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Theory of Larmor waves
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A theory of Larmor waves (recently discovered by Janossy and Monod) is presented, which

takes account of Fermi-liquid interactions (that can be measured by measuring the frequency of
the Larmor-wave oscillations), Fermi-surface anisotropy, and of g-tensor anisotropy. Exact

results are presented for cylindrically symmetric Fermi surfaces, as well as approximate results

for general Fermi surfaces (including effects due to open orbits}. A prediction of the Larmor-

wave spectrum for potassium is made.

I. INTRODUCTION

Recently, Janossy and Monod' discovered- a new

type of spin-density oscillation in metals, which they
called a Larmor wave, and which they studied in mi-
crowave transmission experiments. By studying a
model of noninteracting electrons having a constant
scalar g factor and spherical Fermi surface, they
showed theoretically how Larmor waves arise. They
also pointed out that, unlike conduction-electron spin
resonance, the Larmor-wave transmission is associat-
ed with electrons on particular parts of the Fermi sur-
face. Furthermore, they noted that the Larmor-wave
phenomenon could in principle be observed in metals
with large g-factor anisotropy.

The purpose of this paper is to develop a theory
which takes account of some of the effects of the
Fermi-liquid interactions, the momentum depen-
dence of the conduction-electron g tensor, and
Fermi-surface anisotropy, on the Larmor-wave
phenomenon.

The mechanism by which microwave power is
transmitted through thin metallic slabs via Larmor
waves is very similar to the mechanism of
microwave power transmission in the cyclotron
phase-resonance phenomenon. 2 The microwave skin
depth must be much smaller than the slab thickness,
whereas the electron mean free path should be com-
parable to or greater than the slab thickness. To be
specific, consider the case of a static magnetic field
normal to the slab, and an incident microwave field
of frequency co, circularly polarized so that it rotates
in-the same sense as the free precessional motion of
the electron syin. An electron spin enters the skin
depth and has its spin orientation tipped away from

its equilibrium direction by the microwave field. It
then crosses the slab, precessing at its free preces-
sional frequency, and radiates power into the receiv-
ing cavity upon reaching the far surface of the metal.
If the free precessional frequency of the electron spin
is g„p,sH/g (which may depend on the electron
momentum p), the phase lag suÃered by the electron
spin relative to the microwave field during its transit
across the metal is

where to and t~ are the times at which the electron
leaves the skin depth, and strikes the far surface,
respectively. Different electrons suffer different
phase lags depending on their momentum-space (or
real-space) trajectories, and their contributions to the
total transmitted field interfere. If the average phase
lag for a given electron trajectory has an extremum,
then neighboring trajectories will have nearly the
same average phase lag, and the constructive interfer-
ence which results will give rise to a particularly large
signal. An experiment measuring the component of
the transmitted field having a particular phase relative
to the incident field will measure a signal proportional
to cos(4,„+u), where u is a constant the same for
all electron spins, and 4,„ is the extremal value of
the average phase lag just referred to. The phase lag
varies linearly with magnetic field [see Eq. (1.1)] giv-

ing rise to oscillations in the signal amplitude as the
magnetic field strength is varied.

The frequency 0 =g„(p)psH/twhich appears in

Eq. (1.1) is the precessional frequency of a spin with
momentum p, in an external field of magnitude 0,
when all other spins are frozen in their equilibrium
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positions. Thus, this precessiona'. frequency is deter-
mined not only by the external magnetic field, but
also by the effective exchange field due to neighbor-
ing spins. Furthermore, if spin-orbit coupling effects
are important, the tensor interactions3 between a
given spin and its neighbors should be considered.
All of these effects play a role in determining the
single-particle g factor, g»(p), which occurs in Eq.
(1.1), and which is defined more precisely below in
terms of the interaction functions occurring in the
Landau theory of Fermi liquids. Thus, the single-
particle g factor is quite different from the g factor
determining the position of the conduction-electron
spin-resonance line, and is in fact, closely related to
the g factor measured in the de Haas —van Alphen
effect. Finally, it should be noted that although most
of our discussion here and below is in terms of a
scalar g factor g„(p), a complete theory requires the
use of a g tensor, and some formal results for this
more general case will be given.

There is a relatively simple case of a cylindrically
symmetric Fermi surface, and a constant scalar g fac-
tor and exchange interaction for which an exact solu-
tion is possible (this is studied in Sec. 111). The
effects of exchange, and of different types of extrema
resulting from different types of Fermi surfaces, are
studied in detail. Of particular interest is a prediction
of the Larmor-wave spectrum in potassium, which is
known to have a relatively large exchange interaction.

Brief discussions are also given of the effects of
more general Fermi-surface anisotropy, including
some effects of open orbits.

In the experiments of Janossy and Monod, ' the
metallic slab through which the Larmor waves pro-
pagate is coated on both surfaces with a ferromagnet-
ic layer which enhances the amplitude of the spin-
dependent transmission. The role played by the fer-
romagnetic layers in the excitation and radiation pro-
cess is not examined in this paper.

opp 2 /lao'pp g ( p ) H

+o,o X%(p, p') o (p'), (2.1)

where an op subscript indicates an operator in spin
space, and the components of o-„are the Pauli ma-
trices. The quantity o (p) is defined by the equation

opp
= 0'pp'7(p ) (2.2)

The equilibrium value (designated by a subscript
zero) of the spin distribution function o.o(p) in the

.static magnetic field Hp, can be found from

~o(p) -2 oo( )
BE

(2.3)

where n is the Fermi-Dirac distribution function.
This gives an integral equation for oo(p), namely,

~o(P) =
2 pag(P)'Ho

+2 XV(p, p') oo(p') (2.4)

Ari explicit solution of this equation can be obtained
only if the Fermi surface and interactions are expli-
citly given. The solution will be linear in Hp and thus
has the form

oo(p) = 2i ag»(-p) Ho ~ (2.5)

o (p, r, t) = oo(p) + So (p, r, t)

o (p, r, t) = so(p) +87(p, r, t)

H (r, t) =Ho+ 8 H (r, t)

8 a can be expressed in terms of a function 6
defined only on the Fermi surface by

(2.6)

. which defines g„(p).
To study the time-dependent part of the spin-

distribution function So (p, r, t) in the presence of a
microwave magnetic field SH (r, t), let

II. KINETIC EQUATION FOR

SPIN-DEPENDENT OSCILLATIONS
So (p, r, t) =—2 "6(p, r, t)

and a quantity 6 ' is defined by

(2.7)

The spin-dependent oscillations of a metallic Fermi
liquid were originally studied by Silin4 within the
framework of the Landau theory of Fermi liquids.

Because Larmor waves can be observed in metals
with large g-factor anisotropy, ' the tensor nature' of
g, as well as tensor interactions between the quasi-
particles should be taken into account, in addition to
the exchange interactions. considered by Silin. There-
fore, we begin by defining a single particle g tensor

g»(p) which will be an essential element of the ulti-

mate theory of Larmor waves.
The spin-dependent contribution to the quasiparti-

cle energy will be written

6 "(p, r, t) =6 (p, r, t) +8 e (p, r, t) (2.8)

i o) 6 + y 6 ' x —g,tt + v —+
9r

with

(6 ")
I I

Vp js

y=2pai't, H, tt ——2g (p) H

(2.9)

(2.10)

Assuming a time dependence exp ( i cot), the k—inetic
equation which determines 6 (and hence 8 o ) is
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dp, dtt 6 (p„t~,r, t).g (p„tt) . (2.11)

III. LARMOR %AVES AND SPIN

&AVES —EXACT SOLUTION

Here the spin-dependent oscillations of a Fermi
liquid with a momentum-independent scalar g factor
and a momentum-independent exchange interaction,
in the thin slab and magnetic fieM normal geometry,
with a cylindrically symmetric Fermi surface (the
axis of symmetry being normal to the slab), and with

a specular scattering boundary condition, will be
studied in detail. For this case, an exact solution can
be found.

Thus, by assumption, the g tensor of Eq. (2.1) is
written g(p ) = lg, where g is independent of
momentum. Also, the quasiparticle interaction is as-
sumed to have the form p+ =18p, Bp being indepen-
dent of momentum, and p being the density of
states. Equation (2.4) can now be solved to yield

g., =g/(I+Bo) . (3.1)

The slab has thickness L and a static magnetic field
is assumed normal to it in the z direction. Mi-
crowaves are incident on the surface z =0, and excite
spin-density oscillations, which result in a transmitted
microwave field emanating from the surface z =L.
The distribution function 0 is independent of t~ and
determined by Eq. (2.9), which can be rewritten

—ieoG + v ——. icxOQ Ga
a z a

In Eq. (2.9), instead of the variables p„, p», and p„ it-
is convenient to use the variables ~, p„ t& to denote
the position of an electron in momentum space (r~ is
the arrival time of an electron at a given point on its
trajectory as measured from some fixed reference
point). The times ro' and r, ' are momentum and
spin reorientation times, and the angular brackets
denote a Fermi-surface average.

A quantity of physical interest is the departure of
the magnetization density from its equilibrium value,
which is given in terms of the solution of Eq. (2.9)
by

SQ(r r) =-
(2~it)3 c

G."(p„o)= G."(-p„0),
G '( p„—L) =G '(p„L) (3.3)

Equation (3.2) with the boundary condition (3.3)
can be solved exactly using a method outlined in a

paper by Azbel et al. ,' the result being

1—
2

I cog p,g
(G.")=

(I + Bo) ro ' —i «)Bo

R „H „exp(ik„z)
F.—(R.„—1)

(3.4)

where we have

k„-n m/L
t L

H „=L '„' cos(k„z)SH (z) dzJp

R „=([1+(k„v,t )'] ')

F.= [r, ' —i(~+ ~~o)]/[(I +Bo)ro ' —iBo~],

(3.5)

foJQ g p g Hpp AOQ gspIJI»g Hp

= To —l (ol + ct 0o)

1 1 1 1 1+&Q
I r J

+Q 7p 7$ ~$
I

7$

For the observation of Larmor waves, the skin

depth must be much smgller than the slab thickness
or the electron mean free path, and it is therefore a
good approximation when evaluating Eq. (3.4) to
write

yL
H.„=H.,=L '„gH.(z) d-z . (3.6)

R ~„—1 = —k„z(vz)tzt (3.7)

A major contribution to the sum in Eq. (3.4) is ex-
pected to come from the region ~here the denomina-
tor is small, and where the approximation

The simplest way to proceed to obtain an accurate
evaluation of Eq. (3.4) valid over the entire range of
magnetic fields of interest, is to evaluate it numerical-

ly. First, however, some analytic results wi11 be
presented.

Note that close to the condition for conduction-
electron spin resonance, i.e. co = cop, one has

I p-I « l. Also, at small k„, one has

7p 7 $

(3.2) r L

(G— (z)) = i ~gila „dz 8H —( ) /DL (3.8)

where the G 's, n =0, +1, are the circularly polar-
ized components of 6 [e.g. , G+~ =2 'i'(G„+iG, )],
and @Op gspp +Hp The boundary conditions on
G '(p„z) at the surfaces z =0 and z = L are
specular-scattering boundary conditions which, by
definition, are

is valid. Here we have

k z = (1/D r,) [i (cu —o)o) r, —1] - (3.9)
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and

D = (1 +Bp) (v,z) t (3.10)

This well-known result has been used extensively in
the interpretation of microwave transmission due to
long-wavelength spin waves. 6 7

Under the condtions (~Dr, ()'i && L, i.e.,
~k, L ~

&& 1, one finds that transmission via the
conduction-electron spin resonance occurs with a sig-
nal amplitude proportional to

SM (L) =x —
J SH (z) dz,

Ql &do+I Tz L
(3.12)

where X is the static spin susceptibility.
The Larmor waves occur at frequencies far from

the conduction-electron spin-resonance frequency
where we have ~F ) &&1, i.e.,when

I ~+ ~ol && I(1 +Bo)/ro tBocol (3.13)

A detailed study of the case of a spherical Fermi sur-
face showed that we have (8„„—1

( & ) F (
under

these conditions and we assume that this is true in
general. Thus, to evaluate Eq. (3.4), the terms
(P „—1) in the denominator will be put equal

~

to
zero. The result

The amplitude of the transmitted field is proportional
to the amplitude of the precessing component of the
magnetization density at the transmitting -surface
z =L,.which in turn is proportional to (6' (L)) [see
Eq. (2.11)]. The evaluation of Eq. (3.8) by contour
integration gives

t L

(G '(L)) = , i~g—tkB„dz SH (z)/Dk, sin(k, L)

(3.11)

the solution in the case of a diffuse-scattering boun-
dary condition (as opposed to the specular-scattering
boundary condition used here) would be the solution
(3.15) with the tertns n ~ 1 eliminated (see also Sec.
1V).

Combining the n =0 term of Eq. (3.15) with Eq.
(2.11), one finds

SM (L) =J dp, F (p,)e

where

(3.16)

I

F (p,) =iong'tkszm'e
t L

SH (z)dz[2n'g3(1+Bo)v, ) '

(3.17)

4 (p,) = (co + a 0p) L /v, . (3.18)

Assuming that the phase lag 4 (p,) varies suSciently
rapidly in the range of integration, &he integration can
be performed by the method of stationary phase; the
principal contribution to the integral then comes from
those points where the phase lag 4 has an ex-
tremum. The condition that the phase lag 4 has an
extremum is equivalent to the condition that v, has
an extremum, in the present ease of a momentum-
independent g factor and exchange interaction.

Suppose that the extremal value of v, occurs at a
limiting point (e.g. for a spherical Fermi surface this
occurs when the electron velocity v is parallel to the
external fieldIHo). Then the evaluation of the linut-
ing point contribution to the integral (3.16) gives

lk„L L /Vqt~

sinh(L/v, t )
(3.14)

t

SM.(L) = X, e * ' SH.(z) dz/L~+eQ0 ~ 0

can now be used to show that Eq. (3.4) gives

(G "(L))=igtkB~
where

i(ru+aQp)Lx exp-
vz

0.19)

SH (z) dz —Xexp- (2n+1)L.
~0 v, „~ vt

t t +
Xt -g2 p,sm'zv, /4m' g'(1 +Bp) (3.20)

(3.15)

where the average is over those parts of the Fermi
surface for which v, & 0 and v, (—p, ) = —v, (p,) is
sumed.

Consider electrons with velocity v, normal to the
slab, so that the time taken to cross the slab once is
L/v, . Electrons arriving at the surface z = L at time
t =0 were subjected to exciting fields at times
t = L/v„3L/v„. .., and —(2n——+1)L/v, ', .... Hence
the response at a given time is the sum of the infinite
series displayed in Eq. (3.15), A reasonable guess at

is a quantity which, for a spherical Fermi surface, is
equal to the spin susceptibility; the quantities v, and
m'appearing in Eqs. (3.19) and (3.20) are to be
evaluated at the limiting point.

If v, has an extremum in the. middle of the range
of integration in Eq. (3.16), say at p, =p„write

q (p,) = q (p.) [1+P(p, —p, )'1, (3.21)

where p is a constant. We shall call this an ordinary
extremum. The stationary phase method applied to
the integral (3.16) now yields
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FIG. 3. Transmission spectrum for a metal having a spheri-

cal Fermi surface, and strong exchange interaction. The
scale factors are taken relative to the lower plot.

—Po «A «Po (3.27)

and with the cyclotron frequency chosen to be in-
dependent of p„ the integral in Eq. (3.5) can be per-
formed. For such a Fermi surface, 8 „ is a function
of A =(I +Kz)' z/K and K =k„v t, and has the form

~~~ = (I/2K'&) fin(1+ A.) —ln(1 —X)—in sgn(Imh. )]
(3.28)

Here, the imaginary part of the logarithm ranges over
(—n, m).

The figures show the transmission through a sam-
ple 0.7 mm thick, with the microwave field penetrat-
ing to a depth of 5=4 p,m. For purposes of compari-

curate numerical evaluation of SM (L) can be ob-
tained from Eq. (3.4). Figs. 1 —4 show 8M (L) for a
spherical Fermi surface, where the limiting point con-
tribution should be dominant, and for a surface in
the form of a corrugated cylinder, having an ordinary
extremum of v, . Figures 3 and 4 display the
transmitted field for Bo = —0.285, which is typical of
potassium.

In the case of the spherical Fermi surface, charac-
terized by its Fermi velocity vq, 8 „ is a function of
z -i/k„vFt, and is given by

R.„=—,
' z.[ln(I +z.) —ln(1 —z.) —i m sgn(n)],

(3.26)
~here the argument of the natural logarithm is an
angle 8, with —~ & g~w.

For a model corrugated cylinder defined by

vz(p) 4v2
f

Pz
[

A
Po ~P0,

FIG. 4. Transmission spectrum for a metal having strong
quasiparticle interaction, and a Fermi surface in the form of
a corrugated cylinder. Notice that the signal is roughly 500
times greater on the high-Geld side of the CESR.

son, the mean free times for scattering and for spin
relaxation are taken to be Yp-—3 x 10-'o sec and

=2 x10 ' sec for all graphs. These values are typi-
cal of some alkali metals at low temperature. 7 For
the spherical Fermi surface vF =10'cm sec ' and for,
the cylindrical surface v, -0.75 X10 cmsec ', with
these values we have tpL/vt: » 1, pimp » 1, and
L/vrrp =2, so that multiple reflections do not play a
role.

In the absence of exchange interaction, it is expect-
ed that SM (L) will be symmetric around the CESR,
from Eqs. (3.19) and (3.22). This symmetry is evi-
dent in Figs. 1 and 2.

Close to the CESR, the transmission is dominated
by diffusing electrons and when Bo =0 and
(2Dr, ) 'i' & L, narrow lobes appear. ' This is in ac-
cordance with Eq. (3.11). The Larmor oscillations
are found farther from the resonance frequency,
where Eq. (3.13) is valid. In this region, Eqs. (3.1),
(3.5), (3.19), and (3.22) predict that BM (L) will os-
cillate with a period AHo, given by

I +Bp=g ps(d. Hp)L/2rrhv, (3.29)

Here, v, is evaluated at the limiting point of a spheri-
cal surface, or the ordinary extremum of a corrugated
cylinder. By measuring AHo, it is possible to deter-
mine Bp. Taking 8 Ho from the graphs of Figs. 1 and
2 gives Bo =0 for both cases.

The envelopes of the curves in Figs. 1—4 give the
amplitude of the transmitted field. Although for
B =0 the magnitude is close to that given by the .

analytic formula, the amplitude falls off somewhat
more rapidly than (co+ aQp) ' in the case of the
spherical Fermi surface, and faster than
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(pi+ aQp) 'iz for the corrugated cylinder. This
discrepancy arises when the terms (8 „—1) in the
denominator of Eq. (3.4) are put equal to zero.

As the figures show, expressions (3.19) and (3.22)
yield very poor approximations to the intensity when
there is exchange interaction. If we have
lBppirp(1+Bp) ' ~1, then inequality (3.13) reduces
to l(pi —pip)/Bpp»& 1, and is not satisfied within
the domain of Ho shown on Figs. 3 and 4. There is
pronounced assymmetry around the CESR, the inten-
sity on the high-field side being greater than on the
low-field side for 80 & 0, even far from the spin reso-
nance.

Nevertheless, the period of the Larmor oscillations
is given very well by Eq. (3.29). With EHp measured
from Figs. 3 and 4, that equation gives
80= —0.28+0.03 for both Fermi surfaces.

IV. LARMOR %AVES IN THE CASE OP

ANISOTROPIC FERMI SURFACES

AND A SCALAR g

In discussing the case of a general anisotropic Fer-
mi surface, a scalar g will be assumed at first for sim-

plicity. Thus, from Eq. (2.10) we have
—+ }
H, tt ———,g,p(p„ti) Hp

Equation (2.9) can then be written

tered into state p from other states arrive with ran-
dom phases and therefore will not contribute to the
Larmor-wave signals. Therefore, the term propor-
tional to (G ') on the right-hand side of Eq. (4.1)
will be dropped.

Also, the contribution of the quasiparticle interac-
tion to 5e will be dropped since it is responsible for
the collective spin-wave modes, but is expected to
have little effect on the Larmor-wave frequency.

Thus the equation describing Larrnor waves is

86 ' 96 '
Qz Qti

(4.3)

it (z, ti) = —
—, ipig(ti) psgH (z) (4 4)

Both g and h depend on p, also, but this dependence
is not shown explicitly in Eq. (4.4).

Recall again that Larmor-wave transmission is due
to the coherent superposition of signals from groups
of electrons which undergo approximately the same
phase lag relative to the microwave field during their
transit across the sample. In view of this, if the
scattering of electrons at the metallic surface is
diffuse, the past history of an electron, which has just
been scattered at the surface z =0 and is starting to-
wards the surface z =L, is unimportant. Thus, it is
appropriate to study the solution of Eq. (4.3) for
electrons with v, & 0 for their entire cyclotron-orbit,
subject to the boundary condition

86 " 86 '
l o)rz6rz +vg + = I cd56rz

Bz gati
G."i, =O . (4.5)

where 0, =0, +1, and

(4.1)

The solution of Eq. (4.3) subject to the boundary
condition (4.5) can be found by the method of
characteristics, and is

ti
G~ (z ti) = J dt exp t ~, Qi~(ti ) dti

Qi = pi + ix 0 (Pz, ti) + & &p

i') ~Pgitl) gsp~Pz ~ 1)Ps p

(4.2)
x h v, (ti') dti', t'

A J g !

where tp=tp(z, ti) is determined by the equation

(4.6)

As discussed in Sec. I, Larmor-wave transmission
occurs only when a substantial number of electrons
all undergo nearly the same phase lag relative to the
microwave fieM during their transit through the me-
tal, from the exciting surface z =0 to the transmitting
surface z = L; the signals due to these electrons then
add coherently to give an observable transmission.
The term rp' 'G 'on the left-hand side of Eq. (4.1)
describes the rate of decrease of G "(p) at point p
due to the scattering of electrons from point p to oth-
er momentum states on the Fermi surface; the term
proportional to (G ') on the right-hand side of Eq.
(4.1), on the other hand, describes the rate of in-

crease of G '(p) due to electrons scattered into state

p froin other states. Electrons which have been scat-

z =)I v, (ti') dti' . (4.7)

For cases of interest, the skin depth 8 is suSciently
small that we have ~pi 5/v,

l
(( 1, and thus Eq. (4.6)

can be written

gati
G (z, ti) =exp I J cd (ti ) dti

fo

geo & Pg
x J, dt' t. „,v, (ti') dti', t' . (4.g)

i

The situation where the Fermi surface has cylindri-
cal symmetry about the z axis, so that v„00, and g
are independent of ti (but dependent on p, ) is partic-
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ularly simple. In this case, the combination of Eq.
(4.8) with Eq. (2.11) gives the result (3.16), except
that in th'e present case F(p, ) is smaller by a factor of
4 than the result (3.17). Because of the boundary
condition (4.5), an electron striking the surface z =0
is only excited by the microwave field as it leaves the
surface; whereas for the specular-reQection boundary
condition of Sec. III, the electron spin is excited both
as it approaches and leaves the surface z =0; this ac-
counts for one factor of 2. Furthermore, G "(L) as
found from Eq. (4.8), includes only contributions
from those electrons with v, & 0; electron spins which
have just been scattered from the surface z = L, and
thus have v, & 0 should also be counted. This ac-
counts for a second factor of 2.

It is clear that the approximate metho'd of this sec-
tion will suffer from the same limitations as does Eq.
(3.16) of Sec. III. Thus, although it is expected that
the frequency of the Larmor-wave oscillations will be
predicted correctly by Eq. (4.8), the amplitude of the
oscillations will not be predicted very well, particular-
ly in the case of large exchange interactions.

The detailed evaluation of the integral (3.16) for
the case of a-cylindrically symmetric Fermi surface
will not be repeated here. The main extension of the
work in Sec. III is that now g, and hence Qo, depend
on p, . This dependence on momentum must be tak-
en into account in determining those values of p, at
which the phase lag 4 (p,) is stationary (the condi-
tion that 4 (p,) is stationary is no longer equivalent
to the condition that v, is stationary). This can lead
to 4+ and 4 having different extremal values.

The contribution to the Larmor-wave transmission
of electrons following closed orbits will now be con-
sidered for the case where the Fermi surface does not
have cylindrical symmetry. As above, the static mag-
netic field is assumed normal to the slab and only
contributions of electrons for which we have v, )0
for the entire orbit are considered. The distribution
function is again given by Eq. (4.8). Now write

Whereas for thick slabs 4 grows in proportion to I.,
54 will have a magnitude of the order of 2m or less.
Furthermore, 54 will depend on magnetic field in
such a way that, at those magnetic fields at which
electrons for a given p, complete an integral number
of cyclotron orbits while crossing the slab, 54 will be
zero. This introduces an additional periodicity in
magnetic field strength which was not present in the
case of cylindrical symmetry. Combining Eqs. (2.11),
(4.8), (4.9), and (4.11) yields

5M (L) = dp, e F (4.12)

~here

dtl g(pz tl)
2 ti c

fat(
x exp I 54.— i

vo'-' Ch&
0

h v, (t") dt" dt'
& to

(4.13)

Since the portion 4 of the phase lag C which is
large for large L has been separated out and appears
explicitly in Eq. (4.11), the stationary phase method
can be applied to Eq. (4.12) in exactly the same way
as it was applied to Eq. (3.16). The new feature
which will affect experimental results and which
comes from the lack of cylindrical symmetry relative
to the z axis, is that there will be an additional mag-
netic field dependence of the amplitude of the oscilla-
tions; this arises because F(p,) is field dependent
through the field dependence of 54, for example, as
well as through field dependence of the interval
hi

—ho.

The above formalism is also applicable to the case
of periodic open orbits when the applied static mag-
netic field is normal to the slab.

tati gati
J', ~ (ti) i =t@ (4) —

J ro' 'dt's'
0

(4.9)

V. FIELD-PARALLEL GEOMETRY—
EFFECTS OF OPEN ORBITS

gatie = Jl [m+ aQ(ti')] dt's'
0

(4.10)

is the phase lag acquired by the electron during its
transit through the metal. The phase lag is a periodic
function of tt (the period being the cyclotron period)
and can be written as a sum of its average value 4
(averaged over a period) and a correction term, i.e.,

C =4 +54 (4.11)

where the electron collision time vo' has been allowed
to depend on momentum, to(z = L, ti) is determined
by Eq. (4.7) with z =L, and

One of the more important effects of open orbits,
will be to allow Larmor-wave transmission in the case
where the magnetic field is parallel to the surface of
the slab. Consider the geometry show in Fig. 5, in
which the magnetic field is in the z direction parallel
to the surface of the slab. The electrons are excited
at the surface x =0, and travel across to the surface
x = I., where they radiate power into the receiving
cavity. A Fermi surface in the form of a corrugated
cylinder is shown in Fig. 5 and several open-orbit tra-
jectories (labeled a, b, c, and d) are also shown. It is
evident that the electrons which follow trajectory d
will cross the slab in the shortest time; the average
phase lag of these electrons will thus be at a
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a

tian. The components 6 and h& define the column
vectors G' h of a vector space, and w+ can be
viewed as an operator. in this vector space. Thus, Eq.
(6.1) is written

ie—e++, G'+ v, — + G'=h . (6.4)
1 ' 8 8

so 9z Qt~

x=0 x=L

Considering only electron orbits for which v, & 0,
the solution of Eq. (6.4) subject to the boundary
condition G' =0 at z -0, is

ftk tlG'= dt T, exp i J, ee+(t~) dt~J ro fl . r'

dt'
&& exp—

FIG. 5. Part of a Fermi surface in the form of a corrugated

cylinder, with some of the open orbits shown.
(6.5)

minimum and will determine the frequency of the as-
sociated Larmor-wave oscillations. A formal theory
of Larmor-wave oscillations due to periodic open or-
bits for the geometry shown in Fig. 5, is given by
Eqs. (4.3)—(4.13); in all these equations, however,
lyt z x, v, v„(but keep p, unchanged). The si-
tuation just described is similar to that which occurs
in copper when a [111]direction coincides with the y
direction in Fig. 5.

where T, , is the time ordering operator with respect

to the time variable t~' which is the argument of the
operator ee+(tt').

The formal solution (6.5) is as far as we have pro-
ceeded with the analysis for the case of a g tensor.
Nevertheless, it was thought to be useful to include it
in order to emphasize some of the shortcomings of
the discussion for a g scalar by way of contrast.

VI. THEORY FOR A g TENSOR

iru+, G—I + XOttGi + v, — + G( =hI1 8 8
70 Bz Btl

(6.1)

where Cartesian. components have been used
(i =x, y, z as distinct from a =0, +1) and we have

fig y x sttkHeff, k
k

(6.2)

with e~k being the Levi-Civita density. Define the
matrix ~+ by

col+ = op1 + I 0 (6.3)

where 1 is the unit matrix, and the matrix elements
of 0 are given by Eq. (6.2); note that a&+ is Hermi-

If spin-orbit coupling effects are important, it is
essential to allow for the tensor nature ef g in a gen-
eral theory. The starting point is Eq. (2.9) and, in
studying the transmission in the Larmor-wave region
only [defined roughly by Eq. (3.13)], approximations
are made analogous to those made in arriving at Eq.
(4.3) from Eq. (4.1). Also, the field normal
geometry is assumed as in Sec. IV. Thus, the start-
ing equation is

VII. CONCLUSIONS

A quantity of principal importance in the theory is
the phase lag suffered by an electron spin during its
transit across the slab. The electron orbits for which
this phase lag is an extremum give the dominant
contributions to the transmission signal. There are
three types of extrema: (i) the limiting point, (ii) the
ordinary extremum and (iii) an extremum associated
with a phase lag constant over a finite p, interval. In
general (i) gives the least intense signal, whereas (iii)
will give the most intense signal. The value of the
phase lag at the extremum determines the frequency
of the Larmor-wave oscillations; since this phase lag
depends upon the Fermi-liquid interactions, it can be
used to measure these interactions experimentally.
The amplitude of the oscillations also contains infor-
mation, but it is shown above that although our ap-
proximate theory gives the frequency of the oscilla-
tions accurately, it does not predict the amplitude
well in the presence of moderately strong exchange
interactions. In the case of potassium, the amplitude
of the transmission signal can be determined exactly.
Thus, it is possible to find the field dependence of
the excitation, for a potassium foil plated with fer-
romagnetic layers. Finally, it should be mentioned
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that although most of our paper studies the case
~here the magnetic field is oriented normal to the
slab, it is predicted that the presence of open orbits
will give rise to Larmor-wave transmission in the case
where the magnetic field is parallel to the slab.
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