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%'e present an exact solution for the spin-spin correlation function of the dynamical spherical model (the
spherical-model equilibrium state together with the classical-Heisenberg-model equations of motion) in one
dimension at T = 0. The physical picture of the system is clarified, as is the diAerence between the
Heisenberg and dynamical spherical model arising from the presence of the constraint 5;.5; = 1 in the
former model. The efFect of the higher-order correlations, induced by the constraint, on the dynamics is
made explicit. The solution satisfies the dynamical-scaling hypothesis. The mode-coupling approximation,
although it gives the correct dynamical exponents, yields a qualitatively incorrect spectral function. It cannot
be improved by including higher-order terms in the expansion of the self energy in terms of the number of
interactions (the extended-mode-coupling theory), as the higher-order terms yield physically unrealistic
solutions. A qualitatively correct approximate solution has been found, that exhibits both the central peak
arid the spin wave sidebands of the exact solution. The solution cannot be improved by including higher-order
terms either. There does not appear to be any way of constructing a series of approximations from the
leading terms in a renormalized-perturbation-series expansion that will converge to the exact solution.

The classical Heisenberg Hamiltonian has the
remarkable property that there are two qualita-
tively different stationary states of the system at
any temperature. These differ in that in one case,
the constraint

g Z(~t. &;)=&
1

is imposed, and the stationary state is described
by the dynamical spherical model, and in the other
case, the constraint 5, ~ 5,. =1 leads to the Heisen-
berg model. In four dimensions or more, the
static critical behavior of both models is identical,
and so we would expect the critical dynamics to be,
although this has not been proven. Below four di-
mensions, the spherical-model fixed point becomes
unstable for Ps models, which are believed to be
adequate approximations to the Heisenberg model
for calculating static properties, if the dimension
is greater than 2. The dynamical spherical model
is interesting in its own right, however, even if
it does not describe the same critical dynamics as
the Heisenberg model. It combines the simplest
static critical behavior with the simplest nonlinear
dynamics, and it is the only existing model for
which the mode-coupling theory and its extension
to higher numbers of interacting modes is known
to provide the correct formal solution for the
spectral functions. " Qne can show, term by term
in the expansion in the number of interacting-
modes, that the dynamical scaling hypothesis is
valid, although the convergence properties of this

expansion are unknown, and will be part of the
subject of this paper.

We wish to discuss the relationship between the
two models in one dimension, where T =0 plays
the role of a critical temperature. Our original
interest in this comparison was to understand
more of the mechanism for the appearance of
"sloppy spin waves, " that is, spin waves in the
absence of an ordered phase. The Heisenberg
model at 7 =0 has a spin-fluctuation spectrum des-
cribable by perfectly-well-defined spin waves,
whereas, as we will show, the spherical model
does not, despite the fact that both show diverging
coherence lengths, with the same critical exponent.
The spectral function for the spherical model at
T =0 has not been known previously, and we present
the exact solution. The comparison gives a clear
understanding of the role of the constraint in the
dynamics, and a clear physical picture af these
systems at T =0. We will discuss also the role
that the range of the interaction plays in the dy-
namics. The spherical model is known to be the
infinite-interaction-range limit of the Heisenberg
model. We conclude that there is a dynamical
crossover phenomenon in which well-defined spin
waves exist for any arbitrary but finite-range in-
teraction. The exact solution for the spherical
model at 7'=0 also elucidates the nature of the
mode-coupling approximation, in particular the
kind of errors one makes by keeping only the
lowest-order term in an expansion in the number
of vertices. We find that the expansion is not
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"well behaved, " in the sense that nonphysical re-
sults are obtained in higher orders.

Section I is for the most part a review of salient
facts about the dynamical spherical model, and is
intended to serve as an introduction. Section II is
the derivation of the exact solution for the spheri-
cal model at 7' =0. Section III is a comparison with
the Heisenberg model and a discussion of the effect
of the interaction range, Section IV discusses
various mode-coupling approximations and the
kinetic theory developed for the dynamical spheri-
cal model. '

I. . INTRODUCTION

The classical Heisenberg Hamiltonian

and the usual spin commutation relations, inter-
preted as Poisson brackets here, lead to the equa-
tion of motion

(2)

where e 8~ is the antisymmetric tensor of rank 3.
It follows immediately that

p, (5„.. . , 5„)= exp —p If —p Z P, j,
~z

(5)

where p, is chosen as function of P so that the con-
straint N 'Ps(5, ~ 5,&

=1 holds. It is also possible
to fix arbitrarily the magnitude of the spin on each
site, and obtain a stationary state (without trans-
lation invariance), or to allow the spin length at
each site to have some other distribution other
than that given by (5). This may actually be a use-
ful model for the description of some impurity

a 5 =2 Z S'SsSI~"» =0.
Bt ' j

i

And hence we are free to fix the length of the spin
on each site independently.

If we make the choice that 5, -5, = 1, we obtain
the Heisenberg model, and the phase space may be
restricted to the tensor product of unit spheres
for each site. Since we wish to consider a more
general situation, we will take as the phase space
g'~, where & is the number of sites. We will
call the "Heisenberg state" the distribution in the
phase space with support on the tensor product of
unit spheres defined by

(g g ) —e BH(Sg . . . , S)))) (4)

For the spherical model, $, are Gaussian random
variables, for which N' 'P, (8, ~ 5,&

=1. The spher-
ical-model state is given by the distribution

problems.
It is rather remarkable that (5) is indeed a sta-

tionary state of the dynamics given by (2). This is
by no means obvious.

The proof that this distribution is stationary has
been given by Van Leeuwen and Gunton, ' and in a
slightly different context, by the author. ' A

straightforward proof of this fact can be obtained
by showing that

—(S' ~ ~ S "& =0o.' ~n
&n

t=o
(6)

where (, }is a Poisson bracket, and may be de-
termined from the basic relations (2).

The Laplace transform of Z, (t) is

s, (z) f z"'(S'l~ ( )) S)i( s)l( -S)z'lss;) (s)
0

and is the diagonal matrix element of the resolvent
of the Liouville operator. It can be shown that I.

, is an Hermitian operator. This follows readily
from the stationarity of ps.

We shall calculate E, (z) by summing the terms
in the moment expansion

(10)

where

for all o. , when (2) is used to compute the time
derivatives and (5) to calculate the average ( &.

This is demonstrated in Appendix A. Since the
spherical-model state is stationary, we can cal-
culate equilibrium response functions, and in par-
ticular, we shall be interested in Z, (t) =(S,(t)S',).

It is convenient to introduce a Hilbert-space
structure for this purpose. Consider the linear
vector space of all functions of the spin variables
associated with each site, which we will call V.
For our purposes, this has as basis all function of
the form $, ', . . . , $, ", z arbitrary. Then for any
two elements A. and J3 in V, we ean define an inner
product as

(W III& =(W'II&

which allows us to regard the random variables
$ ' ~ ~ $ " elements of V, as states in the Hilbert

ez er
space. Physically, these states correspond to the
superpositioa of pg fluctuations on the equilibrium
background defined by the spherical model. We
define the Liouville operator L, which is an opera-
tor on V, to be the generator of the dynamical.
group, i.e. , A(t) =e ' 'A. The action of I, on any
element of V is explicity
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This expansion is convergent in the time domain.
If we introduce hormalized spin amplitudes 8
=S, /(S,"IS,)'/', we can imagine writing a resolution
of the identify on V is

q, (X

(11)
(r g02

where ll) is the spherical-model state. . E(luation
(11) is actually not correct, a,s the-states in the
expansion are not orthogonal. Nevertheless, the
result obtained by inserting (11) between powers
of I. in the matrix element that defines the mo-
ments is correct, the corrections due to non-
or thogonality canceling. ' That is,

, I-S,' S." S.,'"S.„" I-S.f'1" S., "' S. 1" S.f'p LS
all intermediate

states

(12)

The moments can, in this way, be represented
as sum of products of matrix elements of L„and
it is convenient to represent these matrix ele-
ments graphically. A state can be represented by
a number of horizontal lines, one for each factor
of S„appearing labeled with q, n. The index can
be coded inthe representation of the line, as in
Ref. 1, but for our purpose, it is preferable to
h eat the spin index on the same footing as the
wave vector, and whereas it is usually most con-
venient to use spherical tensors for the basis, i.e. ,
z, =+1,0 we will use Cartesian components. The
general matrix element is shown in Fig. 1. There
is only one basic vertex, corresponding to the
matrix element (S, ' II.IS+S+ ) and its adjoint and
this has the value

(q +q +q )(g
'

g )pl/2pl/2p 1/2e la2 8 (12)

where

(), =-(S, IS.")

The 2gth moment is obtained by forming all pos-
sible diagrams containing n right and yg left ver-
tices, and summing over the internal spin indices
and wave-vector coordinates. For instance, the
second and fourth moment diagrams are shown in
Fig. 2.

The analytic expression for the second moment
1s

5q+q, +q, J, —J, e' p, p, p,
1

0203

(15)

The analytic expression for the fourth moment is
given in Ref. 2.

An expansion analogous to (11) was used. by
Kadanoff and Swift' to obtain the mode-coupling
theory for the liquid-gas transition. In that con-
text, there is no reason to suspect that the results
obtained are the exact expression of the micro-
scopic dynamics. Here, however, the mode-
coupling theory and its generalization to higher
number of interactions, which we will call the
extended-mode-coupling theory, is a representa-
tion of the exact microscopic dynamics, and can
be obtained by summing diagrams in the moment
expansion. ' (See Appendix 8 and the review article
by Kawasaki. ') We sketch the derivation

The diagrams for the moments may be regarded
as contributions to the expansion (10) if we as-
sociate a factor of z ' with each. vertex. Then,
defining a self-energy (t), (z) to be the sum of all
diagrams that contain no single internal line Iex-
cluding diagram 2(b) for instance], we have

(qs, as)

(q&,~&)

(qi, foal)

(qs,as)

(qs,a3)

~(qs, a4)

(q) 1)

(q„, )

(qs2s)

(22,a2)~
(qs,as)~

- (q, ,a&)

(qs &s)
-- (c)

(d)

FIG. 1. Most-general matrix elements of 1..
FIG. 2. Diagrams for the second (a) and fourth mo-

ments (b)-(d).
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Z, (z) =t(S,'~S,')z '[1+y, (z)+ p, (z)'+ ]
= &S.'Is'-, &[ - e, ( )]-', (16)

p, (z) =zp, (z). p, (z) is given diagrammatically in
Fig. 3, the crosshatching indicating all possible
diagrams that do not have a sirigle line as an inter-
mediate state.

Every distinct sequence of intermediate states
corresponds to a distinct diagram. Diagrams with
the same topological structure that differ only in
the sequence from left to right that vertices occur,
such as shown in Fig. 4, have the same value, and
may be readily summed. In the present context, a
simple way of obtaining the result was given by
Wegner. ' If we label each internal vertex with a
time t„ i=1, . . . , n, beginning on the left, the
total contribution from all diagrams with the same
topological structure is

(-t)"" " at, at„e(t, , —t,,)x„,
0 0

where A.„ is the value of a single diagram of the
particular structure, and there is a factor of
9(t, -t, ) for each line joining a vertex at t, with

1 2 1
another at t, [9(t) =1, t~0, 9(t) =0, t&0].
take any line between two vertices and replace it
by the full propagator Z, (t)/Z, (0)9(t), which we
will call G, (t) we sum. all those diagrams obtained
by putting all possible insertions (that is, self-
energy subdiagrams) on that line, whatever the
rest of the diagram is. All of the diagrams may
therefore be obtained by summing over all skele-
ton diagrams, that is moment diagrams that have
no insertions, and replacing the lines by the full
propagator G, (t). 9,(t) is then the sum over all
skeleton diagrams with this replacement. If we
denote the contribution from diagrams with n ver-
tices as p,"(t), the lowest-order term is

y', (t) =-te(t)'g 5(q+q, +q, )(J, -J, )'
0g02

x G„(t)G„(t)p„t „p, (17)

FIG. 3. Self-energy for the spin fluctuations.

This is the mode-coupling result, and corres-
ponds to diagram 2(a), with the lines replaced by
the appropriate propagator s. The next term, $4(t),
is obtained from diagram 2(d), with the same re-
placements. Expression (15) may also be obtained
using projection operators. p, (t) can be shown to
be

FIG. 4. Equivalent diagrams differing only in the time
ordering of the vertices.

Q, (t) =-i P 5(q+q, +q, )5(-q+q, +q4)
OgQ 2,0303

x (J~ —Jq )(J,, —J, )

x (S,,'(t) S,", (t)S, 'S,"),', (18)

where the time dependence in (18) is modified,
the modification being equivalent to omitting inter-
mediate states with single lines in the diagrams.
The independent-mode approximation corresponds
to the factorizatiori

(s,",(t)s,', (t)s;,"s;,')
= 5,r, , 5, „(S„(t)S„)(S~,(t)s:,8,) (19)

and leads immediately to Eq. (17). The mode-
coupling equation for the spin system was first
obtained in this way by Kawasaki. ' A similar equa-
tion, valid for long-range interactions, had been
obtained earlier by Resibois and De Leneer, ' using
diagrammatic methods applicable to spin &. The
equation was obtained later by %egner, using
diagrammatic techniques similar to those descr ibed
here, and by Blume and Hubbard' by other methods.

The independent-mode approximation is correct
at t =0 for the dynamical spherical model [see Eq.
(A4)]. The higher-order terms with g(t), n&2,
give the buildup of correlations between the modes
as they propagate. For times such that tJ$» 1,
there is no reason to suspect that the higher-order
terms are not significant, other than the intuitive
sense that very complex correlations have little
effect on the dynamics of a single mode.

In the Heisepberg model, this approximation is
not even correct at t =0, due to the presence of
higher-order correlations in the Heisenberg state,
induced by the constraint 5, ~ 5, = 1.' One way of
treating these correlations is to admit additional
vertices. For instance,

in the case that there does not exist a set of in-
dices, say, q,n, and q3Q3 such that o.g+ck3 0,

+$3 0. This matrix element of g cannot be
represented in terms of (S, '~L~S, 4S, ~) and (Sp~s, ').
That is, a diagram such as 5(a) must be supple-
mented by a diagram such as 5(b), that contains
the correction due to nonvanishing four-spin cumu-
lant averages. These correlations have a. profound
effect on the dynamics, in one dimension. In fact,
the sum of the diagrams shown in Fig. 6, which is
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(q„a,) q) i )

q3g3) (q) t))

~q ~&i «a&ai
(a)

q,o3)

Qe sW)

qsss)

FIG. 5. Contribution to the matrix element

arising from pair correlations (a) and from nonvanish-
ing four-spin cumulants (b).

equal to &u,
' —(+2)', vanishes linearly with KT in the

Heisenberg model, although any term separately
is proportional to (uP)2. The higher-order corre-
lations, and the dynamical processes they induce,
are thus directly responsible for the appearance
of well-defined spin-wave modes [the vanishing of
»d,
' —(&o2)' implies that the spin-wave modes are

perfectly well defined].
We note that the formally exact perturbation

theory developed by Martiii, Siggia, and Rose"
would probably be incapable of treating the Heisen-
berg chain since the correlations induced by the
constraint appear only in the vertex corrections,
aed presumably these would have to be retained
to all orders in order to get the correct equilibrium
four-spin correlations, which would be required to
obtain the cancellation just mentioned. As we
shall see in Sec. IV, even for the spherical model,
where there are no additional vertices, the per-
turbation solution is not well behaved.

It has been shown by Van Leeuwen and Gunton'

and ea,rlier, in unpublished work, by Riedel and

Wegner, ~ that the assumption that

llm Z (»d, K)/(S /S )»» '
Z~, (p, ),4~0

(20)

where p, =q/»», p, =&@/»»' was consistent term by
term in the extended-mode-coupling expansion.
That is, if (26) was assumed, then for all n

lim P', "((o, »») - »»'y+q'"(p, ),
K is the inverse coherence length. These proofs
have been given for 7', &0, but are essentially un-
modified in the present case of one dimension.
The primary difference is in the exponent g, which

H= —QZ», 5; 5, —Q A;,.S,S»,

as has been demonstrated by Barreto and the
author. "

II. EXACT SOLUTION AT T=o

Although it is generally impossible to sum all
the diagrams in the moment expansion, this can
be accomplished in one dimension at Y' =0. In this
case

(21)p. - 3~(q —q.),
I

where q, =0 (ferromagnet) or»7/a (antiferromag-
net). As a consequence, the summation over the
wave-vector indices becomes trivial. We will
treat first the ferromagnet. Consider a, segment
of the diagram that begins as shown in Fig. 7.
Although we have given a symmetric definition of
the right and left vertices, involving p,'", the
structure of the diagrams is such that we can as-
sociate a, factor of p„p„/p, with either the right
(left) vertices, and a factor of unity with the left
(right) vertices. We choose the temperature re-
normalization factor to be associated with the
left vertices. Then the wave-vector sum reduces
to two terms q, = 0, q, = q and q, = q, q, =0. The
value of the first vertex is i(J, -g, )e ' ' ' in both
cases. v, is the incoming index, v, the index of
the line with q =0. If q, =0, the entire diagram is
zero since the second vertex vanishes (q, =-q,).

does not extrapolate from the values in higher di-
mension and in particular is not equal to —,

' d in the
antiferromagnet.

Although no proof has been given that p „g",(p, )
exists, that is, that we can exchange the summa-
tion and limiting process, we shall see that at
T =0, for fixed q and &u, (20) is satisfied. If we
assume it is the case for arbitrary p„p„ then
the dynamical spherical model satisfies the dynamic-
al scaling hypothesis. We take the statement of the
dynamical scaling hypothesis to be that (20) holds
with arbitrary p„p,.

We conclude this section by pointing out that
these results can be extended to the anisotropic
dynamical spherical model, with the Hamiltonian

tr. KTiJ
q„a,

FIG. 6. Diagrammatic contributions to u4- (z,) for
the Heisenberg model. The diagram due to the nonvanish-
ing four-spin cumulants, present because of the con-
straint 5» '5;=1, cancels the remaining diagrams at T
=0.

FIG. 7, Structure of the self-energy for arbitrary
temperatures.
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O~o 0 6,

q,a q,a& q, a5 q,a y q,a
PEG. 8. Typical diagram that is nonvanishing at T

=0, for the ferromagnet.

Nonvanishing contributions can be obtained only
when the line whose wave-vector index is zero is
connected directly to an incoming line of a right
vertex. This is true of the second and all subse-
quent left vertices as well. The general structure
of the diagrams must then be as shown in the ex-
ample of Fig. 8. The right vertices are equal to
i(Z0 —J,)e ' ~ if we adopt the convention that v, is
the index associated with the line of wave vector
q incoming from the left, and v~ that of the line
leaving on the right. That is, they have. the same
value as the left vertices. All the nonvanishing
diagrams can be generated by the following rules
for a diagram of order 221. (i) Beginning and end-
ing with a particular spin index, label 2g vertices
of the sort shown in the example of Fig. 9 with a
consistent set of spin indices. That is, all three
spin indices must be different. (ii) Associate with
each vertex a factor of i(J0 —J,)e ' 0 ~ (iii) Multiply
by (-', )". (iv) Pair all vertical lines with the same
spin index in all possible ways. (v) Sum over all
possible consistent spin indices. The 211th moment
is the sum of all such contributions. In order to
calculate this sum, we will consider an equivalent
problem, that may be transformed into a readily
solvable one.

We construct a model, which we will call the
averaged spherical model, for which all the ran-
dom variables $, in an interval -c& q& q are re-
placed by a single mode $0 where

&s;(f)S0,(o)& = P(s,)rf; (q, f)d 5, . (26)

Since 50 and 5, are independently distributed

&s,"s,&
= &s;(o, &.)s",(,&.)&-,, =p. .

The time dependence of the modes is determined

by the equations of motion (7). For 50 we have

(27)

0=0(e).
Bt

Hence, for any fixed q and f, (25) may be calcula-
ted by assuming that $0 is a constant. Near T=0
the amplitude of the fl.uctuations 5, will be much

smaller than 50, with a probability that approaches
1. Consequently, we can evaluate the time evolu-
tion of S,(t, S,) from the usual linearized spin-wave
equations of motion. That is,

As T-O, &(S0)2)--2, for any e. Evidently, for T
sufficiently small, we may take c as small as we
please and still have &(S0)2& ——', —5 with 5 arbitrarily
small. The distribution function for the averaged
spherical model has a limit as T-O, for which
&(S0)'& = —', and (S,"S,) =0, whereas the spherical
model does not. Furthermore, for the limiting
distribution we can take e-0, and the distribution
remains well defined. Let us consider calculating
for this model,

If, (t) —= lim lim &S, (t)s, (0)&/&S,"S,
& (2

with q&D fixed. The average can be done in two

steps. We can first calculate

R,,(q, f) = &s,"(f,5,)s', (0, 5,)&,,l&s,s,&, (25)

where ( &2 is the average over the conditional
distribution of the S„given the value of 50 at t =0.
5,(f, 50) is the time evolution of R, (t) given the init-
ial value of 50. We can then calculate

So = S, dq. (22)
g Se(g

n (~l 0) '(g g ) CBUSSSV(f g )
Bt

Modes outside of this interval are distributed ac-
cording to the spherical-model distribution (5).
$0 is the sum of Gaussian random variables, and
is itself a Gaussian random variable, with

The 2nth moment of (24) is therefore

t &[(f s/sf)2 "S."(t,5,)]S,(0, 5,)&, ,Pg ) dB,

(30)

&(S,')') = (S,"S',
& dq.

O,X O, Z O, )t' O)j' O Y

(23) Using (29) and the fact that S, and 50 are indepen-
dently distributed, together with (27) we have

[
~

(+ + )]2n 1 1+ 2n -1 2n
&S 1. . . S 2n&

(3 l)

q, z q,v q,x q, z
"

q, z q,x

FIG. 9. Most-general vertex before pairing equivalent
spin indices, for the ferromagnet.

This is identical to the moments of the dynamical
spherical model, at T =0, since &S0' ~ ~ &0'"& is
(—,')" multiplied by the number of ways of pairing
the indices.

Although the averaged spherical model leads to
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—S,'(f, 5,) =0,

Bt
—s,"(f,5,) =~I(z, —z,)s,s,"(f),

where S, =]B,~.

Thus

(33)

g, (f, g,) 5,(0,5,) =s,'(0, B,)s', (0,5,)
+ —cos[(j —J )S ]t[s (0)S (0)

+s,"(0)s, '(0)1

(34)

Since the 5, are independent of 5„
-', (S, '(0, 5,)s",(0,5,))

=(S,'(0, S,)S',(0,S,)) = p,

and hence

R, (f) =-', +-,'(cos[(J, —J,)s,t)), (36)

where the average in (36) is over the distribution

Z(S ) =3(3/2v)'"S'e-'"" (37)

From (36) and (37) we have the relaxation function
for the dynamical spherical model at
T =0 (Fig. 10):

R, (t) =-', +-, e t '~ "[1—,'(tu, t)'], —

(38)

the same expressions for the moments as does the
spherical model, and therefore these are no easier
to evaluate, in the form given by (31), we can
easily evaluate the correlation function (24) by
transforming (29) to a set of coordinates oriented
along the value of 5,.

By isotropy,

(S,"(t)S",(0)) =-', (8, (f) 5,(0)). (32)

For each value of 50, we define a coordinate sys-
tem with its z axis along 5,. The time evolution is
now very simple.

ReR, (~ +i&) = 6 —+(6v)'" e '"&~'~e~71 M (d 2

(~,)'

(4o)

It was not really necessary to introduce the
averaged spherical model to obtain these results.
They follow directly from Eq. (29) with Ro" defined
as independent Gaussian random variables with a
variance of —,

' and the assumption that the initial
distribution of 5, is independent of 8,. We have
not, therefore, been particularly careful in show-
ing (29) follows from the equations of motion. It
is only necessary to observe that (29) may be
solved in two ways, corresponding to the fixed-
coordinate system and the system with 8, aligned
along the z axis, and that the first choice leads

.to the moments obtained from the diagrammatic
expansion of the spherical model, while the second
choice permits the equations to be solved.

The treatment of the antiferromagnet is not
significantly different. Referring again to Fig. 6
we will have the two choices q, =q„q, =q —q, and

q, =q —q„q2 =q,. The value of the vertex is

C

if p =tf, we see that the vertex is zero since p, /pq,
vanishes as T-O. As before, the line that carries
the wave vector q, can only recombine with a right

!.0
EXACT SOLUTION

The Laplace transform of R, (t) is

R, (z) =
3 +3—i ((z —(u, s,) ')p(S, ) ds, (39)
i 2

and hence the spectral density is (Fig. 11)

1.0 3
fL- 0.5
K

0.5

0
0 LO 2.0 5.0

(L)qt

4.0 5.0 60

0.0
l.0

~/(~2) I /2
q

2.0

FIG. 10. Spin-spin correlation function in the dyna-
mical spherical model at T=0.

FIG. 11. Spectral density in the dynamical spherical
model at T=O.
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Qc 04 Qc 0@

Q, a Q. Q Qc 3 Q 5Q-Qc & Q ,
FIG. 12. Typical diagram for the mtiferromagnet at

T= 0.

vertex. The next vertex which has the incoming
wave vector q —q„has the value

f(Z g)e"e -~c ec "ep /p

We see that the factors of p, from two consecutive
vertices cancel. The structure of the diagrams is
as shown in Fig. 1'2, with the vertices hiving al-
ternately values proportional to J, —Z, , ) and

—J,. The rules for the calculating of the mo-
ments are identical, except that rule (ii) becomes
(ii ): associate alternate factors of i(j, —j, ,
—j, , )e""'~' and i(J'„J,)e"' "~"~with each ver-
tex, beginning with the former. The solution is
the same as (38) and (40), with the appropriate
expression for u, .

We note that lim, „(S,(f}s,(0})=—',. This is true
only at 7' =0. At any nonzero temperature, this
limit would be zero.

III. DISCVSSION OF SOLVTION AND

COMPARISON VGTH THE HEISENBERG MODEL

The physical interpretation of the solution is
evident from its derivation. We can regard the
response of the system as the sum of a longitudinal
and a transverse response (with respect to 50), of
equal integrated intensities for each component.
The longitudinal fluctuations are static at T =0,
and are responsible for the finite value (—', }of the
correlation function (38) as f- ~. The transverse
fluctuations are well-defined spin waves. However,
since the magnitude of $0 is not fixed, the spectrum
that is seen is inhomogeneously broadened, and
the line shape is given, by the probability distribu-
tion of the magnitude of $,. The solution satisfies
the dynamical scaling hypothesis, and in fact a
much stronger version, since the spectral function
width scales with ~, for all q, not just q(or q*)
«m/a. This latter feature is a peculiarity of the
model, and does not hold for the dynamical
spherical model in three dimensions or more.

It is interesting to compare the result with the
nearest-neighbor Heisenberg model at T =0, where
ReR, (&u) =m6(uP —ur', ). The entire weight is con-
tained in the spin-wave lines, which are perfectly
well defined, and there is no central resonance.
The difference is readily understood. If we define
So in the same way, the constraint 5, ~ 5, =1 re-
quires that the distribution of So at T =0 be 6(s, -1}.

1'(q,q,q, ) = ,N '[(J„„,—-J„(J„—J, )

+ (~„„,—~,)(~„-~„)l. (44)

It is readily verified that the correct spin-wave
frequency in the nearest-neighbor chain is ob-
tained by replacing the operator 5, ~ 5, by its
average evaluated at T =0, i.e. ,

5„~5,,-(S,, 5„)=N6(q, -q, )6(q, +q,)S', (45)

leading to

82$
8t2 q q (46)

The spin waves are well defined since the magni-
tude of S, does not have any fluctuation. Also, the
susceptibility along 8, is no longer equal to that
transverse to 8,. Spin-wave arguments would indi-
cate that (S,'S', ) ~ (KTp, whereas (S~s,) ~&T for
q» k. Hence (S,'S', )/(8, ~ 5,) =0 at T =0, explain-
ing the absence of a central resonance. ' This
latter argument also explains the difference be-
tween the susceptibilities for the Heisenberg and

spherical Model near 7 =0. We have, as g- 0,
for fixed q

(5, 5,)„=,(5, 5,)„„= . (41.)

Let us assume that the spherical-model suscep-
tibility gives correctly the transverse susceptibility
in the Heisenberg model as well, if q» k, and
that the longitudinal susceptibility is negligible.

. Then we would have

(5, .5,)„=(s,'s', )„+2(s,'s', )„„=-',(5, 5,)„„,
(42)

which is the correct result.
The existence of well-defined spin waves in the

Heisenberg model at 7 =0 has been shown only for
the case that the interactions are nearest neighbor.
The spherical model is known to give the same
static critical behavior as the Heisenberg model
in the limit that the interaction becomes long
ranged, and does not have perfectly well-defined
spin waves at T =0. It is interesting to ask what
happens to the spin waves in the Heisenberg model
if the interaction is long ranged. For instance,
does a small amount of next-nearest-neighbor in-
teractions lead to a small linewidth at T =0? The
answer to this question is no. For any finite range
of interaction, the Heisenberg model yields well-
defined spin waves at T =0. To see this, we ob-
serve that the equations of motion can be written

82$' = —P r(q,q,q, )6(q, +q, +q, —q)s,"5, .5, ,

(43)

where
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~', =(z,„—z )(z, -z, )s'. (4"I)

This replacement is asymptotically exact because
the fluctuation

g, 8, =8, 5, -&S, .S, ) (48)

vanishes, that is, takes nonzero values with
vanishing probability as T-0. In fact, for nearest-
neighbor Hei.senberg chains, one can show that

((N, .5,)') =(~ (r, -r, ()2S', Z(r,. -r, («1 (49)

where K, the inverse coherence length, is IfTj
ZS'a The condition ~lr; —r, ~«1 will always be
satisfied for the sites appearing in the equation of
motion (43), if g is sufficiently small. The dis-
tance between sites is limited by the range of the
interaction to at most two, for nearest-neighbor
interactions, and more generally, to twice the
range of the interaction.

%e will assume that the interaction is actually
zero beyond some distance, to avoid problems
with limits that we wish to exclude from the pres-
ent discussion. Then a sufficient condition for the
existence of perfectly-well-defined spin waves is
that 55; S~ -0 for i and j any fixed distance apart,
as T-O.

I et

b.) =5~ —(5) S,)s 5;,
then

From the Schwartz inequality

((&, Z, )')-&, ~ &, ~,~, =s'(I —(5, 5,)'s '). (52)

Hence as long as the interaction is such as to
lead to ferromagnetic or antiferromagnetic order,
so that (5, ~ 5~)' - S' when T —0, the fluctuation
55 .5. will vanish and the excitations at T =0
will be perfectly-well-defined spin w'aves. Inter-
actions that lead to helical ordering, for which
Z(q) has a maximum at a wave vector q, other than

q, =0 or q, = w/a require further analysis. Adding
a small amount of next-nearest-neighbor inter-
action to a nearest-neighbor system does not,
however, lead to a finite linewidth.

In the spherical model, one can show that

((c5,. 5,)') =-,'(1+(s,'s, )')

and so the criterion for the existence of spin waves
fails. In fact, when i =j, the criterion 55, ~ 5, =-0

is simply the statement that the spins are of fixed
length, which, j.s violated in the spherical model,
and as we have seen, it is precisely the fluctuation
in the length that is responsible for the linewidth
at 7'=O. From a formal point of view, the con-

straint 5 ' 5~ = 1 leads to nonvanlshlng four- (and
higher-) spin cumulants, that are not present in
the spherical model. These in term, lead to addi-
tional decay processes, discussed in See. I, that
are responsible for the well-defined spHl waves
at 7'=0, ih one dimension. %e would expect, in
higher dimensions, that these correlations will
also significantly affect the sharpness of the spin
waves. Approximate methods, using only the
vertices of the spherical model, and hence neglect-
ing these correlations, do not show the three-
peaked structure observed in the three-dimension-
al Heisenberg antiferromagnet RbMnp„" yielding
only a broad central resonance, even when these
calculations are taken beyond and mode-coupling
approximation to include the lowest-order scatte:—
ing process of Fig. 2(d)." We examine these
methods and the extended-mode-coupling theory
as they apply to the one-dimensional case in See.
IV.

The exj.stence of a known exact solutjon provides
the possibility of exploring the validity of the ex-
tended-mode-coupling theory treated as a scheme
of successive approximations. The first approxi-
mation, the mode-coupling theory, or independent-
mode approximation has been used extensively in
magnetic systems and fluids at the critical point, '
in ordinary fluid turbulence, ~' and in plasma tur-
bulence. "

Despite its successes in practical calculations,
it is widely recognized that these theories are
less than satisfactory, there being no a priori
reason for suspecting that the higher-order terms
are small, as there is no expansion parameter. "
There is only the intuitive sense that very complex
processes for the buildup of correlations are un-
likely to have a profound effect on the dynamics of
a single mode. One might expect that spectral
functions obtained by taking more and more terms
in the expansion of the self-energy in renormalized
skeleton diagrams (extended-mode-coupling expan-
sion) would converge to the correct spectral func-
tion. The difficulty of doing the calculations, and
to our knowledge, none have been done past the
second term in the expansion, has precluded any
systematic investigation of the convergence
properties by direct calculation. It is a relatively
simple matter, for the spherical model chain to
investiga, te these approximations. Qne cannot
automaticaily infer that the results obtained in one
dimension at T =0 are applicable as well to the
other situations we have mentioned, although we
suspect that is so.

The contribution of any skeleton diagrams con-
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taining 2n =2 vertices may be seen to be, for n& 0,

t t3 tg
&g" +'(t) = yi(50, )2 "+2 . dt, dt, dt, „G,(t,)G, (t, —t,) G, (t —t,„).

0 0 0
(54)

The equation of motion can be written

-izG, (z) =1 iP-, ( z) G, (z), (55)

which upon expanding p, (z) in renormalized skele-
ton diagrams leads to

lim G*(z) =iz. (60)

The limiting form corresponds to the solution in
the time domain G*(t) =-85(t)/Bt, which one readily
checks, is a solution, with G*(0) =0, and

-izG, (z) =1 —Q A2"(01,)'"[G,(z)]2",
n=1

(56) (61)

(57)

We have chosenthe normalization so that the sec-
ond moment of G*(z) is 1. All reference to the
wave vector has dropped out. That this is possible
is the statement of dynamical scaling, although
here it is much stronger, since the result holds
as well for large values of q.

For the antiferromagnet we require two equations
for G, (z) and G.. .(z), but since 00, =01,, „ these
two functions are identical, and we obtain Eq. (57)
for the scaled function.

It can be seen from the discussion in the Intro-
duction, or directly from (56) by expanding both
sides in powers of 1/z, that the solutions of the
equation one obtains by truncating the series after
A'", will have the first 2n moments of the spectral
function correct. ' For instance, the mode-coupling
approximation corresponds to solving

-izG*(z) =1-[G*(z)]' (58)

or

G*(z) = —,'[iz a(4 —z')'"] . (59)

The appearance of multiple roots indicates that the
solutions of (57) are not unique. The solutions of
the analog of (57) in the time domain are unique,
if we require G(t) to be a continuous function, since
one can obtain a convergent Taylor-series expan-
sion by solving the equations iteratively. The ap-
pearance of additional solutions of the Laplace-
transformed equations corresponds to admitting
singular solutions in the time domain. For in-
stance, one choice of sign in (59) leads to a G"(z)
such that

where A'" is the sum of all skeleton diagrams with
2n vertices. Defining

G*(z*)= (1/~3(u, )G(z*/-'301, ),
we find that G*(z) satisfies

the equation of motion in the time domain corres-
ponding to (58). Higher-order polynomials used
to approximate P, (z) yield additional spurious
solutions. There will always be one solution that
approaches i/z, as z- ~, and it is the zero of the
polynomial equation that goes continuously into
this one as z- ~ that we identify with the physical
solution. We must therefore choose the negative
imaginary square root in (59). We see then that
the high-frequency expansion of G*(z) is

G+(z) =(i/z)(1+1/z +1/z + ~ ~ ~ ), (62)

which does indeed have the correct second mo-
ment. It follows from a Taylor-series expansion
of (44) that the exact G*(z) can be expanded

G4( ) (i/z)(1 ~z 2 ~ 5 -4 + 70 -6 + 315 -8

4 3465 z-10+. . . )l6 (63)

so the fourth (and higher) moments of (59) are
not correct, which can be seen by comparing (63)
and (62).

Using the exact solution to generate the coef-
ficients A" by the requirement that they give the
correct moments (for A' and A' these have also
been obtained by adding graphs) we obtain the ex-
tended-mode-coupling equation of motion, through
terms containing 10 vertices:

-tzG+(z) =1-[G+(z)]'+-,'[G+(z)]'- —;[G+(z)]'

+ "[G*(z)]'- ' [G*(z)]"+ ~ ~ ~ . (64)

For real z, this polynomial equation may be readily
solved for its roots by squaring it and utilizing
standard routines for finding the roots of a poly-
nomial with real coefficients. For imaginary z,
the roots may be found directly. If we keep only
the terms up to [G*(z)]", we obtain the results
shown in Fig. 13. The solutions are not reproduc-
ing the central peak and sidebands observed in the
exact solution. — The results of including the terms
with n & 6 are particularly interesting. It may be
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EXTENDED MODE COUPLING APPROXIMATIONS

T=O

~ 05

"o.o i.O 2.0 3.0

FIG. 13. Spectral density obtained from the extended-
mode-coupling approximations with n vertices in the
self-energy.

TABLE I. Values of G@) for g along imaginary
[ReG(iv')] and real [G(&)] axes. Observe that lim~
G (iv) & lim~ OG (co).

ReG gt')
N=8

ReG (a)) Im6 (v)

0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0

0.756
0.731
0.70V
0.619
0.494
0.420
0.365
0.322
0.287
0.260
0.236

0.406
0.390
0.369
0.337
0.28V
0.214
0.107
0
0
0
0

0.765
0.738
0.707
0.669
0.630
0.600
0.507
0.435
0.355
0.305
0.269

noted that the area under the curve, which should
be —,'m in all cases, is too small for n~6. The
reason for this is that these solution do not satisfy
the Kramers-Kronig relation, as they are not
analytic in the upper half plane. This may be seen
by comparing the values of G*(z) one obtains by
moving to z =0 from large values of z along the
real and imaginary axis (see Table I). Although
in both cases, the solution approaches iz ' for
large z, the value approached at z =0 is not the
same for the two paths. There is no way of analy-
tically continuing the root of the polynomial equa-
tion for large z that behaves as i/z, so that it is
in an analytic function in the entire half plarie.
There must be a branch point in the first quadrant
for the function which is a root for all z. A singu-

larity in the upper half plane can only occur if the
function G*(t) is not bounded as t-~ T. here is
therefore, no physically reasonable solution of the
equation with terms up to the sixth included.

This rather startling result is unexpected but
not one that we have any a Prior claim to rule out.
By truncating the series for the self-energy, we

sum a subset of diagrams, and generate a'se-
quence of approximate moments, that need not
correspond to a physically realistic relaxation
function.

It is possible that it is the peculiar nature of the
critical point in one dimension that is responsible
for this lack of regularity in the extended-mode-
coupling approximation. In particular, the limiting

'spectral function is a distribution, not a function.
We suspect that this is not the case, and that the
irregular behavior exhibited here extends to higher
dimensions and more-gener al systems. Consider
for instance the effect of a small temperature on
the spectral function, for q» z (q*» z). The exact
result will be much like Fig. 10, the primary dif-
ference being that there will be a width to the cen-
tral peak. The moments are all continuous func-
tions of ~, so that the t =0 value of the diagrams
will change continuously. It will no longer be pos-
sible to represent the frequency dependence of
the diagrams by a simple product, and we must
take convolutions, but these will have widths on
the order of g2(z) for the ferromagnet (antiferro-
magnet) and for time on the order of q, (q) we
would expect only small changes in the resultant
solution. Therefore, except possibly for the cen-
tral-peak region, the solution for any n, must be
continuous with that at g =0, and hence converge
as poorly to the correct result.

The inadequacy of methods based upon the self-
consistent solution of renormalized diagrams has
been observed by Kraichnan" in a class of stochas-
tic models he has constructed that allowed him to
investigate this question, reinforcing our sense
that the failure of these methods is not restricted
to the particular systems considered. If indeed it
is correct that including higher-order diagrams
does not yield a convergent series of solutions at
higher temperatures or more generally, with dif-
ferent expressions for the q dependence of the
vertices, then it is a defect of the resummation
procedure that is inherent in the structure of the
diagrams. The significance of the lower-order
solutions is then open to question, at least in the
sense in which they are to be interpreted as ap-
proximations. It is one thing for the mode-coupling
approximation to be the first in a series of approx-
imations that converges to a solution, and quite
another to be the first in a series of approxima-
tions that does not converge to anyth:ng. It should
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G, (z) =i(z —(o2/[z —V, (z)]] ', (65)

where V, (z) is shown diagrammatically in Fig. 14.
The crosshatched box indicates that all diagrams
containing three or more lines in the intermediate
state are summed. The vertices shown explicitly
do not have associated a factor of z ', all vertices
within the cross hatched region do, and there is
one overall factor of z '. V, (z) is the self-energy
governing the decay of the spin current.

This result may be derived using projection
operators or diagrammatically. Here again, one

may develop the diagrams in terms of renormal-
ized lines and skeleton diagrams. The lowest-
order approximation would be to make the replace-
ment shown in Fig. 14(b). At T =0, this reduces
the diagrams needed to those of Fig. 14(c), and
we have explicitly

(o)

be noted, however, that the scaling exponent z is
given correctly even if the series is not conver-
gent, and it is only the shape of the scaling function
which is in question.

We wisp now to consider other approximate
means of calculating spectral functions. There is
no compelling reason why the renormalization and
use of skeleton diagrams need be carried out at
the level of the self-energy p, (z). One can just as
readily use a terminated continued fraction, and
develop the self-energy that appears in a series of
renormalized skeleton diagrams. For instance,
one can write as an exact result,

V, (z) = -i(((u,') —((u',)')G, (z). (66)

We note that dynamical scaling for G, (z) follows
as well from this expansion as it does from the
mode-coupling expansion. The scaled function
satisfies

G +(z) = f(z —[z +.i-', G*(z)]-')-' (67)

or

G*(t) =—(z' + —,') + —[(z' + -', )' —6z']"'
3Z ' 3Z

(68)

In order to have lim, „G*(z)=iz ', we must
choose the negative sign for large values of z. If
this choice is retained for z-0, we will obtain
G*(0) =0. However, when the argument of the
square root is zero, the two branches of the solu-
tion join, and we can construct a solution that
passes from one branch to the other. The choice
of the positive sign for z ~ —,

' [5 —(24)"~], leads to
lim, „G*(z)=i/Sz. The singularity at v =0 of the

exact solution is thus reproduced, with the correct
strength. The solution is plotted in Fig. 15, (n =4},
and we see that it is qualitatively correct, the
sloppy-spin-wave sidebands being reproduced, 'as

well as the central peak. The improvement over
the extended-mode-coupling result is dramatic,
and this approximation may in fact prove to be of
value for calculating the scaling functions in three
dimensions.

One may continue the approximations in two di-
rections. Additional skeleton diagrams may be
included in the expansion of V, (z). We find by
comparing moments with the exact solution that
the next approximation for G*(z) would be

G*(z) =i[z —1/(z+f{—G*(z) —[G*(z)]'])] '.. (69)

(b)

qI qI
I

I
q =q
q~I q~

-qI

q~

q~

(c)

FIG. 14. (a) Self-energy V, (z). (b) The independent-
mode .approximation for the correlation function appear-
ing in V, (z). (c) The approximate expression for V, (s)
obtained using the independent-mode approximation.

This may be solved by the same methods as used
previously for the extended-mode-coupling approx-
imation, and the result is also shown in Fig. 15

(n =6}.
The solution is in no sense a better approxima-

tion than that attained from (65). In particular,
note that the solution that is singular at the origin
does not have the correct strength, as one may
infer from (69) by observing that lim, OG*(z) =iz '
'is consistent. Keeping higher-order terms in the

expansion will not alter the strength of this singu-
larity. We have shown in Fig. 15 the result of
solving (67) (n =6) and of the equation one gets by
including the next-order terms (e =8). It is clear
that the solution gets worse as one includes more
terms, rather than better.

The other direction that one might seek as im-
provement of the approximation given by (66} is to

extend the continued-fraction expansion before
evaluating the final self-energy.
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7flb 8(cu) (N~4)
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FlC. 16, Self-consistent equation for the vertex func-
tion used in the kinetic theory of the Heisenberg para-
magnet.

2.52.00,5 Oil l,5
td / CUtI

FIG. 15. Spectral density obtained using approxima-
tions for V, {z). n denotes the number of vertices in
the skeleton diagrams. The diagrams for n= 4 are
shown in Fig. 13{c),n=6 corresponds to Eq. {69).

G+(z) =

1
3/2

I

In this way, if we keep only the first term in the
expansion of the final self-energy in skeleton dia-
grams, we obtain an approximation of the form

author' can also be solved exactly at T =0. This
theory is a self-consistent equation for the vertex
function, shown in Fig. 16, rather than G*(z). It
has the virtue of being consistent with energy con-
servation, and gives a solution for G*(z) which has
correct moments up to the fourth. It has given a
good quantitative description of the spectral func-
tions in three-dimensional antiferromagnets away
from 7,.'4 We find, however, that the solution in
this case at T = 0 is close to that given by the ex-
tended-mode-coupling result for g =4 (see Fig. 13),
and therefore is qualitatively incorrect.

We have not considered summing infinite sets
of diagrams, such as done by Fedders' for the
limit of infinite dimension and infinite temperature,
and it is possible that a procedure can be found that
will eliminate the convergence difficulties in the
extended-mode-coupling expansion in a similar
fashion, at finite temperatures.

If n is oddwe , obtain for G*(0) the result
(n-ll/2

2&+ 1 (71)

with a =1, while if g is even, we obtain

pg2 nag

G+(0) =-G+(0) a,„„'a„. (72)

Since the a's are all positive, this will have as a
solution G*(0)=0, and (70) may also yield a singu-
lar solution, as we have seen.

It is clear that unless the quotient in (71) con-
verges to zero, which it does not appear to do in
this case, the series of approximations obtained
from (70) cannot converge to anything. The next
approximation to (65) with ye=3, a =2/3, is not
qualitatively correct, being regular at z =0, and
showing no sidebands, with the entire spectrum
localized around z =0. . Thus, whichever way the
approximation method is continued beyond the
result contained in (65), the solution deteriorates,
rather than improves.

We note that the kinetic theory developed by the

V, CONCLUSION

An exact solution, obtainable by summing all the
diagrams in the moment expansion of the spectral
function, exists for the dynamical spherical model
at 7 =0. The solution is readily understood in
terms of a model in which spin waves propagate
transverse to a uniform magnetization, whose
orientation is arbitrary and whose magnitude is
simply related to a Gaussian random variable. As
a consequence of the fluctuation in the magnitude
of this effective magnetization, the spin-wave
spectrum is inhomogeneously broadened, and the
spin waves have a finite lifetime at 7' =0. The
fluctuations parallel to this magnetization do not
decay (at T =0) and are responsible for the finite
value at t =~ of the spin-spin correlation function,
and the corresponding pole at ~ =0 in the spectral
density.

In the Heisenberg model, the, constraint that the
spins be of fixed length eliminates the inhomogen-
eous broadening and causes the longitudinal sus-
ceptibilities to vanish relative to the transverse,
leading to perfectly-well-defined spin waves and
the absence of a central peak. The constraint is
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incorporated in the microscopic treatment of the
dynamics by the presence of additional decay ver-
tices, reflecting the existence of non-Gaussian
correlations in equilibrium. .These vertices are
comparable to, and exactly cancel, at &=0, the
contribution from the vertices arising from the
Gaussian part of the fluctuations, explaining the
failure of the mode-coupling theory to predict an
infinite lifetime for spin waves in the Heisenberg
chain at T =0.

The solution for the spherical model satisfies the
dynamical scaling hypothesis, with a dynamical ex-
ponentof z =2 for the ferromagnet and z =1 for
the antiferromagnet. A perturbation expansion
of the self-energy, ordered in terms of the number
of vertices in dressed skeleton diagrams, the ex-
tended-mode-coupling theory, is consistent, term
by term, with the dynamical scaling hypothesis,
with the correct exponents, but yields scaling
functions that are qualitatively incorrect in lower
orders, and physically unrealistic in higher orders.

The best approximation we have found uses the
lowest-order mode-coupling approximation (inde-
pendent-mode approximation} for the self-energy
of the spin current. It gives a qualitatively cor-
rect solution, and will perhaps be of value in three
dimensions. The solution deteriorates if one at-
tempts to go to higher orders in the number of
interactions in the self-energy. There does not
appear to be any scheme for utilizing the lower-
order perturbation results to obtain a, convergent
series of approximations to the exact solutions, at
least, using a finite number of diagrams.

Note added in proof. The results obtained here
are valid in two dimensions. In particular, the
correlation function is given by (38) and (40) with

the appropriate expressions for co,. This is readily
seen by observing that the essential feature of the
derivation was that

APPENDIX A: PROOF OF STATIONARITY

GF THE SPHERICAL-MODEL DISTRIBUTION

We wish to show that the spherical. -model dis-
tribution given by (5) is stationary when the spin
components evolve according to the equations of
motion. (2}. It will be more convenient to use
Fourier-transformed variables

We want to show then that

(Al)

Qg
(S . . .S tl) -0

Bt

When n is even, (A2} is trivially true, since the
time derivative involves the average of an odd
number of operators, and this will vanish. We
need only consider the case that pg is odd. For
pg =1, translation invariance assures the result.
The first nontrivial case is g =3. The spherical
indices +1,0 are more convenient. The equations
of motion are

95,'
=+N '+i+ (Z. ..—J, .)S,' S,",~,

g SO ~-lf 2

(J, , —Z, .)S, .S,'=, .
(A3)

It is a cones«luence of (5) that

(S 1.. . S 3n) —Q (S ««S «2). . . (S «2n-«S «2n
) (A4)

i~ an-1 '2n

where (P] is the sum over all pairings of the 2n

indices. The correlation functions vanish, by ro-
tation and translation invariance unless P ««.

«
=0

and Pq,. =0.
Taking the time derivative of each operator

separately, using (A4) in the result; together,
with the criterion that P««. «

=0, ~« =0 for all the
correlation functions, we obtain

(8, ' 8, ) 6(q —q,),

which is true in two dimensions as well as in one.
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p, =(S,S-.)= (S, S- ).
In order that (5) be stationary, (A6) must be zero.
This is a strong restriction on the form of the cor-
relation function, which is satisfied by

p, =(o«, +u, Z,)
'

w~tb &, and &2 arbitrary. It can be shown that this
is the only solution of (A6}.

The restriction that+(5« ~ 5«) = I, or 3N 'p, p, =I,
restricts the possible form of p(q) to a one-param-
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eter family of functions. If we identify this param-
eter as P, the solution may be written, identifying
also n, /n, as -p, of (5):

In general, for arbitrary n, we will obtain

(s 1.. .s Qtl+g)
~ j. ~2n+ Z

p, =p '(~ 4-'=p '(x.,'+~a, (A8)

where ko is arbitrary. y,, is the static suscep-
tibility at this wave vector, and is a function of P.
This is the pair correlation function of the spheri-
cal model. This remarkable fact, that one can de-
termine a static distribution from the requirement
of stationarity, is not completely understood.

To complete the demonstration that (5) is indeed
stationary it is required to show that (A2) holds
for all n&3. Consider yg =5. Then if there are not
three spin variables in the average such that
P~n, =0, Pq, =0, the time derivative will vanish
trivially, since the time derivative of one spin
variable of wave vector q« introduces two variables
into the average that must be paired with two of
the remaining four. There may be more than one
triplet for which this condition holds. Consider
first that there is only one. Say

with q, +q, +q, =0. Then pairs of variables in the
time derivative of S,~, i =1,2, 3 can be paired only
with the other two elements of the triplet and the
time derivatives of the remaining two fluctuations
cannot paired at all. The time derivative reduces
to

—((s,' s, 's,"))(s', s', )

which has been shown to be zero. Suppose now
that there is more than one way of finding such a
triplet, and consider the spins that participate in
more than one triplet. For instance

(SO S-is+ iso SO )Bt

X (S 4$ 5). . (S 2n+ls Rn+2) (A9)
~4 «5 «2n+1 «2n+2

where p~ is the sum of all possible ways of choos-
ing a triplet and n —1 pairs such that Q n, =0,
Pq, =0, and the remaining indices are paired.

APPENDIX B: COMPARISON OF MICROSCOPIC

RESULTS WITH MODE-COUPLING THEORY

The basic equation of the mode-coupling ap-
proach for treating the long-wavelength fluctuations
in the isotropic Heisenberg ferromagnet is'

2LO

The sum is only over the "long" wavelengths
0 - IKI - IKg I

where IKul is somewhat arbitrary
but «v/a. L,', the bare transport coefficient, is

, regarded as arising from the contributions of the
"short"-wavelength fluctuations to the memory
kernel P, (z) of the text. It is thought of as fre-
quency independent, since (Bl) will be used only
to treat the low-frequency response, where 5,(t)
varies on a time scale much longer than that of
the modes that contribute as intermediate states
in y, (z), to L,'.

Since

(82)

when the spherical-model expressions (A8) are
used for the susceptibilities, (81) reduced to the
equation one obtains directly from the equations
of motion, by transforming (2),

The pairings necessary to associate the time
derivative of S,,' with one or the other factor, 5'„,
are distinct, and the average of the six spins. in-
volved is the sum of all possible pairings. There-
fore the time derivative of S, ' is the sum of two

&2

terms, each being of the form

(8 Sq-'Sq')(S,' S',) .
One obtains, therefore, that this time derivative
is

which vanishes.

insofar as the mode-coupling terms are concerned.
In order to calculate correlation functions from
(81), it is assumed that the S, are Gaussian
variables at t =0. This is, of course, an approxi-
mation for the Heisenberg model. One then ob-
tains a p rturbation series for the self-energy in
terms of bare propagators, the graphical series
for the self-energy in terms of bare propagators,
the graphical expansion for which would be identi-
cal to the one we have given, except that the bare
lines would have a different significance, as the
bare propagator is i(z+q'L, /X, ) ', rather than
iz ', and the summations are only over long-
wavelength modes. When self-energy insertions
are resummed, the formal expressions for the
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self-energy in terms of the renormalized propaga-
tors will be identical with the ones we have given.
The inverse propagator will be

(G,')-' =z-'[z +f1.'q'/q, —y, (~)] (B4)

but since for small q, the bare term is negligible,
compared to P, (z) the mode-coupling solution would
be identical to the result of the microscopic calcu-
lation.

There is evidently no reason to make the decom-
position into long and short wavelengths for treat-
ing the spherical model, where the Gaussian as-
sumption is exact, and can be used with (B3) to
generate the self-consistent equations for the
propagator. We note that Kawasaki's equations for
the antiferromagnet'- 5.105-5.107 appear more
complicated than (Bl) only because of the neces-
sity of restricting the summations to the appro-
priate regions around q =0, q =w/a, and reduce to
(Bl) if these restrictions are lifted. Our preced-
ing comments apply as well, then, to the anti-
ferromagnet.

We have seen that the Gaussian assumptionis
grossly incorrect for the Heisenberg model, in
one dimension, and leads to a qualitatively incor-
rect spectral function, due to the presence of
higher-order cumulant averages that affect sig-
nificantly the dynamics. The critical exponents
were given correctly, however, for the cases con-
sidered so far. Preliminary work indicates that
this is not so in- the ferromagnetic chain, for q«k,
where the mode-coupling theory would predict a
finite diffusion constant at 7 =0, and the evidence
is that it in fact vanishes as 1/ink, if there is a
diffusion process at all. The results for the criti-
cal exponents may also be invalid in three dimen-
sions. The susceptibility is proportional to (q'
+k') "",which is incompatible with the Gaussian
assumption (see Appendix A), and does not lead-to
(Bs) from (Bl). Whether the mode-coupling pre-
scription is in fact correct to order g remains to
be seen. The demonstration that the exponents are
correct to first order in an q expansion does not
speak to this issue, since g is of order q'.
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