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Dynamics of vortex pairs in superfluid balms
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The linear response of a thermal ensemble of vortex pairs to an oscillating applied force is cal-
culated by solving a Fokker-Planck equation. The result diN'ers quantitatively but not qualita-
t. ly from an estimate given in the work of Ambegaokar, Halperin, Nelson, and Siggia.

' I. INTRODUCTION II. CALCULATION

In a recent note' Halperin, Nelson, Siggia, and one
of the preient authors (V.A.) have given a dynamical
generalization of the very beautiful Kosterlitz-
Thouless picture' of superAuidity in thin "He
films. In that picture, the superfluid-to-normal fluid
transition is due to an unbinding of pairs of vortices
of opposite sign in a sea of other such vortex pairs.
In Ref. 1, the dynamics of the motion of a quantized
vortex was made explicit, by balancing Magnus and
drag forces against fluctuating thermal forces. The
resulting Langevin equation for the self-consistent
motion of a vortex pair contained, in its long-time or
equilibrium behavior, the Kosterlitz-Thouless transi-
tion. By thus uncovering the dynamics which for
thermodynamical purposes can be hidden under a
partition function, one was able to incIude the effect
of time-dependent perturbations, such as that due to
an oscillating substrate. Estimates of the inertial and
dissipative response of free vortices and of bound
vortex pairs to small oscillating substrate velocities
were thereby deduced. Rather satisfying fits to ex-
perimental curves taken by Bishop and Reppy' have
resulted. '~

The present brief communication is addressed very
particularly to the estimate made in Ref. l for the
frequency-dependent response of bound pairs. We
write down and solve the Fokker-Planck equation
describing the motion of a bound pair, screened by
other bound pairs, under the influence of an applied
oscillating force. The resulting solution differs quan-
titatively from the estimate previously given, but it
does not change the qualitative form of the result.
The effect on numerical fits of theory to experiment
is to change the values of certain fitted parameters in
a direction which seems more physically reasonable.

In the opinion of the authors, the main contribu-
tion being made in. this note is pedagogic and aesthet-
ic: the calculation is particularly transparent, and the
solution involves simple functions of the sort beloved
by nineteenth-century mathematicians.

The Langevin equation on which the present calcu-
lation is built is given in Eq. 11 of Ref. 1. We write
it as follows:

dr 2D BU+ ()
dt kg T gy

where r is the vector separating a vortex pair, D is a
diffusion constant, kz is Boltzmann's constant, T is
the temperature, U is the potential describing the
screened interaction between the pair as well as the
interaction with the driving force, and q is a Gaus-
sian noise source obeying

(g (t)g"(t')) =485.sg(t —t')

We will write the potential U(r ) in the language of
the equivalent problem of the diffusive motion of
charged rods,

te f
U(r) =2q'J — —qSE r —2@0' rg(r)

The transcription bet.veen the charge q, the (small)
macroscopic electric field 5E, and the parameters of
the vortex problem can, for example, be read off by
comparing Eqs. (1) and (2) above with Eq. (11) of
Ref. 1. The other symbols not yet defined in Eq. (2)
are po the chemical potential, a the core radius, and
a(r) the static length and temperature dependent
dielectric constant of Kosterlitz. ' The "electric field"
will be taken to vary sinusoidally in time with circular
frequency co. We note that the static dielectric con-
stant occurs in Eq. (2) because it accounts for the
screening effect of smaller pairs which adiabatically
follow the electric field due to the larger pair being
considered in Eq. (1).

As a first step in deriving the macroscopic
frequency-dependent dielectric constant of the sys-
tem, we must calculate the linear effect of the electric
field on the distribution function of pairs. From Eq.
(1) one obtains in the usual way a Fokker-Planck
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The angular dependence of this equation can be re-
moved by the decomposition

SI'(r, 8, cu) = $ SI,(r, co)exp(il 8)
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%e note that only SI'~ is coupled to the external
force, and that only this quantity occurs in Eq. (4)
for «(e). It is now convenient to write

Si, =r, g(r, cs) .q SEf
2kgT

(6)
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The factor split off from SI'~ is the static response
function, i.e., g =1 would correspond to a. local
equilibrium approximatiop. .

By straightforward substitution, g is found to obey
the differential equation

0.2
f g +f3— 2q2

ka T«(r)
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2D ks T«(r) ks T«(r)
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FIG. 1. Solid line shows the exact solution g(z), given in

Eq. (12) to Eq. (9). Tiie dashed line is the approximate

solution obtained by ignoring the derivative terms in Xq.

(9). «(a)) =1+ dr g(r, «I) (8)

Furthermore, by substituting Eq, (6) into Eq, (4) and
using the self;consistent relationship that deter-
mines «(r), we find

dI 2D -8 eUr +2D 12r
dt kqT gr PP . 9f2

(3)

In principle Eq. (3) could be used to calcula'te the
nonlinear frequency-dependent response of pairs, in
which case the destabilizing effect of a finite field on
pairs larger than a critical size would have to be treat-
ed by appropriate boundary conditions. ' Here, how-

ever, we are limiting ourselves to calculating the
linear response which is described by the dielectric
constant

I

equation for I'(r, t), the number of pairs per unit film
area per unit area of separation in the neighborhood
ofr;

Equation (8) is exactly the form intuited for «(aI) in

Ref. 1 where g was approximated by
2Dr z/(2Dr z -—i co)

For the purpose at hand it is riot necessary to solve
the complicated differential E'q.' (7). We observe that
«(r) is a weakly varying function of r'when: T is hear

T,. As a first approximation we therefore replace
2q'/kaT«(r) by 2q'/ksT, «, =4, where « =«(~, T,)
and we have used the famous universal result of -the

Kosterlitz scaling equations. This replacement allows

one to make a simple calculation for g, and, finally,

to verify that the errors introduced by the approxima-
tion are indeed small.

%ith the above approximation, the differential

equation we must solve takes the simple form

«(co) = I +4mq d r —r. SI'

SE
(4) z'g" (z) —zg'(z) —(4+z')g (z) +4 =0

We now write U(r) = Uo —q SE r and r = r, +Sr, .

where I 0 is the equilibrium distribution function
a I'0 =exp( —Uo/ks T). Substituting these expansions
into Eq. (3) and keeping linear terms we obtain

t SI = — fqSE—r,]+2D 8 — 2D
kgT gr AT

I I

S2
x 2q' Sl' +2D, SI'. (5)

er r «(r)

where we have introduced the variable
z2—= i curz/2D T—he requir. ed solution has to ap-

proach 1 for z 0 (statics), and go to zero for
z ~~. If one were to rieglect the terms involving
derivatives in Eq. (9), one would obtain a solution of
the form given in Eq. (8) of Ref. 1 with, however,
2D/rz replaced by 8D/r' We shall see b.elow that
the main effect of the derivative terms is to cause a

further increase in the characteristic length at which

g (z) drops to half its z =0 value. (see Fig. 1).
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A particular integral of Eq. (9) is easily generated
as a power series in z. The result is

2m

gp(z) =1+ X — [[m(m —1) —1]
m 1

x [(m —l)(m —2) —1]...[—I]]-t
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(10)
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where l is the Gamma function. The solution of the
homogeneous part of. Eq. (9) regular at the origin
turns out to be zIt»t/2(z). Thus the general solution

of Eq. (9) regular at the origin is

g(z) =gp(z) +trzI„, ,l2(z)
'

where K is a constant. Since

(12)

litn [zI »t/z(z)] -0,
o

the z =0 boundary condition has been satisfied. It
remains to adjust ~ to obtain the required behavior at
infinity, i.e., g(z) ~0. The asymptotic behavior of
the series (10), which converges for all z, can be
shown to be proportional to that of zIt»tlz(z). It
therefore suffices to match the most singular
behavior of the two functions on the right of Eq.
(12). Now the I„'s of all order have the asymptotic
behavior'

(13)I„(z),/, (1+0 —+...)
2wz '" z

and we easily see by comparing the series (10) and
(11) for r = I that the most singular part of gp
behaves like

gp(z)-- II m (m —1) zIi(z)
3 m(m —1) —1

t

(14)

Thus the required constant ~ is given by the large
parenthesis in Eq. (14). Numerical evaluation gives
~ =3.3707... . With this value of tr the function (12)
is found by numerical calculation to behave like 4/z'
for large z as one would expect from the differential
equation (9).

The homogeneous part of Eq. (9) can also be
solved by the power-. series method. The solutions
can be written in terms of modified Bessel functions
of the first kind, usually called I„,of orders
v + (5)'/'. These functions have the series expan-
sion 9

y

z
" (z/2)'"

2 „~~ k!I'(t +k + 1)

0
0 10 12

FIG; 2. Solid lines represent the real and imaginary parts of
the exact solution g(z =.-i cur /2D). The dashed lines
show the real and imaginary parts of the simple Ansatz of
Ref. 1, g = y/( i cu+ i—). The cut-off length of this approxi-
mate solution has been matched to the exact solution, re-
quiring y =14D/r2

Figure 1 shows the result of the calculation for
g (z), and, for purposes of comparison, the function
4/(4+z') corresponding to neglecting the derivatives
of gin Eq. (9).

In Pig. 2 the full lines are plots of the real and ima-
ginary parts of g (z2 = l rorz/2D). W— e note that the
shapes of these curves are very similar to those that
follow from the simple ansatz of Ref. 1 quoted below
Eq. (8). The dashed lines show such curves with the
relaxation time adjusted to match the cut-off length
of the correct solution. The matching requires the
replacement of 2D/r' by roughly 14D/r'.

III. DISCUSSION AND CONCLUSIONS

We now investigate the goodness of the approxi-
mation e(r) e, in Eq. (7). The space and tempera-
ture dependence of ~ is discussed in Refs. 1, 3, and
6. We first note that for (cur'/2D) « 1, g = I is a
solution of the difFerential equation (7) regardless of
the spatial dependence of R. In the experimental si-
tuation discussed in Ref. 5 and analyzed in Ref. 6,
au =104 sec ', and D and a (the core radius) were
found to be consistent with the physically reasonable
values of 10~ cm /sec and 10 cm, respectively.
For these values, the inequality written above which
defines the region in which the r dependence of e(r)
is irrelevant becomes ln(r/a) & ln, where we define

lD
——In[(2D/rua ) / ] =10

Now, quite generally one has'» ~
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~(r) =e, [1 —2x(I)] (15)

where x(I) is the scaling parameter introduced by
Kosterlitz, and I —= in(r/a). For T ~ T„ the scaling
equations yield

x(I) = ,
' x(T)—coth ,

' x(T—)I, (16)

where x(T) ~ [~1 —(T/T, ) ~]'~ determines the corre-
lation length' g (T) = a exp[1/x(T)]. The region of
most rapid variation of x(l), and therefore of e(r),
occurs for I & I = ln(—g /a) Ex.cept extremely close
to T„we have I « ID, and thus, because of the
considerations of the preceding paragraph, the region
of most rapid variation of e(r) plays no role in deter-
mining g(z). Even at T„where x(I) = I ', the ex-
clusion of the region I & ID in Eq. (15) has the eff'ect

that the correction to ~(r) is less than 10%. For
I & in($ /a) the correction to e, in Eq. (15) is deter-
mined by —,x(T). For the temperature region of in-

terest in the application of the dynamic theory, "this
number is less than 0.07, again a small correction.

For T & T„Eq. (15) remains valid but for small
x(I) Eq. (16) is changed to"

x(I) = —,
' x(T) cot ,

' x(T)I—
There are now two regions of rapid variation of x(I),
I & I and I —I+ —= ln(g+/tz), where
/+=a exp [2n/x(T)]. The first region is of no im-

portance, the reasons being the same as for the
T ~ T, regime discussed above. However, since
g+ » ( for corresponding

~
T —T, ~, the condition

I+ & ID, which would allo~ one to ignore the r depen-
dence of e(r), is not very restrictive, and for the fit
described in Ref. 6 leaves a region of

(T T—,) & 0.01'K unaccounted for. Well within this
temperature region, where I+ && 1D, the zero-order
solution for g(z) shows that regions of r —g+
correspond to very small values of 51". The region of
temperatures where I+ = ID is more diScult to deal
with precisely. However, as was shown in Ref. 6, in
this region of temperatures the dynamics is already
dominated by free vortices. The errors arising from
replacing Eq. (7) by Eq. (9) are therefore small in all

regimes.
We conclude theref'ore that the formulas (9a) and

(9b) of Ref. 1 for the real and imaginary parts of the
dynamical dielectric constant due to bound pairs are
unchanged by the considerations of this paper, except
for the replacement of the length (2D/ru)'~' by some-
thing closer to (14D/co) 'I'

%e may ask, 6nally, how this change affects the, fit
reported in Ref. 6. The only changes are that
in[(14D/a'ao)'"] —instead of ln[2D/a'm)' ']—is
determined to be =12; and that F the-coefficient of
the free vortex contribution to the dielectric constant,
is changed from -0.18 to -1.21. The erst change is

insignificant, and, since we had expected F to be,
0(1), the second change is in a physically reasonable
direction.
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