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The magnon-photon interaction is formulated for a direction of the magnetic vector of the electromagnetic
wave perpendicular to the direction of the sublattice magnetization in an antiferromagnet, and from this the
one-magnon self-energy is calculated. The linewidth predicted from the one-magnon one-photon process is in
good agreement with the experimental value for Mnp, . Higher-order magnon-photon scattering processes are
indicated and the corrections arising from such multiple magnon-photon scattering processes are found to
depend on temperature and microwave power.

I. INTRODUCTION

The question of electromagnetic-radiation propa-
gation in the medium of precessing magnetic mo-
Inents has been raised by Kittel. ' The predicted
resonance has been discovered experimentally and
has been well reviewed. ' Efforts have been limited
to the solution of Bloch's phenomenological macro-
scopic equation of motion. qf the magnetization with
Maxwell's equations. Gintzberg' has drawn atten-
tion to the importance of the dispersion relation
in ferromagnets, which has been subsequently
studied' ' in antiferromagnets. In these works,

. the radiation is treated classically. It therefore
appeared to us that perhaps useful information
could be derived from a proper quantum-mechani-
cal treatment. We felt that proper solutions of the
SchrMinger equation with field quantization may
be desirable. The present work has emerged from
such a'thought and the outcome is indeed inter-
esting.

In the present paper, a magnon-photon interac-
tion for an electromagnetic-wave magnetic vector
perpendicular to the direction of the sublattice
magnetization in an antiferromagnet is constructed
and from this the self-energy is calculated up to
second-order perturbation theory. The imaginary
part of the self-energy determines the magnon
relaxation time -due to decay into photons. There
are interesting dependences on the size of the
crystal, the frequency, microwave power, and
temperature. The predicted lowest-order contri-
bution is in good agreement with the experimental
measurement on MnF, . Some higher-order pro-
cesses are also predicted.

II. INTERACTION

where h is the magnetic vector of the el.ectro-
magnetic wave and the two sublattices of the anti-
ferromagnet are located at i and i+6. The g value
is the splitting factor and p, ~ is the Bohr magne-
ton. The magnetic vector field of the electromag-
netic wave may be expanded in terms of creation
(c,) and annihiiation (c,) operators of the photon
field as

where f is a factor representing the standing-
wave nature of the field in a rectangular wave
guide

f= (3A,'/2na&~)' ' cosi'8~1. (3)

X~ Xg +3Cg y (4a)

3i' =-2l~l g Q S~'S~.s+2J2+ Q S~'Si.s

Here a and 5 give the transverse dimensions of
the wave guide, A~ is the wavelength in the guide
and A. that in free space. The distance l of the
sample is measured from the end of the guide.
The radiation wave vector k~ in the guide is deter-
mined from classical electrodynamics.

For the description of the spin waves, we resort
to the Holstein-Primakoff representation recently
applied by White et al. ' to antiferromagnetic MnF, .
The magnon Hamiltonian is taken in the form

In the normal configuration, the direction of the
magnetic vector of the electromagnetic wave is
perpendicular to the direction of the sublattice
magnetization. Therefore the interaction may be
chosen' ~ in the form

${.', = -~ K S,q+ Sg~

(4b)

(4c)
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(5)

The Holstein-Primakoff representation of the spin
operators in terms of site variables is given by

S+ (2S)1/»f c S+—(2SP l2 5«f

S(=(2S)' 'cl'fl Sg =(2S}' 'fJ b~

S,]=8-g]a), S,) =-S+b~ b~,

f, = (1 —ai'a~/2S)' '

+
Ro = Q nfl k &k &k + Q g1

k P kP k r (10b)

with

~k =~k ~r00 (10c)

ly val. id. Its eigenvalues are simply +Rye„so it
simply splits into two branches and thus (10a) can
just be absorbed in the unperturbed Hamiltonian

Introducing the Fourier transforms of the site
variables, we have

a~=N ' ' Q agexp(ik r,),
'f

bq=& ' 'g bgexp( ik -r,),
(6)

There are also scattering terms as given by
%'hite et al. ,

' but they are of no immediate interest
for the present paper. If'we make the substitution
(s),/(s), =b,', results (8) become

() rs')+[(2+s')s'+(1-r5))' ')' '
Nk=

2[(2+~') ~'+(1 —y'-„)]"

and the Bogoliubov transformation

ck = &fo' f &P—k )

bk = Uk&k ++kPk r

()+s)-[(s+s)s +()-rr)Y*)'*
2[(2+&')&'+(I -yk)]

'(11a)

(11b)
and following the usual procedure of eliminating
the two-magnon number-nonconserving terms, one
obtains

&k = [ (& + +k) /»k)' '
~ » = [(&- &k)/» ]' '

There is an alternative way of expressing the
anisotropy. Instead of (4c} we may write

I —-gp pPg Sg] + sag (12)

where

SA. =2z,J,S+ES=~, +~, ,

u&»= [(2(s), +u&,)e, +~,'(1 —y', )]' ',

y-„=z,-' P e'"' '.

The lowest-order magnon Hamiltonian then ap-
pears in the diagonal form as

(8)

(9a)

(9b)

(9c)

Since —,'K(S, ) =gy. zH„, the two methods are almost
equivalent. It should be noted that in either case
the anisotropy appears to depend on temperature
outside of spin-wave theory. Meally the tempera-
ture dependence should arise only from the mag-
non-scattering terms and the coupling constants
should be treated as independent of temperature.
if (12) is chosen, the form of the functions ob-
tained through the Bogoliubov transformation be-
comes"

IQPk Qk Qk + SQ)k

k

if there is no external magnetic field. However,
the Zeeman interaction

)s, = ss, s,
( Q s;, + P-s', „,)~+s

(10a)

is exactly diagonalizable and for this reason need

not be carried through the transformation, al-
though the transforation procedure will be equal-

() +&) r[() +s)'-riP")"*
2[(1+&) -yk]

() +&) —[() +s)' —rt)")"
2[(1+~)'- yn]'"

(13a)

(13b)

where 4=g'gzH„/ ~Z ~Sz, if only the nearest-neigh-
bor exchange is considered. Substituting (5) and

(6) in succession and (2) in (1) our magnon-photon
interaction has the form

X' = (2SN) ' ' g A, gals[a»c, 5(k +q) + a»c, 5(k q) + b» c,5(k +q) + b—» c «5(k —q) + H c]..

+ g [2(2SN)' '] '[a» a» a» c,5(k, —k, —k, —q)+a, a» a» c, 5(q+k, —k, —k»)+a»«a» a» c,5(k, +k, —k, -q)
kyk2k3a

+a»«a»a» c, 5(k, —k, -k, -q) +b», b», b» c,5(k, —k, —k, +q)

+ b,' b, b» c ',5(k, - k, - k, - q} + b»«b„' b, c,5(k, +k, - k, +q}

+b„b» b» c«,5(k, +k, —k, -q)]. (14)
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In this interaction the magnons are not in the proper form. Therefore we substitute (7) in (14) to obtain
the correct magnon description. The results of this calculation can be grouped as follows:

X' = X', +X' +X', +X«', (15)

X', = (2SN) ' ~'g i13 g A, (u, —v, )[a,c,6 (k +q) + a, c, 6(k -q) +pk c«6 (k +q) +pk c, 6(k - q) + H. c.],

gPsA«[(u»1u»3u» —V» Vk V» )(a» a»3nk C«+p» pk pk C«) 6(q+k, -kk- k3)

+ (u»1u»3u»3 vk, v»3V»3)(a», a»3 a»,c«+Pk, (1»,P»,c«) 6(k1+k3 —k3 -q)

+ (v»1u» v»3
—u» v» u». )(a»1p»3 n» c« +p» n»3p»3c«) 6(k, +k, —k, —q)+

+(vk, v»,u», —uk, uk, vk, )(p»,pk, ak,c, +oi, nk, p»c )«6(k, +k, —k, —q)

+(u»1v», v»3
—v» uk u»3)(p»1a» ak c, + ak p» p» c,) 6(k, +k3 3 q')

+(vk uk vk —u»1v»3uk3)(n»1pk3ak c«+p»1n»3p» c«) 6(k1+q —k3 —k3)] .

= g g~a A. ((uk, u»3u»3 vk, v-»3V»3) [(n»1 n»3n»3c. +&»pktP»3c,') 6(kl k3 -k. --q)

+ (a, a, a, c, +Pk Pk Pk c,)6(k, —k, —k, —q)]

+("k "»3"»3 "k k "» )[(a» ~» k «+~»1a»3(»

+ (n»,P»3a» c, +P», n»3P»3C«) 6(k, —k1 —k, —q)] .

+ (uk vk vk —v» uk uk ) [(8» nk ak c«+ ak pk pk c«)6(q —k1 —k3 —k3)

+ (v„v, u„—u, u,,v, ) [(pk pk a, c, + nk n, pk,c«) 6(k, —k, —k, —q)

+(pk,p», n»,c, +a», nk, p»,c,)6(q —k, —k, —k,)]], (18)

X«= Q A«g&s[(u» vk v» —v» uk uk )(pk nk nk c, +a»1p» p» c«)
&kyk2k3

+(v», v», u» - u», u»3v»3)(&»1I3»3ak c«+ n» nk &»3c«)]6(q+~1+k3+k3) ~ (19)

Xk= Q»» n»+Q kj»p»+Q vq «c«. (20)

This last expression defines the unperturbed Ham-
iltonian of the system, and A, = (2wf3&u, /l. ')' 'f.

III. LIFETIME

From the quasiparticle number-conserving
terms of (15) we obtain the second-order contribu-
tion to the system energy as

~ 2SNg 'l1s A', (u» —vk)'(33» —N, )6(k q)—
S(dq —Qk

(21)

The one-magnon self-energy is just Zk= SZ,/enk
so that this corresponds to the relaxation time of
the uniform magnon,

1/T1 = (»/@2S&g'as f'(u, «
—v, «)'(@33(zc3) ',

(22)

which is just the imaginary part of the self-energy

as I/r = (-2/8) ImÃk. Here u, k and v, 3 are the val-
ues of Nk and ek, respectively, evaluated at reso-
nance for 0 =0. The resonance value of the radia-
tion wave vector is taken to be qk=&/C113. We re-
place SN by the appropriate magnetization in a
given volume through the boundary conditions and

change the units from inverse time to Gauss; using
(3) „the width from (22) is then

3)P X/2

b,P= (2w')(4wM, ) I
~

—
~ 2 &

cos'k
II&2(c 27fu5A.«

(23)

If (13) is used the required factor is (u„—v, k)
= gZ)'~3. If instead (11) is employed the factor is
(—,~')' '. In the former case' ' " if we use J
=-2.45 cm, S= 2, z'=8, gp. ~H~=Q, 8 cm ', so
that ~Z(Sz= 50 cm ', the anisotropy parameter is
(34)' ' = 0.09 and there is a happy coincidence with
the factor H„/Pc= 0.09 used by Sanders et aL."
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However, - there is no way of obtaining H~ in our
calculation since this is not a parameter of the
Hamiltonian. The critical field H~ at which the
spin flop occurs and the ordered antiferromagnet
changes into the flopped phase with canted spins,
is defined in a complicated way by Keffer. ' If we
use (11), then the required factor is (2b.')' '
=0.10 for the parameters of White et al. ' So the
two results differ only by about 10%. If we take
the approximate expression

and once again agreement results. The small dif-
ference in the estimates probably occurs owing to
the choice of numerical values for the anisotropy.
White et al. give Jy:2 29 cm ', J, =1.26 cm ', and

the anisotropy energyK=0. 3 cm ' at T=4 K. How-

ever, the later depends on temperature" as re-
marked before, K(T)/K(0) = [M(T)/M(0)]'. There-
fore a small. difference in the numerical estimates
is very likely. If we compare our result with that
of Sanders et al. a factor of —,', which they have,
does not appear to arise in our calculation. So
for the choice of parameters appropriate to MnF„
the radiative linewidth for cos'k~ l =1 is 13.5 6
whereas the experimental linewidth is 12.'7 G. In

view of the uncertainty in the data and the mea-
sured volume of the MnF, crystal. , 1.7V mm', the
difference of 0.8 G between our calculated value

and that measured by Sanders et al. is understand-
able. Sanders et al. actually calculate a width of
19 G, which is probably masked either by some
error or by the choice of parameters. For the
values which they take, the width from their for-
mula is calculated to be 18,06 G. So it appears
that errors of the order of 5%%uc can easily arise.

Our method of calculation treats the radiation
problem at par with the spin waves. Instead, the
method of Sanders et al." can not achieve this
correspondence. Besides, the advantage of our
method of calculation is that higher-order radia-
tion processes are predicted. Although While et
al. claim to understand the linewidth of the anti-
ferromagnetic resonance in MnF, above T = 5 K,
it appears to us that the region near and below 4
K is not well understood. At such temperatures
the thermal scattering of magnons is considerably
suppressed and, as noted from the experiment of
Sanders et al. , the radiation process becomes im-
portant. A detailed study of the temperature de-
pendence of the antiferromagnetic resonance in

MnF, below 4 K does not appear to have been pub-
lished. However, our interactions predict a tem-
perature-dependent radiative linewidth, At this
stage it may be thought that these terms are small
and the calculation is more or less of academic
interest. We therefore limit ourselves only to ihe
largest of the terms in (17) which conserve the
number of quasiparticles in the system and exclude
the mode-mixing contribution which is small. The
largest of the remaining terms then give the fol-
lowing contribution to the one-magnon self-energy,

d,' = Q 4g'psA'

(urdu~

u~ —v v vg)'I 'Q'
Q

'
Q

'
~

" ~(k, +e-k, -k, )
Q& —Q~ —Q~ +kgb)

ekyk2k3 X 2 3

(n~, +n~, + 1)N, —n~, n~,
+ Q' Q' Q a' ' 5(k+k, —k, -q)

k, + k,
—

k~
— q

the imaginary part of which gives a contribution to the lifetime of the magnon of,

(24)

4g p, sA,((u~,u~,u~, —v~, v~, v~, ) [(n~,N, +n~,n&, —n~, N, —n~, ) 5(k, +g —k, —k, )
1 2g

1 ak&k2k&

x 5(Q„Q~ -Q, +km, ) +[(n~, '+n~ +1)N, n~,n~,]-
x 5(k, +k, - k, —q) 5(Q~ +Q~ —Q~ - ka&,)] ) (25)

which has a factor like M,T' '[exp(ke, /ksT) —1].
At 4 K, this gives a 10%%uo correction to (22). The
cos'k, l factor is again present, which has been
verified experimentally. " The result (22) is in-
dependent of the temperature and of the photon
density N„and hence of the rf power. However
(25) depends on the temperature and on the number
of photons present in the system.

IV. CONCLUSIONS

From a second-quantized approach we have cal-
culated a radiative antiferromagnetic-resonance
linewidth in which one of the terms i,s in accord
with the experimental measurements on MnF, .
Some additional magnon-photon scattering pro-
cesses are predicted. This kind of radiative ef-
fect has not been calculated previously in the liter-
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ature. Our Hamiltonian is new, and interesting
effects may be associated with it. Its pertinence
in connection with the super-radiance problem in
a magnetically ordered system is rather obvious.

APPENDIX: CLASSICAL CALCULATION

It is of interest to trace the origin of the factor
of -', in the classical calculation of the radiative
linewidth. The power radiated classically by a
precessing dipole moment p. ~, as written by
Sanders et a/. ,

"- is

(Al)

whereas the power absorbed is

P.=-~X (A2)

where k is the radiation wave vector, c is the
velocity of light, v is the frequency, V is the
volume, h, is the amplitude of the magnetic vec-
tor field of the electromagnetic wave, and X" is
the susceptibility function

y"= y'M~/[(v —e,)'+ (~'],
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Some of the part of the power absorbed is radiated
electromagnetically but at frequencies away from
the antiferromagnetic resonance. Thus, by con-
sidering that all the power is radiated at the anti-
ferromagnetic resonance, one over estimates the
radiative linewidth. (iii) In the expression (A3)
hH represents the total width, not just the radia-
tive contribution. (iv) In the quantum-mechanical
treatment presented in the present paper, there is
the momentum-conservation requirement which
means that in the lowest order the emitted radia-
tion is anisotropic being practically in the same
direction as the original incident photon. On the
other hand, in the classical result, the emitted
radiation goes in all directions and thus one has a
factor of the form ffd(cos8) dP. The classical
radiation formula is

If we put P sing= p, ~, where itt is the precession
angle, and assume that the cosP component does
not radiate, then

P=. —ek'p~ d cos8 d

Since f d(cos8) = 2, f dP = 2@, '

where at resonance, v=„
X"= M/hH' (A4)

P= pcs pg. (A9)

bH is the phenomenological linewidth at reso-
nance. We define the dynamic susceptibility as

(A5)

so that from (A4) and (A5),
p, ~= VA, M/bH.

If all the power is radiated at resonance, then

(A7)P„=P

leading to —,'&u(M/48) Vh', = ~ck'(Vh, M/bH)' and we

obtain, for the width,

AH= —,
' VM&o'/c', (A8)

so that the factor of -', in the width arises from the
factor ~ in the classical radiation formula (Al) and

the factor & in the classical absorbed power as
given by (A2). Actually the expressions (A3) and

(A7) are not good since all the absorbed power
need not be radiated at resonance nor all the line-
width be radiative. There are several factors
causing the error in the calculation. (i) Part of the
power absorbed may be lost in terms of nonradia-
tive relaxation mechanisms such as those con-
sidered by White et al. , invalidating (A7). (ii)

Comparing with (Al) as written by Sanders et aL, "
we see that one should have a factor of 2 rather
than of 3. If (A9) is used rather than (Al) the fac-
tor of -', in (A8) disappears. The error is thus
traced to the interpretation of the precession of
the dipole moment. Sanders et ul. have perhaps
not realized that the angle P is fixed and is not the
same as 8. If we allow g to be variable, identical
with 8, then we obtain the integral f dP J sin'8
& d(cos8) = n leading to —,

' not —in (Al). The classi-
cal result (A8) will then have 3 instead of -', . How-
ever P is uniquely determined at resonance, cosg
=H, /p, , and we need not consider the nonresonant
precession of the moment around the field. Clas-
sically, a continuum is emitted and a continuum is
absorbed. This follows if we obtain the classical
Bohr limit by setting 0- 0. However, quantum
mechanically the photons must be resonant for any
radiation to be absorbed. The quantum- mechani-
cal treatment presented by us is free of the diffi-
culties encountered in the classical treatment and
predicts multiple magnon-photon processes. It is
expected that only the one-photon one-magnon
process will give a contribution smaller than some
exact results. Alternatively, the self-energies
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are normalized, and since ip the quantum treat-
ment there are several terms, only the lowest-
order term will give a smaller contribution than
will result upon summing all the possible dia-

grams. In any case, the classical treatment" is
incorrect. Since the Compton wavelength of the
photon is infinite, the radiation field should be
treated quantum mechanically.
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