these terms. The resulting Hermitian
expression for the first two terms of Eq. (A.12) is:

Gm'n'b ' mmnn nn Il g exp[ &(gm- gm. ) 'y„]R~ (cos[(kn —k„i)y„]J~(G+, G+)(G'i„l G+„)

where

*cos[(k„+k„,)y, ]J„(G',G )(O',„, G„„)$

+ g exp[-&'(g —gm )'yz ]R~ g (2l+ 1)[EiS& ~+y& ]P&
C l

(A.13a)

y .-=u,.u,' [j,'(G. .„.R )j,(G „R )+j,(G,„.R.)j,'(G „R.)]
—[u(' „u&' nj (G „R )j&(G „R )+ ui u( „j~(G,„,R )jg(G R„)]. (A.13b)
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