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Adolfo Efguiluz
Department of Physics, University of Toronto, Toronto MSS 1A7, Canada

(Received 14 July 1978)-

We use the hydrodynamic model of the bounded electron gas to evaluate the density response function of a
thin film, including the effects of electron-gas dispersion (nonlocal effects). We obtain the contribution from
the complete spectrum of plasma modes to the. inelastic differential scattering cross section for keV electrons.
Our results are for a sharp electron-density profile at the slab surfaces, Because of nonlocal effects, the
spectrum is composed of a.series of distinct bulk plasmons, in addition to the two surface plasmons of a thin
film. We present a detailed analysis of the dynamic structure factor of a thin film in the small-wave-vector

limit. We show that for sufficiently thin films, the limits P~O (which defines the local limit) and q~~L ~0
(where

q~~
ig the wave vector of the plasmon and L is half the film thickness) are not interchangable in our

expression for the differentia cross section. Thus the local-approximation result of Ritchie for the
transmission probability of a fast electron through a thin film is recovered in the. P —+0 limit only for

q~~
L & 1.

We also show the close relationship between the hydrodynamic density response function and the density
response function obtained in the semiclassical random-phase approximation with classical specular scattering
at the boundaries.

I. INTRODUCTION

Previous studies' ' of the problem of the inter-
action of an external charge and a thin metal film,
have been mainly based on a local response'of the
electron gas. In this paper we use the hydrody-
namic model of the inhomogeneous electron gas' "
to.evaluate the density response function of a thin
film, including spatially dispersive (nonlocal} ef-
fects. %'ith this model we obtain, for the first
time, in an explicit way, the contribution from
the complete spectrum of plasma modes to the
inelastic differenti. al scattering cross section for
an electron impinging on a metal film.

The reflection symmetry about the midplane of
a film allows us to classify the normal modes as
symmetric and antisymmetric under this reflec-
tion operation. The complete spectrum of normal
modes (of each parity) consists of a surface plas-
mon and of a set of bulk plasmons. The disper-
sion relation of the surface plasmons of thin metal
films has been measured by electron-transmission
experiments. ""The bulk plasmons have only
been detected in a different type of experiment,
namely, in the measurements of "anomalous" op-
tical absorption in thin silver films by Lindau and
Nilsson. " [The anomalous structure in the ab-
sorptance' "can be approximately explained in
terms of the peaks in Im(l/q, }, which occur where
R«,(k, &u) =0, q,(k, &u) being the longitudinal di-
electric function of the homogeneous electron gas. ]
In this paper we obtain the dynamic structure fac-
tor of a thin metal film, which generalizes to tQe
bounded system the "loss function" appropriate
to an infinite system. %e are thus able to study

the excitation of bulk (and surface} plasmons of a
thin film by high-energy electrons. Under optimum.
conditions, i,e. , very thin, free-electron-like
metal films, the dispersion relation of the bulk
plasmons could be obtained from electron-trans-
mission experiments.

This'paper is organized as follows. In Sec. II,
we define the response of the electron system in a
thin film to an external charge distribution (the so-
called "dielectric response function" }and to an
external longitudinal field (the "density response
function"). We evaluate both response functions
within a hydrodynamic approximation. ' " Vfe only
consider the simplest model for the ground-state
electron density profile, in which the electron
density exactly replicates the (jellium) background
profile. In a future publication we hope to study
the contribution to the response functions from the
"higher multipole" surface plasmons, whose ex-
istence is predicted by nonlocal theories
for sufficiently diffuse electron density profiles.
In Sec. II we also make contact with the micro-
scopic calculation of Griffin and Zaremba""
[random-phase-approximation (RPA} dynamics
plus the assumption of classical specular scat-
tering at the boundaries]. We show that both
theories give the same form for the Fourier coef-
ficients of the density response function in a dou-
ble-cosine Fourier representation. These coeffi-
cients depend on the properties of the electron
system only through the infinite-medium response
function. %e show that, in fact, in this represen-
tation, the hydrodynamic density response func-
tion is obtained by replacing the RPA infinite-
medium dielectric function by its hydrodynamic

1689 1979 The American Physical Society



1690 ADOLFO EGUILUZ

counterpart. A consequence of this result is that
the parameter P which enters Euler's equation
must be the same in the (sharp-} surface problem
as in the bulk problem. Ambiguity concerning this
point has been an unsatisfactory aspect" "of the
hydrodynamic theory in its application to surface
problems.

In Sec. III we evaluate the imaginary part of the
density response function. This requires a discus-
sion of the dispersion relations of the plasma
modes of a metal film. From a knowledge of the
imaginary part of the density response function
we proceed, in Sec. IV, to obtain the dynamic
structure factor of a thin metal film and the dif-
ferential scattering cross section for processes
in which an external (fast} electron creates a col-
lective mode of the electron system. We note that
the hydrodynamic theory does not include the con-
tribution to the response function from the elec-
tron-hole pair excitations. The 5-function peaks
in the cross section would be broadened in a theory
(like RPA) that included Landau damping.

In Sec. V, we present a detailed analysis of the
dynamic structure factor in the limit q, I -0,
where q, is the component of the wave-vector
transfer in the plane of the slab surfaces and L

is one-half the film width. We give numerical
results for the dynamic structure factor as a func-
tion of film thickness for forward transmission of
keV electrons. One interesting result that
emerges from Sec. V is that the limits q„L -0 and

P -0 (where P -0 defines the local limit) are not
interchangeable in our general expression for the
dynamic structure factor. Thus, although the
well-known expression for the differential cross
section due to Ritchie' is obtained on setting P=0
in Eq. (4.3) (see Appendix A}, this procedure is
valid for q„L & 1 only. (This condition is alnrays
satisfied in the half-space problem, in which
L -~). We show in Sec. V that when q„L & 1 the
dynamic structure factor of the nonlocal theory
does not reduce to the one obtained with the local
theory (P =0) upon taking the limit P -0. This
unexpected behavior of the dynamic structure fac-
tor is a reflection of a similar feature of the dis-
persion relations (of which the former quantity is
a functional}: the limits q„I -0 and P-0 cannot be
interchanged in the dispersion relations of the
antisymmetric (bulk and surface) modes. Al-
though nonlocal effects enter the dispersion rela-
tions in terms of a small parameter, the fact that
this parameter is finite is critical in the case of
the antisymmetric modes. In fact, in the limit
q„l -0, the dispersion relation of the antisym-
metric modes is.not an analytic function of P at
J8 =0. We remark that the low-frequency response
in which the symmetric surface plasmon is in-

volved, is correctly described by the local theory.
We close this Introduction by noting that it is

usually stated (see, e.g. , Ref. 6 and, in a different
physical case, Ref. 24) that an external charge
does not interact with the bulk plasmons. This
statement is based on the argument that the bulk
plasmons do not give rise to a potential outside the
so)id. This is not the case in the nonlocal theory. "
In Appendix 8 we write down the expression for
the scalar potential, outside the film, due to the
bulk plasmons of both reflection symmetries.
Finally, in Appendix C we briefly discuss the in-
fluence of retardation effects.

and we have called z the coordinate normal to the
jellium surfaces (taken for convenience to be at
planes z = + L). The wave vector q „ is a two-di-
mensional vector in a plane parallel to those sur-
faces.

We start out by evaluating D(q „&o ~zz') for a hy-
drodynamic model of the bounded electron gas,
an often used approximation. ' " Assuming that
the total energy of the system can be expressed as
a functional of the density n(x, i),'""we can de-
duce (via Hamilton's equations) the equations of
hydrodynamics:

—~+ v ~ J=O
Bt

(2.3)

and

~any

mn —v= le In(E —VV„,„)—nV —6 {nj.

(2.4)
I

ln Eq. (2.4) we have neglected retardation effects
by formally setting the speed of light c=~. The

II. DENSITY RESPONSE FUNCTION OF A THIN FILM

A. Hydrodynamic approximation

In this paper we consider a solid with a slab
geometry. The ionic background is represented
by a jellium model. The ensuing translational
symmetry in the plane of the surfaces of the jel-
lium slab is explicitly taken into account in de-
fining the so-called "dielectric response function"
D(q„&u ~zz') by the equation

m, q(„rds()=f de' D(q„rdz(z')m, „,(q„ra[a').
mOO

(2.1)

Here n, (q „(() ~z) denotes the fluctuation in the elec-
tron number density induced by an external charge
density

(2.2)
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n, (z) = n, [e(z+L) —e(z —L)], (2.7)

no being equal to the background number density
1V,. The second approximation consists in keeping
only the "Thomas-Fermi" contribution to the den-
sity functional G. In this case, we have"

QQ
n, v = m p'Vn, (x, (o},

Sz
(2.6)

with P'=1/Sv2~. We shall, however, consider P as
a parameter to be determined by comparison with
microscopic theory (see below).

We emphasize that the nonlocal parameter P'
multiplies the highest derivative of the differential
equation for the density fluctuations [Eq. (2.6)].
Thus, in the local theory (p'=0) the mathematical
description of the response of the electron system
is completely altered. This point is eventually
responsible for our result (Sec. V) that, when

q, L &1, the p -0 limit of the results of the non-
local theory can be different from what is obtained
from a local theory [Eq. (2.6) with P'= 0].

Fourier transforming Eq. (2.6} and substituting
Eq. (2.1) into the resulting equation leads to the
differential equation for the dielectric response
function D(q „(oIzz'):

d'
p'

~ +(~'- ~;—p'ql) ID(q ~ I«')

uP, 6(z —z') . -(2.9)

Here Izl&L whereas -~ &z'&+~. Thus the dif-

total longitudinal field satisfies Poisson's equa-
tion:

&' E =4vle I[&,-n(x, t)+n,„,(x, t)] (2 6)

We recall that the functional G{n), whose functional
derivative enters the "pressure term" in Eq. (2.4)
represents the exchange, correlation, and internal
kinetic energies of the electron system.

We next linearize the equations of motion in the
usual way, ~' obtaining the following differential
equation for the induced density fluctuation:

p'V'n, (x, (o) + ((o' —(o' )n, (x, (o) = -(o~n,„,(x, (o),

(2.6)

where (o~= 4mn—(,e'/m He.re we have made two ap-
proximations. First, we have assumed" that the
ground-state electron number density n, (z) is given
by

ferential equation is homogeneous when the exter-
nal charge is outside the solid. Its presence will
then be reflected only in the boundary conditions.
Equation (2.9) is to be solved with the boundary
condition that the z component of the current fluc-
tuation must 'vanish at z =+ I-. This condition can
be stated as

-n, Iell —„y,(q „(olzz'), I

where

y, (q „(oIzz ')

2ml 8 I

+mP' —D(q„zlzz')
I

=O, (2.1O)
d

dZ j z=~g

(d', siny I z —z'
I

+ = 5 z —z'),
(dz 2y

(2.12)

which immediately provides a particular solution
of the inhomogeneous equation (2.9) for Iz'I&L.
Here [and with reference to Eq. (2.9)] we have
made the definition

y = {+)[((o'—(o',)/p' —q'„]'", (2.12)

which takes the branch of the square root such that
y is positive definite.

The result for D(q„(o Izz') can be expressed as
follows:

D(q))(olzz }
= e(L —

I
z I){e(z'+L)e(L —z') f,(q„(o Izz')

+ [e(z' —L)+ 8(-z'- I )]f (q„(olzz'}]

(2.14)

where

27t tel dz" e ' "*"
D( q)((ol z' z}. (2.11}

'V ll

~ ~

We remark that since the scalar potential is
given in terms of an integral over the density
fluctuations, the usual electromagnetic boundary
conditions are automatically satisfied by our solu-
tion.

Solving Eqs. (2 ~ 9)-(2.11) involves rather lengthy
but straightforward algebra. Here we shall sim-
ply give the final result. We note, however, the
result

2 2

f (q„tenez') = z —sioy~z —z' ~+ „,, *, , —e ' cos)zq z' —G'"(q„, te) cosyz')
p 9'ii

i, —e '()~sinhq))z +G (q)((o) sinyz'
I

(2.16}
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f,(q„(oIzz')

G'"(q (o) —= &"(q„,(d}+2e '"(

x [sinyL+ (y/q„) cosyL], (2.19)

(op- ~2,( cosyz
p2q (( g (s)(q &e)

ql( G(a)(q &) —Z(s&(q &)+ 2 e 2s((I-

x [cosyL+ (y/q„) sinyL]. (2.20)

hgIIP ) )

In Eq. (2.16) the upper (lower) sign applies when
z'&L (z'( —L). Here we have introduced the func-
tions

2' —(d p&"'(q„,&o) —= cos yL+, —sinyI.
P VII

—e 2s((~[cosyL —(y/q„) sinyL], (2.17)

Now, the dielectric response function D was in-
troduced in this paper because it arises most
naturally in the hydrodynamic theory. Our main
concern, however, is the density response func-
tion X(q „&e Izz'), defined by

n, ( t(„td tz) f-s(:,' x( t(,„~(zz )s'( (at((z') .

(2.21)

2 2

&'(q„, ur) = —sinyL+, —cosyI,
2co —cop

P 9'II

—e 2'((~[sinyL+ (y/q„) cosyL],

(2.16)

Here U,„, is the potential energy of an electron in
a longitudinal field. It is related to n,„,through
Poisson's equation, which can be used to obtain X

in, terms of D (that is, in terms of f, and f,}.
Carrying out the required algebra we obtain the
following result for X:

X(q„~ Izz
') = e(L —Iz l)e(L —I"I)x, —,5(z z')+, , I

siny z —z' I+ „, "' cosyz cosyz'
'qll t

+ &„,
"', sinyz sinyz'I

coj )
2+, ', e( —jzj)[5(z'+L}I!(q„(djz)+6(z' —L)I (q„(oj z)), - (2.22)

where

F(q„&ojz)
—= cosy(z+ L) —[2e '(( sinh q„L+ G"'(q„, &o) sinyL][cosyz/&~'(q„, &o) ]

-[2e '(( coshq„L+ G'"(q„, (d)cosyL][sinyz/&("(q„, (o)]. (2.23)

We note that X becomes singular as p-0 [see com-
ment below Eq. (2.S)]. In Sec. III we evaluate ImX,
which in Sec. IV is used to calculate the dynamic
structure factor of a thin film. Thus Eq. (2.22} is
the basis of the rest of our analysis.

B. Comparison with the microscopic theory

It is, of interest to establish whether the response
function in our hydrodynamic theory. represents a
well-defined approximation to the corresponding
response function provided by the microscopic
(RPA) theory "" In o.rder to answer this ques-
tion we first express our hydrodynamic response
function in the double-cosine Fourier representa-
tion in which the "semiclassical" RPA response '

function is known"" in closed form. Fox this
purpose, we shift the origin z = 0 such that it now

lies on the left-hand edge of the film (whose width
is d=2L) and introduce the Fourier components

X(q „&ojkk') such that

X(q„~ jzz')

, g coskz cosk'z'X(q„&ujkk'). (2.24)
k, k

From the theory of Fourier series, we know that
k =n7(/d, k'=n'w/d, and n and n' take on values
0, + 1, + 2, . . . . The inverse transformation is

X(q (djkk )

dz dz'coskz cosk'z'X q„co zz' . 2.25
0 0

We note that the inversion symmetry about the
midplane of the slab [which is apparent in the
representation (2.22) for X] leads to the restriction
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'

that k and k' must have the same parity (that is, n
and n' must be both even or both odd integers).

Our program is then to substitute Eq. (2.22}
(after making the change of variables z -L+ z,
z'-L+z'} into the right-hand side of Eq. (2.25)
and carry out the required integrals. The ensuing
algebra is lengthy and here we only display the .

answer. [It may be worth remarking that the
terms that include 5(z's L} in Eq. (2.22} do not
contribute to the final expression (2.2V)]. Re-
calling that

2 2
Q)p g

Xz(q ~) =X(qniqgi &)=
4 2 2 2 p2 2

I

(with q'=q'„+q', ) is the hydrodynamic density re-,
sponse function in the case of the infinite, homo-
geneous electron gas,"we cast the result for
X(q24)~kk ) as follows:

X(q „(o~kk')

(2.26)

=XR(quid) 2d(52 „+52. „)

2q„v(q)X, (q, ~)v(q')X, (q', ~)
42e' D" "(q„,(o)

where q = (q „,k), q'= (q „,k'),

v( q) = 4 me2/(q'„+ k'),
i

and we have made the definitions

(2.28)

and

1
D"'(q„, Id)

2(ur'- &o2) y „,~ sinhq, ~L sinyL

(2.29a)

2(~' —&o2) y, ~ coshq„L cosyL

(g g) ~ 2 Vll
DRpA(ql(, ~) = 1 + —~ 2 2 i~

q„+& z~sq
even

(2.30}

where ~ (q, &iI) is the RPA bulk dielectric function. "

(2.29b)

We recall that &"'(q„,u) and L"'(q„, &o) are given by
Eqs. (2.1V) and (2.18), respectively. In Eq. (2.2V)
it is understood that when n and n' are even (odd)
integers, the denominator of the "surface term" is
D"'(q„, a)) [D"'(q„, Id}].

Equation (2.2V) has exactly the same form as the
corresponding RPA result"" which, we recall,
is derived with the assumption of classical specular
scattering at the jellium surfaces [which results in
a ground-state electron density of the form (2.V)].
In that case, XR(q, &o) is the RPA bulk density re-
sponse function and the definition that corresponds
to Eqs. (2.29) is

In Eq. (2.30) the sum over even (odd) values of m
defines DRPA(qadi M) [DRPA(q» ~)].

The formal identity between the hydrodynamic
and the RPA results for X(q„~~kk') suggests that
the hydrodynamic model gives a well-defined ap-
proximation to the RPA in surface problems as
well as in the bulk problem. To establish the rela-
tion between both models uniquely, all we have to
do is investigate whether substituting the bulk RPA
dielectric function by its hydrodynamic analogue
in Eq. (2.30), we recover Eq. (2.29). This is, in
fact, the case. The proof of this assertion makes
use of the following result (z„=in@/d):

2 P2 2+ P2z2

(0 COp—cothq„L+ ' cotyL (2.31a)

2 (Id —Id&)

tanhq„L — 2 tanyL . (2.31b)

The upper (lower) equation obtains when the. sum
runs over all even (odd) integers n. The result
(2.31) can be obtained by the method employed in
the theory of finite-temperature Green's functions
to evaluate frequency sums. "

An obvious corollary to this result (i.e., in the
double-cosine Fourier representation the hydro-
dynamic density response function of a thin film is
obtained from the corresponding RPA response
function by replacing the RPA bulk dielectric func-
tion by its hydrodynamic counterpart), is that the
value of P' that is implicit in Eq. (2.2V} [and. hence
the value of P' in Eq. (2.22)] is fixed by considera-
tions pertaining to the theory of the infinite elec-
tron gas." Since this point has given rise to some
controversy in the literature'" "we now consider
it in some detail. We recall that in the case of the
uniform electron gas, the choice' P'=3/5v2p en-
sures that the bulk-plasmon dispersion relation
given by hydrodynamics agrees, to lowest order
in q'/kp, with that obtained in the RPA. The above
corollary requires that we use the same value of P
in determining the surface-plasmon dispersion
relation. The dispersion relation so obtained [see
Eq. (3.25)] agrees, to O(q„) with that first obtained
microscopically by Wagner. '

We noted before that the Thomas-Fermi approxi-
mation gives P2=1/3vp. Thus we still lack the
"correct" functional at high frequencies. We
emphasize that what we have proved in this section
is that the introduction of a (sharp) surface does
not add any net inconsistencies in the hydrody-
namic theory (contrary to what is implied in Ref.
22). If we had a first-principles reason why the
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Thomas-Fermi G(n) for the uniform electron gas
should be multiplied by + at &d- &ot, we would
immediately have a theory for the bounded system
with the same degree of validity.

Further lnslght into this dlscusslon can be gained
by referring to the explicit solution of the semi-
classical collisionless Boltzmann equation obtained
by Griffin and Zaremba. " In their analysis, the
dynamics of the electron gas enters only through
the semiclassical density response function of a
uniform, free-electron gas, 7&0(q, &0), given by

3

However, an explicit expression of wo is not nee&fed

in solving the self-consistent equation for the
Fourier coefficients n, (q „&o~k,) [Eq. (2.22) of Ref.
20]. Solving that equation and noting that

z(q, &0) =1-v(q)z, (q, (o), (2.33}

gives Eqs. (2.2V} and (2.30}. The analysis of
Qrriffjn p,nd Zaremba' shows that once one m~es
some. approximati. on to the bulk I indhard function,
the self-consistent-field (SCF) theory leads to a
consistent theory for the surface as well as bulk
dynamics. within this context, it is clear that the
derivation of Ref. 20, with

v, (q, (o) = (n, /tn) q'/(&, )' P'q') (2.34)

would yield the same X(q „&u~zz'} given by the hydro-
dynamic model based on Eqs. (2.6} and (2.7}.

The shortcomings of the hydrodyna, mic theory of
the uniform electron gas are clearly seen from
Eqs. (2.32} and (2.34}:the analytic structure of the
Lindhard function (2.32) cannot be completely de-
scribed by the single-pole approximation (2.34).
In fact, this statement provides a concise way of
viewing Harris'" criticism of the hydrodynamic
theory. However, 'we note that, Eqs. (2.32} and
(2.34) are identical, up to order q~, with the
choice P'=3/Svtz. Choosing this as the "correct"
value of P, this parameter is fixed, once and for
all, for both bulk and surface phenomena.

Utilizing the identity of Eqs. (2.32} and (2.34)
for small values of q = (q'„+kt)'~', it is possible
to show that, when q„-0, the dispersion relations
of the normal modes of a thin film that are char-
acterized by small values of k (i.e., the surface
plasmons and the first few bulk plasmons; see
Secs. III-V and Ref. 20) are the same in both the
SCF. microscopic theory and in the hydrodynamieal
model.

%'e summarize the preceding di.scussion by stat-
ing that, at small values of q„, the hydrodynamic
theory of the bounded electron gas is a good ap-
proximation to the microscopic SCF theory of the
electronic collective modes of a metal slab. The

advantage of the hydrodynamic theory is that the
calculations are simple enough that quantities of
importance, like the dynamic structure factor,
may be obtained in closed form.

III. IMAGINARY PART OF THE DENSITY

RESPONSE FUNCTION

The density response function obtained in Sec. II
can be used as the basis for the study of a variety
of phenomena dealing with the interaction of ex-
ternal charges and the electronic collective modes
of j, thin film. In Secs. IV and V, we shall use it
to evaluate the loss spectrum of a fast electron
transmitted through a metal film. There we shall
only need the imaginary part of X(q„&o~zz'), whose
explicit expression we now obtain. From the
structure of Eq. (2.22) it is clear that the poles of
y(&T„~~zz') are given by the zeros of 4"'(q„, &u) and
&"'(q„,ar). (It may be easily checked that the zeros
of y do not give rise to poles of the response func-
tion. ) It is.convenient to analyze the pole structure
of X(q„&d~zz') (and hence its imaginary part)
separately in the regions of the (&u, q„}plane where
y is real and where it is imaginary.

ycotyl- =q& p( g g: g (antisymmetrie),
&d+qii + qii+r

(3 2)

where we have introduced the frequencies

(o',(q„) =- -,'aP, (I+ e "H ~) . (3.3)

We shall refer to the solutions of Eqs. (3.1) and

(3 ~ 2) as y, „(q„)and y, „(q„), respectively. It is
useful to recast the eigenvalue equations as fol-
lows:

r„„(q„)= (I/L)(nv- &„„),
where n=1, 2, 3, . . . and

where n=0, 1,2, 3, .. . . Here

t' (o'&

(3.4)

(3.5)

(3.6)

( q, ~
(o'(q„)

il, „=-arctani~
&
~,&, , ~). (3.'i)

t t

A. y real: "Bulk-plasmon region"

From the zeros of b,~ "(q„,ar) we can establish
the following eigenvalue equations for y(q„):

2

ytanyL = -q„„, '
~,

" t „(symmetric) (3.1)
~-(qi)}+ p (qii+r )

and
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side of Eq. (3.2) intersects the vertical axis bel. ow
unity. This condition can be expressed as

In Eqs. (3.6) and (3.7), we take the principal branch
of the arctan. We note that in Eq. (3.4), the value
n= 0 is not allowed because y is positive definite.
On the other hand, in the case of Eq. (3.5), some
care is required to determine whether the value
m=0 is allowed or not. In the limit qii L 0 this is
simple, however, because 6, „-0and hence y, „~
= n/2L, n=0 being thus allowed. For finite values
of q L, Eq. (3.7) is really an eigenvalue equation
for 6, „and this question has to be settled along
different lines. This is discussed below and in
Sec. V.

Ne emphasize that the "pha, se shifts" 5, „and-
6, „represent the difference between the solu-
tions of the eigenvalue equations (3;1}'and (3 ~ 2)
and the values of the "effective wave vectors" th'at

arise in a standing-wave analysis of the modes of
a metal film. " Considering i5, „and 5, „as func=
tions of y for fixed q, we see that as y'-~, both
5, „and 5, „-0; as y-0, -both 5, „and 6, „--,'z.s, n atn
The phase shifts are evaluated in the small-wa0e-
vector limit in Sec. V.

A graphical solution of Eqs. (3.1)' and (3.2} helps
to visualize the preceding discussion. In Fig. 1,
we present the graphical solution of Eq. (3.1}; th' e
intersections in the lower half plane correspond
to the roots y, „(q„).'Clearly:, the value n=0 is
excluded. In Fig. 2 we give the graphical. solution
of Eq. (3.2): the intersections in the upper half
plane define the roots p, „(q„). For definiteness,
in both figures, we used parameters appropriate
to a 40-A-thick potassium film. However, the
qualitative features are quite general. In the case
of Fig. 2, it is possible to show that the existence
of the mode corresponding to m = 0 depends on
whether the curve corresponding t'o the right-hand

(
e -2 & [i L + A (q' L )

2 '

where the (dimensionless) parameter A is defined
':-as:

(3.8}

(3.9)—2P2/w2L. a .

It can also be showy that there is a critj, cal wave
vector-q, ', given by

(3.10}cL ——A3

such that the inequality (3.8) is satisfied for q„&q,', .
Thus, for q„&q,', , the n=0 antisy~metric bulk
mode is absent. For the parameters of Fig. 2, .we
find q,',L =0.008. Thus this mode is present only
for the curve corresponding to. q L = 0.00$. Finally,
it may be worth mentioning here that the "disap-
pearance" of the n=0 bulk antisymmetric mode
for q, &q', is accompanied by the "appearance" of
the antisymmetric surface mode. 'o

,The frequencies associated, with y, .„and y, „are
given by [see Eq, , (2.13}]:

(3.11)

and

(3.12)~'„„(q„)= w', + P'q'„+ P'y', „(q„)

It can be shown (see Appendix B) that .~, „and &o, „
are the frequencies at which normal modes of the
form

co'sy, „s (syminetric)

siny, „z (antisymmetric). ,
(3.13)
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FIG. 1. Graphical solution of Eq. (3.1) for parameters
appropriate to a potassium film (&~= 4-..'86) for' thickness
0 =2L =40 A (we use the same parameters in Figs. 2-4;
qualitatively, these figures apply to thicker films). The
graph of the right-hand side of Eq. (3.1) for q„L =1.0
is shown. For small values of t'ai'lL, this curve becomes
indistinguishable with the x axis.

FIG. 2. Graphical. solution of Eq. (3,2). The curve
that represents the right-hand side of Eq. (3.2) for
q„L' 0.001 (0.1) intersects the vertical axis slightly be-
low (above) unity. We note that here q'„ I- ~0.008 (see'
text). The horizontal line (it lies slightly above unity)
represent the right-hand siQe of Eq. (C9).

DENSITY RESPONSE. FUNCTION AND THE DYNAMIC. . .
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) 2= &"'(q„,(o') —2i idq, &~'(q„, (d') (3.14)

to first order in g. Now, noting that

&~'(q„, ~', „(q„))=o (3.18)

and utilizirig well-known properties of the 5 func-

can exist in a thin film. These density fluctuations
are, respectively, the symmetric and antisym-
metric bulk plasmons of the metal film.

We next turn to calculating the imaginary part
of X(q„a&tzz') in the bulk-plasmon region. For
brevity, in the remainder of this subsection, we
refer explicitly to the symmetric modes only.
The counterparts of Eqs. (3.14)-(3.17) and (3.19)
for the antisymmetric modes are obtained sub-
stituting w, „-~,„, y, „-y, „, co, -(d, and

siny, „L—cosy, „I in the appropriate equations.
We note that 4~' depends on the frequency + only

through its square, &d'. Thus we can write (with
a slight inconsistency in the notation):

&"'(q„,((u —iq)')

tion, we can show that

Im I/&'"(q„, (o')

= wsgn&o Q~, a"'(q„, aP)
~

x&( ' ' „(q„)). (3.16)

We note that G '" also depends on w through its
square only [see Eq. (2.19)]. We can then show the
surprisingly simple result

G ~'(q„, (u' = (o', „(q„))= -2

(3.17)

We note that from Eq. (3.17) and the identity

f(x)6(x- a) = f(a)5(x- a), it follows that the im-
aginary part of E(q„ur ~z) [see Eq. (2.22)] vanishes.

We have now all the elements to obtain the
imaginary part of X(q„v ~zz') in the bulk-plasmon
region. The final result is conveniently written

im}t(q„(o(zz') = — "', ,
" e(L —~z()e(L (z't) ... , cosr, „z cosr, „z' ~(&'- &', „(q„))4e'

JJ = B, JJ q JJ ~

, sJDJ. „zsJny. „z'JJ(aP-:td. „JqJJ),
fr=0 9, ffkgII/

where we have defined

»n'r. .„L 3~.'.„(q„)—[»i+ ~'(q„)]- 2P'q, ',
~

'I

(3.18)

(3.19)

and DB '„ is obtained from DB'„via the substitutions
indicated above Eq. (3.14). It is understood that
the n = 0 term in Eq. (3.18) is included for q
only.

B. p imaginary: "Surface-plasmon" region

With the substitution y-iy, the equations
& ~ "(q„,&o) = 0 are conveniently expressed as ei-
genvalue equations for y(qJJ):

and

&+(q„)&t»»L=q» 2( ) p2 ~ p.-.

~'(q„)
TcothyL =qJJ 2( ) P2

2"

p2+ 9 II 9 II

(3.20)

(3.21)

respectively. The frequencies &o,(q„) [defined in

Eq. (3.2)] are the frequencies corresponding to
density fluctuations of the form

n(q„, (o,(q„)iz) —6(z+L)+ 6(z —L), (3.22)

which are the symmetric and antisymmetric "sur-

face" plasmons of the thin film in the local theory. '
(Note that y- P

' as P -0.)
We now discuss the graphical solution of Eqs.

(3.20) and (3.21). It is easy to verify that f =q„ is
a solution to both equations, but this root is spu-.
rious, since density fluctuations of the form
coshq„z or sinhq„z do not give J,(q„&o~z =+L) =0.

As illustrated in Figs. 3 and 4, there is a second
solution to each of Eqs. (3.20) and (3.21). We shall
call it y, (q„) and j,(q„), respectively. From Fig. 3
it is obvious that the root y,(q„) exists for all q„,
whereas the presence of the root y,(q„) (Fig. 4) de-
pends on whether the curve representing the right-
hand side of Eq. (3.21) intersects the vertical axis
above unity. It is easy to show that this condition
corresponds to the opposite of the inequality (3.8).
We thus conclude that the antisymmetric surface
mode only exists for q„)q„[given by (3.10)]." The
total number of normal modes is, of course, in-
dependent of q, , since for q„&q,'„ the n= 0 anti-
symmetric bulk mode ceases to exist.

The frequencies associated with y, ,(qJJ) are
given by
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IO 3-

8
x= yL

l2

~'„,(qi, ) = &',+ P'q'„—P'i'„,(q„) (3.23)

It can be shown (see Appendix B) that ur, (q„) and
co,(q„) are the frequencies at which normal modes
of the form

coshy, z (symmetric),
n(q„(o z)-

sinhy, z (antisymmetric)
(3.24)

can exist in the thin film. These modes are re-
spectively, the symmetric and antisymmetric
"surface" plasmons in the nonlocal. theory, It is

FIG. 3. Graphical solution of Eq. (3.20) for two values
of the product q„L. The parameters of the system are
the same as those of Figs. 1 and 2.

x=yL

FIG. 4, Graphical solution of Eq. (3.21) for four
values of qiiL The curve for q~~L =0.005 intersects the
vertical axis slightly below unity (this does not show in
the scale of the figure). We recall that here q'„L =0.008.

straightforward to show that in the limit q„L» 1
both &o,(q„) and &o,(qi ) approach the well-known
expression for the surface plasmon in the hydro-
dynamic theory, namely, '

%'e can now evaluate the imaginary part of
y(q„&uzz') in the surface-plasmon region. Noting
that

(3.26)

we can establish the counterparts of Egs. (3.16)-
(3.19). This leads to the result

2

imp(qii(0(zz ) = "', 'g,""e(L - (z ()e(L -(z')) &.&, , cosh&, z coshy z' 6(~' —~'(q„))
ggpLq)} J.

+,„,sinby. z sinhy. z' il(td' —aP(ti„&&)
81IP~C it &

where

(.&( )
1 sinh'P, L, 3(o',(q„) —I2(o&,+ (o'.(q )]—2P'q'

&~

(3.27)

(3.28)

and D,'„', is obtained from D,'„', with the substitutions
co, -~„~,-co, sinhy, I -coshy, L, plus the change
1--1 in the first term inside the large parentheses
in Eg. (3.28). We recall that the contribution to
Eq. (3.27) from the antisymmetric surface mode
is valid for q„&q„only. In Sec. IV we utilize this
result for ImX to evaluate the dynamic structure
factor of a thin metal film.

IV. DYNAMIC STRUCTURE FACTOR OF A THIN FILM

The dyanmic structure factor" embodies the
maximum information one can deduce from an
electron inelastic scattering experiment. That
information is obtained by measuring the angular
distribution (i.e. , momentum transfer) of inelas-
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tically scattered electrons. We recall that, in the
first Born approximation (which is valid for suf-
ficiently high incident electron energies), the dif-
ferential cross section is given by the Van Hove
expression

(4.1)

where S(q, z) is the dynamic structure factor of the
solid, 5+ and Kq=h(kz-k, ) are, respectively, the
energy and momentum transferred to the. solid by
the external particle (here a keV electron) and

v(q) =4~e'/q'. We note that q is a three-dimen-
sional vector of components (q„;q,). For the film
geometry considered in this paper, we can ex-
press the relation between S(q, &u) and the imaginary

part of the density response function as follows"
((o x 0):

S(q, (u)=, „„-A
2a dz'e ""''

x Imp(q „;~ —iq ~zz '),
(4.2)

where Pr—- I/O sT, A is the surface area of the
film, and q -O'. We note that the elastic peak
(~=0) has been excluded from Eg. (4.2) since it is
of no interest in this paper.

A nice feature of the hydrodynamic model of a
bounded electron gas is that the spatial dependence
of Imj((tj„+~so') is simple enough that the double
integral required in Eq. (4.2) can be performed
without difficulty. We find

S(%, &u) =—
'2 ~ g(+&

(4.3)

Here, we have defined

A,"„(q„)

q, cosy, ,„Lsinq, I.—y, „siny, „Lcosq, L
)~

(4.4)

A,''„(q„)

('q, siny, „Lcosq, L —y, „cosy, „Lsinq, Li~

(4.5)

~&q, coshy, L sinq, L+ y~sinhy, L cosq, L '
uP, —(o', (q„)+ P'q'

(4 6)

and

q, sinhy, cosqg y, coshy, L sm—q
sur n

) ~2 ~2(q )+ Pzqz

(4.7)

where q' =
q~2) + q,. Thus, for a ' given value of the

momeritum transfer parallel to the plane of the
slab surfaces, the dynamic structure factor of the
metal film [and hence the differential scattering
cross section (4.1)] has peaks at the frequencies
of the collective modes discussed in S0'c. III. The'
first two terms within the lathe parentheses of'Eq'.
(4.3) give, respectively, the peaks due to the q', + 2ko j,+ (q'„+ 2ko q„) —(2m/h)w(q„) = 0. (4.8)

f

n = 1,2, 3, . . . symmetric and antisymmetric bulk
plasmons; the third term corresponds to the sym-
metric surface plasmon; and the last two terms
correspond to the antisymmetric surface mode
(for q„)q,', ) and the antisymmetric n= 0 bulk mode
(for q„&q,',). It is possible to show that the "weight"

. and frequency. of the n.= 0 bulk mode turn smoothly
into the corresponding quantities for the antisym-
met.ric surface mode on letting q, approach q'„ from
below. "

It will be shown in Sec. V that the weights of the
bulk modes are rapicQy. decreasing functions of n.
The spacing between the lines decreases with in-
creasing film thickness. Thus, even for moder-
ately;thick samples (d of the order of a few hun-
dred angstroms), the bulk plasmons give rise, in
effect, . to just one narrow peak at ur-&u~(q„) with

q, =o.
We note that q„ the z component of the momen-

tum transfer, is taken up by the center of mass
of the film (the normal modes of the thin film do
not carry momentum along the z axis). It can be
expressed i' terms of q, and co, through the laws
of conse'rvation of energy and momentum in the
scattering process. Furthermore, the delta func-
tions in Eg. (4.3) require that ~ be equal to one
of the eigenfrequencies +(q„) for the given value
of q„. Thus the equation that determines q, (q;, ) is
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Note that q„ is the only independent variable in
Eqs. (4.4)-(4.7).

Since the hydrodynamic approximation leaves out
the contribution to the spectrum of charge flucta-
tions from the electron-hole excitations, Landau
damping is absent and the peaks in S(q, (d) are
infinitely sharp. Nonetheless at small values of
q„(see Sec. V), these peaks are expected to be
sufficiently narrow even when Landau damping is
included.

In Sec. V, we present a detailed analysis of the
dynamic structure factor (4.3) in the limit q„L «1.
In Appendix A we show that in the limit P =0 our
expression (4.3) for S(q, (0) reduces to an expres-
sion equivalent to the classic Ritchie formula' for
the transmission probability for an electron inci-
dent on a metal film. However, this conclusion
is valid for q„I & 1 only. In effect, we show in
Sec. V and Appendix A that

where +=0, 1,2, 3, . . . . In Eq. (5.2), the value n= 0
is excluded because y is positive definite. We note
that a comparison of.Eqs. (5.2) and (5.3) with Eqs.
(3.4) and (3.5}yields the values of the phase shifts
5, „and 5, „ to lowest order in (q„L). The fre-
quencies corresponding to Eqs. (5.2) and (5,3}are
given by

lim lim S(q, cu) 4 lim lim S(q, (0) . (4i9)
B~o q L~o

II
q L~O Q~o

II

V. APPLICATION TO NEARLY FORWARD SCATTERING

In this section we consider the q„L -0 limit of
Eq. (4.3). This corresponds to the study of nearly
forward transmission of keV electrons through
thin metal films. We note that (for example) in the
case of normal incidence, the momentum transfer
to the plasma modes of the film can be approxi-
mated-by

q =k 8=(& '~ /24w)8, (5 1)

A. Sulk plasmons

Expanding both sides of Eqs. (3.1}and (3.2) in
powers of (q„L) and equating the coefficients of
like powers on both sides of the respective equa-
tions we obtain, to lowest order,

nw, L
I " nw (d + P (nwlL}' '

P

with g = 1 y 2 y 3 y ~ ~ o and

(5.2)

where E, (the energy of the incident beam) is tnea-
O

sured in eV and q„ is measured in A '." Then,
with scattering angles of the order of 10 ~ rad, '4

we conclude that the condition q„L «1 is indeed
fulfilled for all relevant energies over a substan-
tial range of film thicknesses. For example, with
Eo=20 keV, taking d=2L=200 A, we obtain q„I
= 0.018.

The dynamic structure factor (4.3) is a functional
of the dispersion relations of the bulk and surface
plasmons of the metal film. Thus we mist begin
by finding the explicit solutions of the dispersion
relations of See. III in the limit q„I -0.

An interesting feature of these results is that,
in the limit P -0, the frequencies of the sym-
metric modes reduce identically to re~ (as one
would have expected) but the frequencies of the
antisymmetric modes do not. This is because the
second term in the expansion (5.3} is proportional
to p '. In fact, the next term in that expansion
is proportional to P ', so that the quadratic term
in the expansion (5.5} is proportional to p '. Thus,
the dispersion relation for the antisymmetric bulk
modes in the region q„I-.&1 is not an analytic func-
tion of P at P=0. We note that, since P is indeed
finite in any physical 'system, there is no real
divergence here. The point is, however, that (as
it will be emphasized below) the local theory' 8

does not represent the "local limit" of the nonlocal
theory when the wave vectors of interest are such
that q t)L ~ 1 The reason for this unexpe cted fea-
ture of the nonlocal theory can be found in Eq. (3.2).
For finite P, the right-hand side of Eq. (3.2) be-
haves like q„P ' in the q„L«1 limit. If, however,
we were to use a local theory frozen the beginning, ' '
we have p=0 and the right-hand side of Eq. (3.2)
would tehd to L ' as q„L -0. - Thus, the two limits
are not interchangeable. '4

%e can summirime the preceding discussion in .

the following way. Writing down Eqs. (3.1) and
(3.2) in dimensionless form, we notice that non-
local effects enter only through the parameter A,
defined in Eq. (3.9). Now, for physically realiza-
ble values of L and r, (the Wigner-Seitz radius) in
the metallic range, A is small compared to unity
(even for a potassium film 40-A thick, A =0.005).
However, the fact that A is jinite ( p finite) ac-
counts for the limits q„-0, P -0 not being inter. -
changeable for the antisymmetric modes.
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B. Surface plasmons

In this case, it is best to make use of the method
of Appendix B, to which we refer the reader for
details. For the symmetric mode we find, to first
order in (q, L),

(5.6)

(5.7)

We note that in the small-wave-vector limit, the

right-hand side of Eq. (3.21) has a pole at the
value of y, (q„) given by Eq. (5.6). (This poses no
restriction on the method of Appendix B.) An al-
ternative method of obtaining the result (5.6) is to
equate to zero the expression (2.18) and solve to
lowest order.

gith regard to p, (q„), we find that for q„L -0 it
vanishes identically. This is a reflection of the

'

fact (encountered in Sec. III) that for q)) 0, the
antisymmetric surface mode does not exist.

We now proceed to take the q, L -0 limit of Eq.
(4.3). Performing the required algebra we find,
to loseest order in q„L

x q', „sis'q, g S(rs'- rs', „(q))I

+ Z [q2 —(n+ I/2}2v2/L2]2 + qii a" d „',„(q)))&l
II

xq', ««s'q„cq(rq' —«r', „(q„))I

+ —,'(q, L)' cos'q„f 5 (uP —uP(q„)}

(7(/2L)' () & d
( /4L ) n=ol dq, o

—m qll
qadi

= 0

& q cos. q L 5(()) —(q) „Q(q)))}
~

(5.8)

The frequencies that specify the location of the
5-function peaks in E(I. (5.8) are given by Eqs.
(5.4), (5.5}, and (5.7), respectively. We have de-
noted by q„ the value of q, that corresponds to
each of those peaks for q„= 0 (see below). The
derivatives of y, „(q„) and y, „(q„) that enter E(l.
(5.8) are readily obtained from Eqs. (5.2) and
(5.3). We emphasize that, at q„=0, dy, „/dq„ is
proportional to p '. The coefficients a„"and a„' '

have rather lengthy expressions and for brevity
they are not displayed here. Suffice it to state
that both sets of coefficients are functions of P
with a well-defined P =0 limit. Thus, the contribu-
tion to the differential cross section from the anti-
symmetric modes (n=0, 1,2, . . . ) would blow up if
we were to take the limit P = 0 of E(l. (5.8).

In Appendix A we derive an expression for the
dynamic structure factor within the framework of
the local theory' (P = 0 from the start). Consider
the q„L -0 limit of S(q„, (()) as given by Eq. (A4);
comparing that result with Eq. (5.8) leads to the
conclusion that, at small scattering angles, the
differential scattering cross section provided by
the local theory' does not represent the "local
limit" (P -0) of the corresponding quantity as

given by the nonlocal theory. We do not believe
this point has been noted before in the literature.
We remark that the limit q„I -0 can always be
realized (even for very thick films} by letting

q, -0. In a nearly-forward-transmission experi-
ment, the values of I- for which the above con-
clusion about the "local limit" is relevant are re-
stricted by the condition q„L &1, q, being given by
Eq. (5.1) (for the case of normal incidence) with
8 -10 rad. '~ Still, this condition allows for fairly
thick samples. " Finally, we note that the sym-
metric surface-plasmon peak [the third term on
the right-hand side of E(l. (5.8)] is correctly given
by the local theory of Appendix A."

In Figs. 5 and 6, we represent E(l. (5.8) for the
case of a potassium film (r, =4.86) of various
thicknesses, for q =0. For definiteness, we took
Eo 40 keV and confined ourselves to normal in-
cidence of the incoming electron beam. The posi-
tion of the bulk-plasmon peaks at q„=O is obtained
from E(ls. (5.4) and (5.5). The symmetric surface
plasmon occurs at co=0; its weight vanishes at
q, =0." The rapid decrease of the weights of the
successive bulk-plasmoo peaks is easily explained
as follows. Neglecting the "recoil term", E(I. (4.8)
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FIG. 5. Dynamic structure factor for a film: r~
=4.86, d =40 A, and q, t

0 The incident beam energy is
E()= 40 keV. The height of the vertical lines gives the
strength of the corresponding 5 -function peaks in Eq.
(5.8). For the parameters of this figure, the weights of
the symmetric bulk modes are negligible (sinqz()L = 0).

gives q„=m&o(q„)/hk„which can be expressed as"
-g~ (s, a)

zo n

with

/ = 22.7 y '~'//~ ~' A-'

and

(5.9)

(5.10) .

(5.1la)

for the. symmetric modes (n=1, 2, 3, , . . . ) while

nP'= [1+-,' Am'(n+-,')'J' '

for the antisymmetric modes (n=0, 1, 2, . ..).
Substituting Eqs. (5.9)-(5.11) into Eq. (5.8) leads
to the result that the weights of the symmetric
modes decrease like n ' from a maximum value
for m= 1 and the weights of the antisymmetric
modes decrease like (2n+ 1) ' from a maximum
value for.n= 0.

In Fig. 5 we show the contribution to S(q, &o)

from the antisymmetric modes for d =40 A. For
this value of the film thickness, the weights of the
symmetric modes are negligible (sinq„L =0) and
thus the plot really represents the full dynamic
structure factor. %e note that, for this particular,
value of d, the spacing between the lines is greater
than the optimum present-day energy resolution
(-30 meV). Thus, they could be resolved in a for-
ward-scattering experiment. " Since the relative
intensity of the lines becomes very small as n in-
creases, we expect that only the first few bulk-
plasmon peaks would be observable.

.According to Refs. -16-18, when particle-hole
excitations are included in the theory, "Landau

&I)=0

IOOc

)t4

d=80 A

3
ter ~~

x
lh

x y X~

d=400$ x
a X»~X

'K
I I I

I.OO I.OI I.O2 l.05

FIG. 6. Dynamic structure factor of a potassium film
at qit —0, for three values of the thickness d, with Eo
140 keV. We show the envelopes of the weights of the
bulk plasmons of both parities. The dots and crosses
indicate the frequencies and strengths of the corres-
ponding peaks. For d =80 A, the weights of the sym-
metric modes are still very small compared to those of
the antisymmetric modes (cf. Fig. 5).

da, mping sets in (at small wave vectors q„}for
&o~ 1.1~, being negligible for ~s 1.1a&~ (and very
strong for &o a 1.5ur). As Figs. 5 and 6 illustrate
the relevant peaks in S(q, &o) occur precisely where
Landau damping is small. " It is straightforward
to include collisonal damping via an effective col-
lision time in Euler's equation, but this gives rise
to a negligible broadening of the lines in pure
samples at low temperatures.

In Fig. 6, we illustrate the dependence of S(q, &u}

on film thickness. As d increases, the lines be-
comes more closely spaced and the relevant ones
lie closer to ~= or~. For convenience we show the
separate contributions from the symmetric and
antisymmetric modes for each value of d (for
clarity, we only show the intersection of the actual
lines with the envelope of the weights). We re-
mark that, in the case of Fig. 6, the spacing be-
tween the lines is too small for these ta be re-
solved. However, it may be possible to observe
the change in the "half-width" of the envelope func-
tion as d increases from, say, 40 to 400 A.

A comment on how the explicit results of this
section would be modified at larger values of
q„L (e.g. , q L ~ 1) appears appropriate here. The
main qualitative change is that both symmetric
and antisymmetric surface plasmons can be ex-
cited, giving rise to peaks below &o~ (at frequen-
cies close to those given by the local theory,
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&u = ~,). The peak due to the n= 0 antisymmetric
bulk mode is now absent. We note that the basic
input in Eq. (5.8) is the set of values of &, „and
y, „. As Figs. 1 and 2 make clear, only-the first
few roots are appreciably modified fram the values
that obtain at q„l- = 0. The main qualitative feature
of Figs. 5 and 6, namely, the rapid decrease of the
weights with ~, remains unchanged. Of course, for
a given value of q I, the spacing between the plas-
mon lines decreases as the film thickness in-
creases.
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APPENDIX A: THE LOCAL LIMIT OF S(q, u)

In this appendix we take the P =0 limit of Eq.
(4.3) and obtain an expression [Eq. (A4)] equivalent
to Ritchie's formula' for the transmission proba-
bility for an electron incident on a thin metal film.
We emphasize that in so doing we are overlooking
the result shown in Sec. V, that the limits q„i -0
and P -0 cannot be interchanged in Eq. (4.3). With
this premise in mind, then, we set P =0 in Eq.
(4.3) and after little algebra, we obtain

S(q, (u) —
1 — ~ra~ I. 2 sgn~ ~ p ID(') ( )

+ D(-')
( )~80) e n=l . E Bn ~i~ . Bn ~t~

/=0
2

6(QP —QP&)

2

CO+(g (() )

where the P =0 limit of the coefficients in the infinite sums is understood. We note that in this
case the bulk plasmons are degenerate, giving one peak at co= co~. We can evaluate the total weight of
this peak by making use of the f-sum rule (that our theory must satisfy, since charge conservation is
built into it from the beginning) which can be stated"

(Al)

t '"dv, N
MS(q~ (d) =Kqr 'm

Substituting Eq. (Al) into Eq. (A2) and utilizing the identity

(A2)

[v, being any of the frequencies relevant to Eq, (Al)], we find

2 2 2

„Lg„) ++(g „j
2

hg„)

2+,- q" sin'q. I. 6 ((o' —(o'(q„))
~

&+ qI )
(A4)

where V=2LA. Substituting Eq. (A4) into Eq. (4.1)
and doing some algebra, the differential cross sec-
tion we obtain agrees with Eq. (23) of Ritchie's
paper. It should be noted that agreement is found

after correcting for a misprint in Ritchie's equa-
tion: the second (q —1) factor in the numerator
must be squared. In addition, the reduction in the
weight of the bulk-plasmon peak in Eq. (A4), due to
the presence of the film surfaces, can be shown to
agree with Eq. (106a) of Ref. 5 after some mis-
prints in this equation are corrected.

APPENDIX B: DISPERSION RELATIONS FOR SMALL

WAVE VECTORS

In this appendix we outline a general method for
obtaining the dispersion relations at small wave-
vectors. This procedure provides an independent
derivation of Eqs. (5.2), (5.3), and (5.6) [and the
result that y,(q„) vanishes identically for q„L -0]
which seems of interest given the anomalous de-
pendence on P of some of the results discussed in

Sec. V.
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The normal modes of the thin film correspond
(in the model of Sec. II) to density fluctuations
n, (q„&o(z) that satisfy the homogeneous version of
Eq. (2.9), with the boundary condition
J,(q„ar (z = + L) = 0. Defining

+(q„, y) = p'( —n, (q„(o(z) (kdZ
" ], ,L

(0. P e-q() I
2

L
dz e'&~'n, (q„(o(z), (81)

-L

y„(q„)=y„(q„=o)+
d y„( q„

qll i q(( =0

+ —,y„( q'„+ ~ ~ ~, (84)
1 d
2 dq~~ ), -0

and this leads to the results (5.2}, (5.3), and (5.6).
We also find that y, and its derivatives vanish at
q„=0.

We close this appendix by recording the expres-
sions for the scalar potential due to the bulk plas-
mons of the thin film outside the system. Measur-
ing the coordinate z from the right-hand edge of

. the film we obtain, for z &0

„(q„~(z)= P2~" —, ""siny, „Le '~~' (85), „,~~y„„.
p It

for the symmetric modes, and

g, „(q„&g(z)= —p'&' ', "cosy, „Le '~~'()«y
P II

(86)

for the antisymmetric modes. In the derivation of
Eqs. (85) and (86), use was made of the eigen-
value relations (3.1) and (3.2), respectively. The

the above boundary condition can be stated as the
equation

F(q„,y„(q„))=o, (82)

whose solutions y„(q„) give the allowed values of y
for both bulk and surface modes (of each parity},
according to whether n, is given by Eqs. (3.13) or
(3.24), respectively. Here we are interested in the
solutions to Eq. (82) inthe limitqpL 0 inwhich
case it is convenient to make a Taylor series ex-
pansion:

F(q„, y„(q„))= [F(q„,y„(q„)}]„,

dq„q(, 0

(83)

In order for Eq. (82) to be satisfied identically, we
must impose that each term of the series (83)
vanish. By this method we are able to identify the
coefficients in the expansion

potentials (85) and (86) remain finite in the half-
space limit, q,(L» 1. This is a purely nonlocal
effect. W'e also note that if we let P -0, both po-
tentials would appear to vanish for all wave vec-
tors, in accordance with the usual statement"
that bulk modes do not generate an electric field
outside the solid. At small wave vectors, how-
ever, care must be exercised in the case of the
antisymmetric modes. For q(, J & 1 we must first
substitute Eq. (5.3) into (86). This leads to

y. „(q„~(z)= (- I)""X'-'
( „,',&, + O(q„L,}.tl+ pj

(BV)

We emphasize that the first term in Eq. (BV) is in-
dependent of p. Furthermore, the term of O(q„L)
turns out to be proportional to P '. This result is
another manifestation of the fact that whenever
"size effects" are relevant, the results of the local
theory may not follow from those of the nonlocal
theory upon taking the "local limit" P -0 at the
end. Currently under investigation is a detailed
analysis of the influence of this effect in the. prob-
lem of a charge located outside a metal film.

APPENDIX C: EFFECT OF RETARDATION

In this appendix, we briefly discuss the plasmon
dispersion relations of a thin film when retardation
effects are included. We find that the m=1, 2, 3, .. .
bulk modes (of both parities) are not affected very
much by retar. dation in that, near the "light line",
their frequencies are close to the values obtained
in the electrostatic theory of Sec. V. The major
effect of retardation is to allow for the existence
of the antisymrnetric surface mode for all wave
vectors q„. Its dispersion relation becomes (as
in the case of the local theory) photonlike for
q„-0.

In the presence of retardation, the linearized
Euler equation is an inhomogeneous integro-dif-
ferential equation" for the current fluctuation
J(qp M (z} associated. with the plasmons of the thin
film. The corresponding density fluctuation is still
given by the solution to the homogeneous version
of Eq. (2.9). It is convenient to transform the z
component of Euler's equation into a differential
equation by appropriate differentiation. We can
then express J, as

J,(q„(d(z)
2 I,

=i(d 1 ——.2 dz'G q„co zz', n q„(d z',
-L

where (z (& L, c is the speed of light, and the
function G(q„&o(zz') satisfies the equation
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d2
—K G g((CO ZZ = ~ Z —Z

with the boundary condition

(C2)
of Eqs. (C5) and (C6). Then:

y tanyL = — tanh (symmetric)4)p (dpL
C C

(C8)

K = (1/C )(QPp —QP) + tg(( q

and we have assumed q„& &o/c. This requirement
guarantees that the modes we are seeking do not
radiate.

Substituting the solutions for G(q„vtzz') and

n(q„~~z) into Eq. (Cl), the dispersion relations
are obtained by imposing that the resulting ex-
pression for J,(q„~~z) satisfy the original integro-
differential equation. The following results are
obtained:

(a) Bulk modes. The eigenvalue equations for y
are

(c4)

2

ytanyL = -q„
CK((d —(d&)+ M K CothKL

for the symmetric modes, and

(C5)

(dp
ycotyL =@2

a(uP —uP~)+ gag tanhgL

for the antisymmetric modes. Here

Q tg~~ (0 /c + 0

(C6)

(cv)

It is easy to verify that, setting c=~, Eqs. (C5)
and (C6) reduce to Eqs. (3.1) and (3.2), respec-
tively.

In what follows, we only consider the limit n -0

G(g(((d~z + L z } 0 (C3)

In Eq. (C2}, both ~z
~

and ~z'
~

- L. The condition
(C3} ensures that J,(q„&e~ z=+L) =0. The usual
electromagnetic boundary conditions are satisfied
by our solution, since the electromagnetic field
is given everywhere in terms of integrals over the
charge and current density fluctuations. In Eq.
(C2) we have defined

and

y cotyL = —coth (antisymmetric) (C9)
(d p 40p+

C C

From Eqs. (C8) and (C9) we can obtain. the inter-
sections of the dispersion relations with the light
line & = cq„. These intersections occur very close
to the frequencies of the corresponding electro-
static modes at q, =0. This is illustrated by Figs.
1 and 2: the points where the graphs of the left-
hand side of Eqs. (C8) and (C9) intersect the hori-
zontal line corresponding to the right-hand side of
the equations, give the solutions to the respective
equations. In the case of Fig. 1, the right-hand
side is indistinguishable from the x axis. In the
case of Fig. 2, we note that since x coth x & 1 for
x&0, the n=0 antisymmetric bulk mode is never
an allowed solution (contrary to the case of the
electrostatic theory, where it exists for q„&q'„).

(b) Su~face modes. The dispersion relations are:.
obtain simply by substituting y iy in E-qs. (C5) and
(C6). In both cases it can be shown that the disper
sion relations do not intersect the light line at a
finite frequency. The only solution as n -0 is, for
each parity, co = cq„. Thus in the case of the anti-
symmetric surface mode, the effect of retardation
is indeed drastic. Note that this mode is now al-
lowed for all wavevectors.

In conclusion, we infer that the electrostatic
theory of Sec. VI should be a good first approxima-
tion to a more complete calculation of the cross
section that included retardation effects. The only
exception is that the lowest antisymmetric mode
is strongly altered at small wave vectors, as dis-
cussed above.
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