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Existing theories for commensurate-incommensurate transitions in one-dimensionally-

modulated systems show that these transitions are continuous and are associated with domain-

wall formation. We consider the effect of domain-wall crossing in two-dimensionally modulated

systems with hexagonal symmetry such as rare-gas layers adsorbed on graphite and the layered

compound 2H-TaSe2. We show that if the commensurate-incommensurate transition is continu-

ous, the hexagonal symmetry is broken in the incommensurate phase, while if the transition is

first order the hexagonal symmetry can be maintained in the incommensurate phase. The ex-

perimental consequences of this prediction are discussed.

I. INTRODUCTION

There exist many physical systems which exhibit
phase transitions between commensurate and incom-
mensurate phases. Rare-gas layers adsorbed on gra-
phite form two-dimensional structures which may ei-
ther be registered or nonregistered with the underly-
ing lattice. ' The charge-density-wave systems
tetrathiafulvalenium-tetracyanoquinodimethanide
TTF-TCNQ' and 28-TaSe2 (Ref. 4) exhibit similar

transitions in which the ordering quantity is the
charge density or a periodic lattice distortion. The
rare-gas monolayers and 28-TaSe2 are two-
dimensionally modulated systems. Other systems,
which are modulated in one direction, are liquid cry-
stals which exhibit transitions from cholesteric to
nematic phases, and XY-like helimagnets which
become ferromagnets when subjected to a sufticiently
strong magnetic field.

A model for commensurate-incommensurate (C-I)
transitions in one-dimensionally modulated systems
has been constructed in different contexts by Frank
et al. , De Gennes, Luban et al. , and McMillan.
According to these theories the C-I transition is con-
tinuous. It has also been found that in the vicinity of
the phase transition, the incommensurate phase con-

sists of large areas which are nearly commensurate
with the lattice, separated by relatively narrow
domain ~alls or discommensurations, where the
phase of the modulated structure changes rapidly.
These are in fact the "misfit dislocations" introduced
by Venables and Schabes-Retchkiman, '

In the present note we consider the C-I transition
in two-dimensionally modulated systems. In this case
the domain walls may take several orientations, and
therefore, one should consider the possibility of wall

crossings which does no) exist in the one-dimensional
(1-D) case. Although the arguments presented here
are quite general, we will specifically consider the
case where the commensurate phase has a hexagonal
symmetry, as found in 2H-TaSe2, 4 and in rare-gas
layers adsorbed on graphite. We find that if the C-I
transition is first order the domain-wall structure can
be hexagonal, while if the transition is continuous,
the domain walls are parallel to one another, thus
breaking the hexagonal symmetry. The model used
in this paper is similar to the models used by Ying"
and van der Merwe. '

The paper is organized as follows: In Sec. II we in-
troduce the model for domain-wall interaction and
discuss its ground-state properties. The effect of
finite T is considered in Sec. III. Our results are
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summarized and compared with existing experimental
data in Sec. IV.

H. DOMAIN-%ALL INTERACTIONS

To construct a model for domain-wall interactions
we consider the density function po(r) of. the order-
ing condensed wave in the commensurate phase. In
the rare-gas monolayers case po(r) is the mass-
density wave of the rare-gas atoms, while for 20-
TaSe2 po(r) is the charge distribution. In both cases
po(r) has a hexagonal symmetry. We describe the

nonregistered or incommensurate phase, by local dis-
placements u (r) of the commensurate structure in
the x-y plane. The density function in the incom-
mensurate phase will thus take the form
p(r) = po(r —u). The energy associated with the lo-
cal displacement field u(r) is given in a continuum
approximation by

H =„H(u ) dx dy, (1)

where H(u) is the energy density. Assuming that
one can expand 0 in power series of u and its spatial
derivatives, we And that to second order in u, H
takes the form

i
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where f(u) can be any function which has the sym-

metry of the underlying lattice. The energy expression
(2) has the most general form consistent with the
hexagonal symmetry. The physical interpretation of
the various terms is quite straightforward. The terms
A and 8 represent the energy associated with bulk
strain of the adsorbed monolayer, D is the energy as-
sociated with shear strain, and C is the energy associ-
ated with local rotations. The function f(u)
represents the potential applied by the substrate on
the rare-gas monolayer. The lock-in transition takes
place as a consequence of the competition between
the bulk-strain term A which favors an incommen-
surate structure and the lock-in potentiai f(u). For
)A ) small compared to )f [ the commensurate phase
is stable, while for ]& ( large compared to

~f ~
the in-

commensurate phase is stable.
We now use the energy Eq. (2) to discuss the C-I

transition. Consider first an incommensurate phase
with one-dimensional wall structure. Assuming that
the domain ~alls lie in a symmetry direction, we take

uy =0 and allo~ u„ to depend only on x. The energy
Eq. (2) becomes

f

H = -W " +(a+8) " +f(u„,o) . 0)
Qx Qx,'

This energy has the same form as the one discussed
by MsMilian9 with f(u„) =cos(2mu„), and by Luban

I 1
er al. 6 with f(u„) = au„' for ——, ~ u„~ —,, and

f(u„+1)=f(u„). For simplicity we adopt the latter
form in the present discussion. Minimizing the func-
tional Eq. (1) with H given by Eq. (3) we find in the
incommensurate phase, u„(x) is given by

u„(x) = — . —for —l ~x~ —l (4a)—sinh(kx)
& sir h(kl/2)

E/1 = a(1/I) +P(1/l)e

where

~ = —,
' [a(a+D) J'l' —X

and

p= h(8+D)l'" .

(Sa)

(Sb)

(Sc)

In this expression the first term, which is proportion-
al to the domain-wall density, gives the domain-wall
energy while the second term represents the interac-
tions between domain walls. Minimizing Eq. (5) with
respect to I we And that for e & 0, we have I = ~,
and the structure is commensurate. For e & D,

I becomes finite and the structure is incommensur-
ate with the lattice. Near the transition point
I diverges logarithmically

l- —Iogia(

and the transition is continuous. Note that in this
case the hexagonal symmetry is broken in the incom-
mensurate phase.

If one wants to consider the possibility of a hexag-
onal incommensurate phase while keeping the
domain-wall picture, one must consider wall cross-
ings. In this case the domain walls form a hexagonal
pattern. In the vicinity of the phase transition, ~here
the distance between adjacent parallel ~alls I, is large,
the energy per unit length of the wall and the interac-

u„(x + I) = u„(x) + I .

Here k = ta/(&+8))'l' and l is the distance between
adjacent domain walls. In the limit of large I the en-
ergy per unit length takes the form



1612 P. BAK, D. MUKAMEL, J. VILLAIN, AND K. WENTOWSKA 19

tion energy between adjacent parallel walls are not
affected by the fact that there exist wall crossings.
The energy per unit area associated with wall cross-
ings is proportional to the number of wall crossings
per unit areas. We thus take it to be of the form

and

qi =(2m/3a)(1, 0), q2= (2m/3a) [ ——,, —,(3)' '],

q3 (2rr/3a) [ —2, —
2

(3)' 2]

In the hexagonal incommensurate phase these pri-
mary peaks shift to qI'=qI(1+8), where 8-1/I.
Such a diffraction pattern has been observed for 2H-
TaSe2. The fact that the C-I transition is first order
in this case, is consistent with our theory. In the
one-dimensionally distorted incommensurate phase,
however, one finds that the three domains
corresponding to the three symmetric diffraction

where A. depends on the parameters A, 8, D, and on
the specific form of the function f(u). The energy
per unit area-, therefore, takes the form

E/I2 = 2 a (1/I) + (P'/I) e "'+ h./I

The factor 2 in the first term arises from the fact that
the total length of the walls per unit area in the hex-
agonal case is twice as large as in the one-
dimensional case. Also note that wall crossings can,
in principle, change the coefficient P to P'. However,
as we shall see, this does not affect our final result.

The nature of the incommensurate phase and the
order of the transition can now be studied by corn-

paring the two energies arising from minimizing the
two expressions (5) and (8). For X (0,(i.e., the walls

attract each other), the hexagonal incommensurate
phase is favored and the transition is first order. The
transition occurs at a = 0., )0. For X & 0 the transi-
tion takes place at e =0 and the one-dimensional
domain-wall structure is favored. The transition in
this case is continuous.

Incommensurate phases with several wall directions
have been considered by Ying" who neglected in-
teractions between crossing walls and by van der
Merwe" who considered a model similar to the one
presented here. However, apparently he did not
reach our conclusions. A model for the C-I transi-
tion in 20-TaSe2, in which the incommensurate
phase is assumed to be hexagonal has recently been
studied by Nakanishi and Shiba. '3 They found a
first-order transition, consistent with our result for
) &0.

In the following we discuss the way the two possi-
ble incommensurate phases show up in a scattering
experiment. In the commensurate phase one finds
three primary diffraction peaks at

peaks appear at

qi' ——(2n/3a) (1+8, 0),

q2'=(2m/3a) [——,
' —-'8 -'(3)' ']

and

q3'=(2~/3~) [——,
' ——,'8, ——,

' (3)'"] .

The diffraction pattern of the two other domains is
obtained by rotating this structure by +—,2m. Since
all three domains contribute to the diffriition pat
tern, each peak splits jnto three peaks in the incom-
mensurate phase. Clearly, in both cases, the
domain-wall structure gives rise to secondary
diffraction peaks.

III. FINITE- TEMPERATURE CONSIDERATIONS

Whereas the discussion of the ground state (in
classical mechanics) can easily be generalized to an
arbitrary-space dimensionality d, the effect of finite
temperature depends crucially on d. For d =1, there
is of course no phase transition; complete registry can
never be obtained. For d ~3, the incommensurate
phase can again be described by a succession of rigid
walls, provided the temperature is lower than the
roughening transition temperature. ' Therefore, a low
but nonvanishing temperature should not modify the
conclusions of Sec. II. For higher temperatures,
however, the C-I transition is expected to be first ord-
er,"irrespective of the symmetry of the incommen-
surate phase.

The case d =2, which corresponds to adsorbed
layers, is special because the roughening transition
temperature is zero; waIls are strongly distorted at
any nonvanishing temperature. This is related to the
well-known fact that strictly speaking a two-
dimensional solid cannot exist at nonvanishing tem-
perature. ' In the similar case of an XYferromag-
net' no long-range order exists at T 4 0. We con-
clude that the theory given in Sec. II is probably not
valid for d =2 except at zero temperature. It would
be correct in the case of infinite wall stiffness. How-
ever, for practical application to adsorbed layers, the
stiffness may well be sufhcient at low temperature
and the effects of surface defects are probably larger
than temperature effects, so that direct comparison of
experimental data to predictions of Sec. II, is not unI-

reasonable.

IV. DISCUSSION AND CONCLUSIONS

We have analyzed, using a simple phenomenologi-
cal model, the C-I transition in hexagonal two-
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dimensionally modulated systems. %e have found
that if the C-I transition is continuous, the hexagonal
symmetry is broken in the incommensurate phase
while if 'the transition is first order the incommen-
surate phase can be hexagonal. This result is con-
sistent with the experimentally observed first-order-
C-I transition in 2H-TaSe2, which results in a hexago-
nal incommensurate phase. The situation is not so
clear for adsorbed monolayers on graphite: experi-
mentally, the transition seems to be continuous"
and Eq. (6) is satisfied'+ with reasonable accuracy.
However, this implies an orthorhombic distortion,
which has not been experimentally observed so far.
It would be of interest to see whether a reinterpreta-
tion of existing experiments' can confirm this
orthorhombic distortion.

The arguments presented in this work apply also to
the case ~here the domain walls are rotated away

from symmetry directions. This or'ientational epitaxy
has been discussed by Novaco and McTague' within
the harmonic approximation and by Villain'~ by using
a pseudoharmonic theory. Our model neglects in-
teractions with lattice distortion. It has been argued'0
that interaction of walls with shear modes in bulk
systems leads to a first-order transition from com-
mensurate to incommensurate structure. This pro-
cess does not work for adsorbed films.
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