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Spin glasses in the Bethe-Peierls-Weiss and other mean-field approximations
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We obtain the thermodynamic properties of a- system of Ising spins interacting with various random
potentials in the Bethe-Peierls-Weiss (BPW) approximation. When the effective number of neighbors z
approaches infinity, we show that all the magnetic properties arising from the BPW approximation, the mean
random field (MRF) and the Sherrington-Kirkpatrick (SK) replica treatment are identical. Also, the internal
energy in the BPW method is identical to that obtained by SK, while the MRF neglects correlations and
thus gives a different internal energy. Introducing a plausible phenomenological constant of integration we
obtain the microscopic free energy derived by Thouless, Anderson, and Palmer (TAP). Using this free
energy, we show that the BPW method with a random distribution of fields reproduces alt the results of SK
including a negative entropy of —k/(2m) at T = 0, and that all probability distributions which do not go to
zero at zero field give a negative entropy at T = 0. For finite z, we obtain the phase diagram for the MRF
method as a function of z and find that for z & 8 the phase diagram is already very close to that of the z —+ Do

case. We also derive the thermodynamic properties for the Ruderman-Kittel-Kasuya-Yosida system near the
spin-glass transition temperature in the BPW method. We find that the method gives a discontinuous slope in
the magnetic susceptibility g and the specific heat CM at the spin-glass transition temperature T, however
the maxima in y and C~ occur well below Tg.

I. INTRODUCTION

Several different approaches have been used to
discuss the thermodynamic properties of random
magnetic systems. One of these is the well-
known replica trick proposed by Edwards and
Anderson' and used by Sherrington and Kirkpa-
trick (SK)' to treat a system of spins interacting
via a normally distributed potenti'al of infinite
range. However, since the replica method gives
a negative entropy at T=O, it clearly is an
approximation, valid over some limited tempera-
ture range. 3 Some mean-field methods which
avoid the replica trick are the Bethe-Peierls-
Weiss (BPW) method, 4 the self-consistent mean-
random-field approximation (MRF)" and the
method presented by Thouless et al '(TAP) for.
the Gaussian random potential using the proper-
ties of random matrices.

The MRF methods has been used previously to
treat (i) the spin-glass transition for the Ruder-
man- Kitte1- Kasuya- Yosida (RKK Y)-system as
well as for the Gaussian random potential, (ii) the
random dipole system, s (iii) the random strain
system, ' (iv) the NMR linewidth of the ortho-
para-hydrogen system, '0 and (v) the phase dia-
gram of palladium-based alloys. " In every one
of these cases some interesting properties are
explored which cannot be obtained by the usual
molecular field approximation. Whereas the
MRF procedure greatly simplifies the treatment
of a complicated system by reducing the problem
to the evaluation of the Fourier transform of a
single potential, its validity has not been esta-

blished beyond the fact that it is self-consistent.
The purpose of this paper is to use a modified

BPW method coupled with the probability distri-
bution of internal fields to compare the predic-
tions of various mean-field approximations with
each other. In particular we show that as the
range of interaction goes to infinity, the BP%,
the MRF, and the SK methods give identical
magnetic properties. However, the internal
energy arising from the MRF method differs
from that of BPW and SK because MRF does not
take into account correlations correctly. Fur-
thermore, by integrating the BPW internal
energy and adding a plausible phenomenological
constant of integration, we obtain the TAP free
energy. Using this free energy we find that any
probability distribution of fields H which does
not go to zero near II =0 faster than II'~2'~ with
5 &0 is unphysical in that it gives a negative
entropy. Indeed, computer calculations" 2 give
a hole at the center of the distribution. However,
the BPW method does not, and in fact, reproduces
all the results of SK including the unphysical neg-
ative entropy of —k/2v at T=O.

To obtain the thermodynamic quantities in the
BPW approximation, we write the Hamiltonian
for z particles in the molecular field approxima-
tion and then treat the interaction of the (z+1)th
spin So, placed at the origin, with all the other

. spins exactly. In this procedure the interaction
.potentials Jo& and the z internal fields II, are in-
dependent random variables. We then obtain the
single spin magnetization (8,) and the pair-cor-
relation function (S,S,.) using the Hamiltonian for
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@+1 spins in terms 'of the variables Jpg and H
Any correlations between the H, 's and (S,) are
neglected. The probability distributions of the
J«are assumed g gn"ioxi to be given, from which
one derives self-consistently the expression for
the probability distribution P, (H,.). The procedure
is then to expand the (S,) and (SpS,) in terms of
the Jp,. and H& and average over the independent
random distributions. This procedure is used
instead of the Gaussian random matrix method
of TAP. V

We also use the BPW method to derive the ex-
pression for the thermodynamic properties of
the RKKY system, where the random matrix
method used by TAP is not applicable. We then
compare the results with those derived for the
RKKY system in the MRF approximation. Al-
though it is difficult to solve the problem iri the
BPW method in general, we are able to describe

' the probability distribution of the internal fields
Hp for large Hp and small Hp. Again, we find that
at T=o the BPW method as well as the MRF
method give P(H=O) o0, in contrast to the com-
puter results. " We then obtain the probability
distribution of the fields, the phase diagram, the
magnetic susceptibility, the internal energy, and
the specific heat of the RKKY system near the
spin-glass transition temperature T . We find
that whereas the 'magnetic susceptibility X as
well as the specific heat C~ have a discontinuous
derivative at T=T, for low concentrations both
continue to increase below T and have a maxi-
mum at T well below T . The susceptibility re-
sult is in qualitative agreement with previous
MRF calcula, tions. 6

In order to examine the variation of the mag-
netic properties with the number of neighbors z,
we calculate the phase diagram for a Gaussian
potential with various values of z from @ =2 to
z =20 in the MRF method. We find that whereas
for small z the phase diagram changes quite
strongly with z, once we have reached the value
of z around 8 there is very little further change
in the phase diagram with increasing z. Thus for
z)8 the MRF calculation already gives a phase
diagram very close to that obtained by SK.

II. BETHE-PEIERLS-Vf EISS APPROXIMATION

In the BpW approximation, one writes a Ham-
iltonian for a, cluster of z spins in the molecular
field approximation and then treats the interac-
tion of the (z+1)th spin Sp with the cluster ex-
actly. The BPW Hamiltonian is

(2.1)

where H,. is the internal field at site i and J« is
the interaction potential between the spins Sp

and S, , where the S are Ising spins. Using Eq.
(2.1) one obtains the following exact expressions
in the BPW approximation:

(SpS,&
= (1 —t,'gp', ) 'fg„(1—t,') +t&(1-gp;)(Sp&] (2 2)

(Sp) =tanh~ Qtanh '(tgp,-) ~, (2.3)
)

(S,) =(1- t@,',)-'[t,.(1-g,', ) +g„(1—t,')(S,)], (2 4)

where the averaging ( ) is done in the (z+1)-par-
ticle BPW system. In the above equations,

t, =tanhPH, ,

gp)
——tanhP Jp,

(2.5)

(2.6)

The internal energy U jn the BPW approxima-
tion is

U=- — J;)(S)S~& . (2 7)

In the expression for U there are two random
variables, the quantities Jp,- and t,-. We find that
the problem can be formulated self-consistently
such that each of these two quantities are inde-
pendent random variables. The probability dis-
tribution P2(j&&) is assumed to be given and we
then find the probability distribution of the fields
P, (H, ). From P, (H,.) and P, (J,&) we will obtain
the thermodynamic variables using the BPW ap-
proximation.

Letting (Sp) =tanhPHp in Eq. (2.3) gives for the
field Hp at spin Sp (for BPW method)

Hp
——P Q tanh (t)gp)) .

j=f
(2.8)

For comparison we also write the expression for
the internal field Hp in the MRF approximation
which is'6

Hp
—— Jp)t) . (2.9)

The z variables H, are assumed to be independent
of each other in the spirit of the BPW approxi-
mation. The interactions J«are g Priori inde-
pendent variables of the model. The H,.'s are
assumed to be independent of the J'p,. (and (Sp))
because the fields II, arise from the spins and
interactions outside the cluster of @+1spins.
This assumption, typical of BPW, neglects the
fact that the spins outside the cluster are not
totally independent of the spins in the cluster.
With these assumptions the distribution Hp, Pp(Hp),
1s
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g e g
P

Pg(Hp): P((Hg) dHg Pg(d () dd ~ d Hg —d Q tBIltl (((dog))
)=1 j-f ~OCV $=l

(2.10)

At the end of our calculations we will require that
the distributions Po(H) and P, (H) be identical. For
the BPW case this introduces an error of order
z ' ' which goes to zero as z —~.

For the MRF case no additional error is intro-

duced by this requirement (since the H, 's are the
total fields), ' however, there is already an error
of order z ' due to neglect of correlations in-
cluded in the BPW.

Rewriting Eq. (2.10) gives

f pHPi(Ho)= — ~""'dd. ..l. »(H)dH f»(dw)ddHP~P( (Pd "~-&'(4daa)1)
7t ay

(2.11)

It is convenient to write Eq. (2.11) in the form,

P, (HO) = e""odp (I —V'(p) j',1 fpH (2.12)

where

Vgpz= Pg II. dIIg P2 Jog dJO& 1 —exp —ipP ' tanh ' t, go, (2.13)

For a symmetric probability distribution P,(J,.&), Eq. (2.13) becomes

V: P ( g) dHHI J ( Po'm) dddDI () cos [dd tBllh ( gtRllh(ddH)]}
~OO mOO

(2.14)

To obtain the expression for P, (HO) in the MRF
approximation we replace'

[tanh (t,- tanhp Jo&)]spz - [pt(Jp&]MRF (2.15)

as can be seen by comparing Eqs. (2.9) and (2.8).
Thus in MRF we get

III. GAUSSIAN DISTRIBUTION OF INTERACTION

STRENGTHS

A. Infinite-range potential

Here we show that when the range of the inter-
action becomes infinite, the probability distribu-
tion of fields obtained in the BPW approximation
is identical to that obtained in the MRF approxi-
mation. .

~NLH, F= Pg II) &B) &2 Jog &Jof., e ~ ~ ~

(2.16)

P (J )=( )) ') ' 'exp-- J —J t

2 0$
~e

(3 1)

Expanding the exponential in Eq. (2.16) and keep-
ing only terms of lowest power in 1/z (note that
(JO2f) z ~ (axn'd (J,';")ccz ~') gives

V'=- ipmJ()+ —,
'

p J q+O(p'(t3))z 2) (3 2)

Let the number of neighbors z -~ and let
(Jo,.), (x: z ' and (Jo,),~ z ', where ( ), denotes a
configurational average. In this limit tanh (togo;)
=t&JO, +O(1/z). The f. ield Ho is given by Eq. (2.8)
becomes identical to Eq. (2.9) which is the MRF
expression. ' The probability distribution of the
random internal fields was studied for this case
in the MRF approximation by Klein and in the
BPW approximation by Plefka, ' the resultant ex-
pression for P&(HO) being identical for the two.
For orientational purposes we briefly rederive
these results using the method of Plefka. ' Let
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with m being the magnetization defined by

I (tg)=:f P (H|)t9ilth(()H, ) JHOW
~ oo

(3.3)

Equation (3.10) is identical to the SK internal
energy.

The internal energy using the MRF approxima-
tion is

and q being the spin-glass order parameter
given by

UMR p/N: P(H) H tanh(PH) dH
2

=——,
' JI)m' ——,

' J'q(1 —q) . (3.11)

q =«I) P, (H, )tanh'(PH, ) dH, (3.4)

In the limit z-~ we have (letting Jo ——Jo/z and
J =J'/z)

(1 —V')'=exp(ipm Jo ——,
' p'J q) . (3.5)

Substituting Eq. (3.5) into Eq. (2.12) gives

2

P, (Ho) =(2mo') ' 'exp ——— ' ', (3.6)

This result has also been derived by Kaneyoshi'4
using a different method. '5 The difference in the
internal energy UMRP given by Eq. (3.11) and

UBPw given by Eq. (3.10) is the correlation energy
considered in the BPW model and not considered
in the MRF method. The fact that U»„ for the
infinite-range potential agrees with the SK cal-
culation suggests that even for the case when one
obtains P, (Ho) from the MRF method one should
use BPW to calculate the internal energy and
the specific heat. However, the magnetic
properties are identical in the BPW and MRF
methods in the limit as z —~.

where for this case

+BPW +MRF
2 1/2 (3 7)

Thus the temperature dependence of the spin-
glass order parameter, the phase diagram and
the magnetic properties are identical for the
case z-~ in the MRF, BPW, and SK treatments.

The internal energy in the BPW approximation
is obtained following the method of Plefka, '3

where U is given by Eq. (2.7). The evaluation of
U has to be done carefully as is discussed in
Sec. V, since the internal fields and the J«are
independent random variables. Thus (SoS&) and

(So) must be expanded in variables involving the

t,.'s and the Jo,.'s neglecting higher powers in
1/z. We have

B. Finite-range potentia1

Here we consider the magnetic properties of
a system with a Gaussian distribution of finite-
range interactions. First, the MRF approxima-
tion is used to calculate the distribution of inter-
nal fields P&(Ho) and to find the phase diagram of
this system as a function of z. We expect this
to be a more realistic approximation of some
physical amorphous ferromagnets and spin-
glasses than the z-~ case. However, we find
that for z ~ 8, the phase diagram of the system
differs little from the z -~ results for which we
have already shown that the magnetic properties
from the MRF are identical to BPW and SK.
Finally, BPW is used to calculate P, (Ho) near
T, when Jo ——0. We find that the resultant transi-
tion temperature is reduced from the MRF result
by a correction term proportional to 1/z.

Substituting Eq. (3.1) into Eq. (2.16) gives

(SoS&) =PJoi (1 tI) +t&(So) +0(J (3.8)
1 —

VMRP dH( P((H))
~oo

(So) =to +PJoc(1 to) t& +0(Jo&) . (3.9)

UBpw/N =- Zom'/2 —PJ'(1 —q')/2 . (3.10)

We must keep all terms of order J« in Eqs. (3.8)
and (3.9), whereas terms of order jo, can be
neglected.

Substituting Eqs. (3.8) and (3.9) into Eq. (2.7)
gives

1 Ho —JoM'( '
2Q J

where M =Zf., tanhpH, and Q =Z&., tanh pH, .

(3.13)

&exp [ —,
' (Jpt, )2+ip Jot,-] . . (3.12)

Using Eq. (2.12), the distribution of internal fields
is given by

g

P, (H, ) =..., P, (H, ) dH, [2~J'qj-'"
i~i
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Tc =Jo (3.14)

ol

T =(J'/z+J')"' (3.15)

At high temperatures the system is in the para-
magnetic phase and only the trivial solution
P~(HO) =5(HO) is possible. For temperatures just
below T„P,(HO) will be a narrow distribution
centered very close to HO=0 so that tanhPH, can
be expanded about H, =0 i.n E4ls. (3.3) and (3.4).
In this way, the critical temperature is deter-
mined to be the greater of

0
0.594
0.645
0.695
0.721

3.12
2.87
2.61
2.50

10
12
16
20

0.736
0.746
0.758
0.765
0.798

2.44
2.43
2.37
2.34
2.19

TABLE I. Numerical values of R, and D, which are
defined in Eqs. (2.19) and (2.20), are listed for various
values of z. If J/Jp &R, then the system is ferromagne-
tic at 7.' = 0, otherwise the system is in the spin-glass
phase.

The system orders as a ferromagnet if Jo/Z
&(1—1/z) '~ and as a spin-glass if the con-
verse is true. Note that T~ is identical to the
z-~ results, however, T is greater than the
z -~ result due to the addition of the J 0/z term
within E41. (3.15).

At T=0, Eq. (3.13) reduces to

small fluctuations, (J/Jo «1),
m = 1 —(2/v)'~'(J/Jo) exp[- —,

' (J'0/J')'] (3.17)

P, (H, ) =2-'(2v J')-"'

x „' 1+m'"1 —m"
n=o

xexp(- (2J') '[H, —Z, (z —2n)/z]'],

(3.16)

where the binomial coefficient ('„) =z!/[n! (z —n)!].
Thus, P, (HO) near T=0 is the sum of z+1 Gaus-
sians. Each Gaussian is centered about S,JO

where 8, can range through the z+1 eigenvalues
of the total spin of the z nearest neighbors. For

which is identical to the z-~ result of SK. Near
the spin-glass boundary, the magnetization is
given by

m = D(R, —J'/J'0) ' ~ (3.18)

R, is determined by the condition,
«/2

( (z —2n)4 [(z —2n)/zR, ] =2' ', (3.19)
~n

where 4(x) =(2/v)'~' fo*e ' dt is the error function
and [z/2] is the largest integer &z/2. The co-
efficient 5 is given by,

'/2 - z «/2

D= g I~ )(z —2n) expI —
2 I g

&
)I n(z —2n) —, , )I eI, '„

C

(3.20)

Note that a ferromagnetic state is not possible
for nonzero J if z &2. In the z-~ limit, R,
=(2/m)' and D=(72/v)'~4 in agreement with SK.
[Note, however, that there is a misprint in Eq.
(2.22) of Kirkpatrick and Sherrington. "] We have
evaluated R, and D numerically for values of z
ranging from z =3 to 20 and find that for z &8,
R, and D change very slowly. Table I tabulates
R, and D for several values of z.

The phase diagrams for several values of z are
shown in Fig. 1. Once a value of z around 8 is
reached there is very little further change in the
phase diagrams (less than 10%) as a function of
z. This suggests that the z-~ results adequately

m(T) =m(T=0) +BT+~ ~ ~, (3.21)

for any distribution of potentials P2(JO, ), where.
B~P„(0).

We now consider the derivation of P, (HO) in the
BPW approximation. In order to simplify the
calculations, we only treat the case when JO=O.

describe typical materials as z is generally
greater than 8.

As observed by Kirkpatrick and Sherrington, '

the magnetization increases with temperature
near T=0. Actually, it is possible to show that
within the MRF approximation at very low temp-
eratures,
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2.0

I.5—

z=4
)

I

Substituting the above in Eq. (2.12) gives

P, (H&) =— e ' & dp expl ——~ (x )—ipH zp' l
2v „~2 P 12P']

I.O—
SP IN-

0 5 — GLASS
SP IN-
GLASS

t~ 0.0-

~ 2.0 z=e
)

z «cO
I

' I

) I I ) I ), ) I ) I

x[3p, )g) - p4g4] . (3.26)

Evaluating Eq. (3.26) for large but finite z, we

have

P, (H, ) =(2va') '~' exp [- —,
' (H/o)']

PAR PAR x 1+—3 —6H'o +Ho, 327

I.O ~ FERRO— )FERRO

0 5 SPIN- ~ SPIN-
GLASS ~ GLASS

00 ) I ) I )W I ) ) I ) I v I' 0 0.5 I.O I.5 2.0 0 0.5 I.O I.5 2.0

0

where

o =[z(x'&]"'/p

In the limit as z-~, g)=P)Z', and Eq. (3.27) re-
duces to Eq. (3.6).

Using Eq. (3.2V) to calculate the spin-glass
temperature, we find

FIG. 1. Phase diagrams of a spin system in which each
spin interacts with g nearest neighbors, as calculated
within the MHF, are shown for several values of z. The
end points of the dotted line are calculated exactly (see
the text), however, the exact shape of this line is not
known. Note that the phase diagram for z =8 is already
very close to that z —~ case.

T,=(J'/k) (1 —1/z) +O(1/z') .

Note that for z ~ 8 the correction to the z -~
transition temperature is less than 12%.

IV. RKKY INTERACTION

A. Probability distribution of the internal fields

(3.28)

Even with this simplification, the calculations
become complicated as T-0 (it is simpler for
the RKKY interaction as will be shown later).
However, at T near T, the correction to the
z-~ is rather straightforward, within the as-
sumptions mentioned immediately following
Eq. (2.10).

From Eq. (2.14) we have

~BPW +1 Bi d+i, +2 JOi dJOi
~OO ~OO

%e next consider the probability distribution
for the RKKY interaction. %e assume that J,&

is
of the form'

J(), ——+ a/r„,3 (4.1)

with a probability for the + and —sign each equal
to —,'. %e also let the spins be randomly and
uniformly distributed throughout the volume V of
the solid. Then

xcos [pp
' tanh '(t)gp))] . P, (l~o*.

l
&dl ~o) I

-4vt'o) «o«~. (4.2)

For T near T„ the quantity p, ~, defined by

4 =(&) f P(II)tanh~PH, ~H, , ,.

(3.22)

(3.23)

Let N0 be the number of sites in the solid and c
be the fractional impurity concentration (c =N/No).
Replacing z in Eq. (2.12) with Noe, we obtain in
the thermodynamic limit

is small for all integer k. Furthermore, p, ~2
«p». We thus expand Eq. (3.22) in a power
series of t, to give

P (H ) efPH)e-F'{P)cN)
0 2~

(4.3)

2 4

1 —V~),„——1—,(x')+ (x')+ ~ ~ ~ (3 24)BPw 2p) 4)p4

In the above equation (x') = p, g, +—,
'

p, 4g4 and

(x ) —p4g4 with

P2(J)))dZO) (tan'hp J')))
go=

~OO

where V' is given by Eq. (2.14) for the BPW case
and by Eq. (2.16) for the MRF case.

Using the potential in Eq. (4.1), integrating from
a near-neighbor distance r0 to infinity, and

changing the variable of integration to y =Pg/r),
gives
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V „=—ad f P,(H, )dH,
4m

~00

Ba/r8'~'0 1 —cos [pP
' tanh '(t, tanhy)]

2 (4.4)

We now treat several different cases of interest.

P(H, ) for the RKKYPotential at T=0. For T=O
the expression for tanh '(t»g«) is, for both J«
and H, positive,

tanh '(t, tanhPZO») =
0»» (4.5)

Substituting Eq. (4.5) into Eq. (4.4) and integrating
by parts gives

a 3
8m a/rp ~H~ sin@' 'V' = pa P, ()l,) dH, I( da+ (aaapH, —1))3V p x p&

3~~'0 sinx»p~ ~t pap, (H, ) dH» dx+ '
i
cos —,—1 [

p & P& I, +0

Equation (4.6) is to be compared with the corresponding expression for the MRF case which is

(4 6)

(4 7)

Whereas Eq. (4.6) is only valid for T=0, Eq.
(4.7) is valid for all temperatures. At T=O, t»

(4.7) becomes unity and if we replace
pH, in Eq. (4.6) by pa/x(I; Eqs. (4.6) and (4 7)
become identical.

Even though the integrals Eq. (4.6) and Eq.
(4.7) are not simple to evaluate in general, it
is easy to discuss the behavior of the probability
distribution for very large and very small fields.
To determine the wings of P, (HO) (Hp &) we are
only interested in small values of p. Expanding
Eq. (4.7) in a power series of p and letting
lim~ „~t»

~

=1 gives

VMRF =~a~ (p»») /V&0, p -0 . (4.8)

c RF =M(4»»/3h) (a/r,') 'c . (4.10)

Expanding Eq. (4.6) for p -0 we obtain the
probability distribution in the BPW method for
the RKKY interaction. Again we obtain'a Gaus-
sian with a width

8w ac
o»)H ———

h 3 h, —
2 h, +0[exp(- c )],

kxp 2a
(4.11)

Substituting Eq. (4.8) into Eq. (4.3) and letting
V =%05 =Rpk'vp, where v, is the volume per site
and k is a geometrical factor of order unity, we

obtain

P (Ho) = exp[- P, (H/o)'], Ho-~, T=O,
v'2m 0 2

(4.9)

where.

where

8~=2 P, H, H, dH]) and 2~ o. ~ 1.
0

Since»»/ro is the near-neighbor interaction,
h, is always less than (»»/xI)". Thus the width
of the distribution which describes the wings of
P(H, ) at T=O is always smaller in the BPW case
than i'n the MRF case.

We next examine the behavior of P»(HO) for
very low c in the limit as Hp -0. For this ca,se
all values of p in Eq. (4.3) contribute. The con-
tribution to V' for both MRF and BPW is propor-
tional to p for large p and to p2 for small p. In
the limit as c-0, the integral, Eq. (4.3), used
to evaluate P&(HO—-0) is dominated by the part of
the contribution to V' which is proportional to p
(large p limit). Therefore the center portion of

P, (HO) at T =0 is Lorentzian-like for both the
BPW and MRF cases. The probability distribu-
tion has a maximum at Hp =0. We thus obtain

1
»(Ho) =- ~2+H~, (4.12)

with

277 QC
MRF BPW 3 ~

3 krp
(4.13)

The case of the MRF distribution has been ex-
plored in detail in Ref. 6, where it was found that
for T near zero the wings of the distribution are
approximately Gaussian with width proportional
to c', whereas the center of the distribution is
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approximately Lorentzian for c &5 /o and approxi-
mately Gaussian for c &5%. Near and above T,
the distribution becomes a 5 function at HD

——0.

B. RKKY potential near T= T, BPK method

Near T =T„ f, in Eq. (3.3) is small and there-
fore for p not too large we can expand Eq. (4.4)
in a power series in t, keeping only terms up to
t;. We obtain for the wings of the distribution
function (Ho -~) a Gaussian with width

Smac q 7 ro'
ce~w —

3k o
p

—2&(3) —
2

+O[e ' ]3krop, v

(4.14)

where the Riemann zeta function g(3) =1.2021,
(H/o)» 1, and P =T '. This is to be compared
with the width of the Gaussian describing the
wings in the MRF case.

RELY system. For T= T„q-0 and the width of
the distribution also approaches zero. For T
near T~ we have to solve self-consistently for
the width of the distribution near the wings given
by Eqs. (4.14) and (4.15) and for the width of the
distribution near the center which is given by
Eqs. (4.16) and (4.17). The transition tempera-
ture will occur when the width of the distribution
becomes nonzero. This solution can only be ob-
tained using computer calculations. However,
ne'ar T the BPW distribution is close to the MRF
distribution and therefore we present the MRF
results. ' Let

(4.18)

where 7)o(0) is the kth moment of the distribution
evaluated at T=O. Then as found in Ref. 6

o „'RF (4w/——3k)qc (a/ro) 2, (4.15)

cap)t) —+MaF = ox (a/kro) ~f ~c

where

I)I fp )&) I)~=h«l «.

(4.16)

(4.17)

The fact that the form of P, (H) near H=O is a
Lorentzian will have important consequences on
the concentration dependence 'of the spin-glass
transition temperature.

We conclude this section by emphasizing that
the qualitative behavior of the probability dis-
tribution does not change in going from the MRF
approximation to the BPW approximation, how-

ever, the quantitative values of the width may
differ somewhat. Again, the difficulty with the
BPW approximation is that it is very cumber-
some, albeit in principle possible, to obtain the
probability distribution for all temperatures and
all impurity concentrations, whereas the MRF
distribution is in general easier to calculate.

where q is defined in Eq. (3.4). Again, the width
of the BPW distribution is less than that for the
MRF distribution.

The width of the distribution near T with Ho
near zero is next obtained. Again, all values of
p contribute to the integral Eq. (4.3). Examining
the integrand we find that for c -0 the part of V'

proportional to p (large p) predominates the inte-
grand in Eq. (4.3). Thus P&(Ho) near Ho -—0 is
approximately a Lorentzian with width

To
——7)((0) =(a/kroo) c (4.19)

I' H ta SPHaH (4.21)

and the magnetic susceptibility is obtained from
Eq. (4.21) using the result that P, (H) depends
only on the square of the external field, we have

X, =P P, H sech' H dH (4.22)

=P(1- q) .

with n = 0.66 for 0.01 &c &0.04 and n = 0.5 for
c &0.06 (6%).

Note that T is not proportional to c and thus
our result differs from that derived by Smith"
for the BPW case using a different method. The
expression for T- does not obey the usual scaling
laws discussed for the RKKY potential by Souletie
and Tournier' and derived independently by
Klein' (according to these T,~c). The reason
the scaling laws5'" are not obeyed is because of
the cutoff of the interaction potential at a near-
neighbor distance. The experimental results are
not inconsistent with a value of n around 0.67.'
The spin-glass order parameter is near T

q = [3T'/q, (0)](Tg —T), (4.20)

where' )7,(0) ~c" for 0.01 & c & 0.04 and q, (0) )x: c"
for c &6%.

The average magnetization M, per impurity is

C. Spin-glass transition temperature and the magnetic

susceptibility

The slope of the magnetic susceptibility is

dx 1
(4.23)

We next evaluate the spin-glass transition temp-
erature and the magnetic susceptibility for the For T=T, where T is the temperature just be-



1500 KLKIN, SGH0%ALTER, AND SHUKLA 19

with J',. given in Eq. (4.1). This result agrees
with that obtained by Smith using a somewhat
different approach.

The magnetic specific heat C„ is given by

2gN2c2p~ a/r
C~= sech z —q' (sech'zN 3y

—3 tanh z sech'z)

-2qP — -~sechz dz.dq tanhz1
dP z

(4.27)

Letting b =a/(p'Ppk), gives

2sNpc'kspb
(f dq

i (4.28)

I

0
I

0. I

]

0.2
I

0.3
I

0.4 0.5

where

s r,'
(tanhz/z) sech'z dz

0

FIG. 2. Magnetic susceptibility per impurity y* in ar-
bitrary units as a function of the impurity concentration
c, where T*=T{a/krp) ' and a/rf is the strength of the
nearest-neighbor interaction. For the 1% concentration
the calculated slope is discontinuous at T =.T,.

j.ow T, we have

(
dx», ::~n~+~ni+~)
dT& r r bsT' t)p(0)

(4.24)

where it is discussed in Ref. 6 that the slope of

X below T, is still negative for c of the order of
1% or less.

The computer-calculated results of the mag-
netic susceptibility for several impurity concen-
trations are shown in Fig. 2. Note that for the
higher concentrations the susceptibility is very
must like the one of SK whereas for low c the
maximum in g occurs well below the discontin-
uous slope at T=T . Note that the results in
Fig. 2 are for a static field, whereas the experi-
ments were done in an alternating field. '

Vfe next evaluate the internal energy U and the
specific heat for the RKKY system using the
BPW method. The experssion for U is given by
Eq. (2.7). To evaluate (SpS,) we expand (S,) in a
power series of gpiti, since near T=Tr, (t,") is
small and (fI")«(t',."")for all positive n. We
then have

(2n+1) '=0.8525 .
8

n=0

The upper limit a/rpP in Eq. (4.27) was allowed
to be infinity, since the error introduced by this
approximation is only of the order of exp (- 1/c)
which becomes very small for small c.

Using the expression for q from Eq. (4.20) we
obtain

dQ~ 23Npc 5
dT 3T' (4.29)

dC„. 2m%pc b i( 18AT )i
3T2 ( q2 )

& g' (4.30)

For low concentrations, c& 1%, it is found that
the slope of C„ is discontinuous at T=T and con-
tinues to be negative for T just below T .

V. FREE ENERGY

Vfe next discuss the expression for the internal
energy and the free energy for the random. system
and show that in order to obtain consistent results
for the z -~ case one must expand the expression
for the spin (Sp) and (S,) in terms of the Z„and
(S;)=tanhpH, as is done in Eq. (3.9).

Solving Eq. (2.3) for (Sp) and substituting into
Eq. (2.2) gives for z-~

For T=T, i.e., just below the transition tempera-
ture we obtain

(S S ) =g [1 q -(1 —g g)] +O(q ) ~

Substituting Eq. (4.25) into Eq. (2.7) gives

(4.25)

U=- — J',, tanhj3J',
z [1—qp(1 —tanh'pJ', .z)], (4.28)

1

isj
=-

2 Z Ji, [&S;)&Sg)+P~;g(1 —&St)')(1 —tg)] (5 1)
ia)
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U=--i g J„t,t, +PJ„[(i-t,)(l-t,)+t, +t,
1(~ 2 2 2 2 2

2 Ii f

—2tqt&+O(J)&)] i. (5.2)

Now Eq. (5.2) can be averaged over J,&
and t,

independently and me obtain for the case when

Equation (5.1) is identical with the value of U ob-
tained by TAP. ' At first it mould seem that
Eq. (5.1) is in disagreement with the SK result
which gives for a symmetric potential U

,' NJ—P(1'—q2), whereas if one sets the average
of (Sp) =0 because of the even symmetry of the
potential one obtains U=- ~pNJ2p(1 —q)2. The
resolution of this difficulty is immediate when
it is realized that (Sp) is a function of both the
J',

&
and the t, given in Eq. (2.3) and therefore the

averaging can only be done after we have ex-
pressed (Sp) in the form given by Eq. (3.9).
Keeping terms to order 1/z only, gives

~p& (S&& —(Sp)P Q Jp&(l —(S&&') =T tanh '(Sp) . (5.7)

Multiplying Eq. (5.7) by (Sp) and expanding in a
power series of J„., keeping terms to order z ',
and then averaging over the distribution of the
J,f's and the H, 's gives, for T near T~,

q(PJ —T) q(P—J +P'J')+O(q ) =O. (5.8)

The free energy in Eq. (5.6) is the free energy
for a given configuration of the random inter-
actions J,f. This is a variational free energy
with respect to the variable (S,) and P. Ther-
modynamic quantities appropriate for the quenched
system can be obtained by first obtaining the
appropriate quantity from Eq. (5.6) for a given
configuration hand then averaging it over all con-
figurations. The internal energy obtained in this
manner is obviously the same as in Eq. (5.1).

Differentiating Eq. (5.6) with respect to (S,)
we obtain the microscopic equation

U=- ~ PNJ'(I —q ), (5 3)

Equation (5.8) gives T~=jand'
q~(T, —T), Tg T, . (5 9)

which is the SK result.
The BPW method does not give any prescrip-

tion for obtaining the free energy. However, we
can write an expression for the microscopic
free energy (for a given .configuration of Z,.&'s)
in terms of the internal energy U(P) and a con-
stant of integration S as follows:

p2
BP

=- k O' Z Jg&(l &Sg&')—(I —&S&&')

(1+(S,)&i 1+(S

fl —(S,)&, ,(I —(S,)'I,

The entropy S for a given configuration is

(5.10)

U(tl') da' —S'
I
.1 ( 8

&3I p

(5.4)

In Eq. (5.4) only the explicit dependence of U(P')
upon P' is taken into account. Substituting for
U(P') from Eq. (5.1), which is exact in the BPW,
and the phenomenological expression

((I +(S,&I 1+(S,&
ii2 '" 2)

+ i-&S,&'II (1 &S,&&~ (5 5)

——g J &(1 —(S,)')(1 —(S&&')+ —S'.
This expression for F is identical to the one

obtained by TAP by diagrammatic methods. It
therefore offers an intuitive approach for under-
standing the diagrammatic derivation.

(5.6)

which is the entropy of a set of independent spins
constrained to have a, value (S,), we obtain

P=- Z J&&&Sg&&S&&

Averaging S over a probability distribution for
H, and J«gives the quenched entropy S per par-
ticle,

p J2 2

(1-q)
2

4

+- Pit-" )i»(1+e '*)+ "'
P p 'iP& ~ coshx)

where q is given by Eq. (3.4). If P, (H) given by
Eq. (3.6) is used to evaluate Eq. (5.11) at T=O
one obtains S=- I/2w which is the same as ob-
tained by SK. It is important to note that unless
the quantity (1 —q)2 falls off faster than TP the
first term in Eq. (5.11) dominates and gives a
negative entropy as I'-0. This clearly indicates
that any probability distribution for the fields
which is such that P, (0) o0 would produce a nega-
tive entropy near zero temperature and is there-
fore unphysical. The distributions arising in the
SK theory (which is also a Gaussian') as well as
the MRF and the BPW treated here are all
equally unphysical. Specifically, inspection of
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Eq. (5.11) reveals that P&(H) for H-0 must de-
crease faster than H' ' in order to realize a
non-negative entropy using TAP's free energy.
No such probability distribution arises from the
simple molecular field treatments discussed so
far (SK, MRF, BPW). Computer calculations by
TAP and SK which take into account correlations
more completely show that the probability distri-
bution of Ii&

——ZJ;&(Sz) has a hole at fi, =0. We re-
iterate that, within the BPW, Ho is defined by
Eq. (2.8), and is a different quantity than h, If
we calculate P(h, ) in the BPW we obtain P(h, ) =0
for h&

——0. However, the quantitative behavior of
our P(K) for finite h differs from the computer
results.

VI. SUMMARY

A generalization of the Bethe- Peierls-Weiss
(BPW) method employing a. self-consistent dis-
tribution of internal fields has been devised to
study random spin systems. This method gives
directly all the thermodynamic observables ex-
cept the entropy which is obtained by the addition
of a plausible phenomenological constant of inte-
gration. Our method also gives a convenient
framework to examine the interrelationship be-
tween various molecular field theories for spin-
glasses.

In the limit as z —~ we have shown that the
mean-random-field (MRF) method gives identical
magnetic properties to that obtained in the BPW
and Sherrington-Kirkpatrick (SK) calculations.
However, the MRF internal energy differs from
the corresponding result of BPW and SK due to
neglect of correlations in MRF. For finite z we

use MRF to obtain the phase diagram of a sys-
tem with Gaussian distribution of interactions.
For z &8 we find that the quantitative differences
between the finite z and infinite z phase diagram
is less than 10 /c.

We use the BPW method to study the properties
of a system with a RKKY interaction. We find
a discontinuous slope in the magnetic suscepti-
bility and the specific heat C„at the spin-glass
transition temperature T . However, the maxima
in X and C„occur well below T . The result for
g is in qualitative agreement with the MRF me-
thod. However, to our knowledge the discontin-
uous slope in the specific heat has so far not
been observed experimentally.

Returning to the z-~ case, we would like to
emphasize that our BPW results duplicate.
every observable thermodynamic quantity cal-
culated by SK. In particular this includes the
negative entropy —k/2v at T=O. This suggests
that our method of using the distribution of in-
ternal fields is entirely equivalent to the SK ap-
proach. The negative entropy is shown to arise
from the Thouless-Anderson-Palmer (TAP) free
energy whenever the probability distribution of
the internal fields P, (H) is finite at H=0. In fact,
from our free energy any P, (H) which does not go
to zero as H'~" ~ (6&0) is unphysical and gives a
negative entropy.
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