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Cylindrical Josephson tunneling
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Josephson-tunneling experiments between small cylindrical superconductors are proposed.
The essential idea is that the wave functions in the superconductors must be of the form

in&H I (n2e+50)if(r)e and $2=)Q (f(r)e 2 to guarantee that they are single valued. This,
together with the Josephson relation J = Josinh, where Jo is the maximum Josephson current

and 5 is the phase difference between the superconductors, leads to the conclusion that the
Josephson current will be zero for n~ ~ n2. For n& = n2 the current will be proportional to f~ f2
in the thin-film approximation. If the inner cylinder is solid and of higher transition tempera-
ture then Jo ~ f2 providing a means for determining the order parameter as a function of mag-

netic field. The ratio of cylinder radius to coherence length determines, in large measure, the
variation of Jo with field. Specific examples are given.

In the usual Josephson-tunneling experiment the
superconducting pairs tunnel through a thin oxide
which separates two plane-parallel superconductors
which are typically thin films. The current density is
given by the Josephson relation J= Jo sin5, where 5
is the phase difference between the wave functions
on the two sides of the junction and Jo is the max-
imum Josephson current density. When a magnetic
field is applied parallel to the plane of the junction
the phase diff'erence becomes
8(x) =8(0) +2m@(x)/tpp, where rp(x) is the magnet-
ic flux which penetrates the superconductor between
x =0 and x, and 40 is the flux quantum. This leads
to a Josephson current

IJ =AJp sin8p(@p/n tp)sin(tr4/4p)

where 4 is the flux enclosed within the penetration
region over the whole width of the junction and A is
the junction area. '

In this geomatry the phase difference 8(x) may as-
sume any value and this is the essential diff'erence

between the flat singly connected junction and the
junction between two multiply connected supercon-
ductor s.

We wish to consider two cylinders, one within the
other, separated by a thin insulating barrier in an axi-
al magnetic field, The requirement that the wave
functions be single valued in the cylinders demands
that they be of the form

~ft(r) e

e2 =
I 02-If2(r) s

where n j and n2 are integers (0,1.,2, ...) which express
the fluxoid quantum states of the cylinders. The
Josephson current density between the cylinders will

now be
JJ = Jp(H)sin[(n2 —n t) & + 8pj

Integrating around the junction to obtain the total
current we have

h 2%'

IJ = IrJp(H)J sin[(n2 —nt) S+8p] dt)
0

0, 7fj +Pl2 (I)

~2nrIJp(H)sin8p, nt =n2 .

In the case of a solid inner cylinder and a thick
outer cylinder as considered by Tilley' the flux
between the two will be quantized 4 = (n2 —nt) 4p
and the tunneling current can have only two values,
its maximum value (nt = n2) and zero (nt W n2). We
wish to extend this idea to tunneling between small
thin cylinders. In this case, as will become clear
later, the order parameters and the maximum
Josephson current may depend strongly upon the axi-
al Magnetic field. It is this property that gives the
junctions a certain utility in fundamental investiga-
tions of superconductivity.

This is the basic idea. It is now necessary to aoply
the Ginsburg-Landau theory to this situation to
answer two questions. (i) Will the Gibbs function
sometimes be minimized by having n2- n~ and
sometimes by having n2 W nt? (ii) Can the system
achieve the minimum Gibbs function state or will it
get stuck in some metastable states?

We will see that the answer to question (i) is "yes"
and that the answer to question (ii) is sometimes
"yes" and sometimes equivocal. The uncertainty in
the last instance arises because a11 solutions to the
Ginsburg-Landau equations minimize the Gibbs
function with respect to the current density in the
cylinders, Therefore; the cylinders may not be able
to make the transition from a state which is a local
minimum with respect to the current to another state
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of lower Gibbs function. This would lead to no un-
certainty if the cylinders were infinitely long as as-
sumed in the theory but the presence of ends may al-
low them to make a transition from a state which is a
local minimum of the Gibbs function. There are, in
any case, experimental means for indu'cing the sam-
ple to achieve the lowest Gibbs function state even
when it is inclined to get trapped in a higher state.

Except for its application to dual cylinders the
treatment which follows is like the Douglass treat-
ment of a single cylinder which when applied to the
Little-Parks experiment is equivalent to Tinkham's',
treatment of that experiment.

If the Ginsburg-Landau (GL) wave function is
written in cylindrical symmetry as Q =

~ P„~f(r) e'"'
then the GL differential equation becomes, in
cylindrical coordinates, '

n 2~~ e 1 d d~f-——r~ =0 . (2)
r 4p r dr dr

I

cylinders of mid radius r~ and r2 in the thin-film ap-
proximation

Xt=kz » d2=dz=d, 6=$2 » d

In this case, the current density and the order param-
eter may be considered constant through the film
thickness and the last term in the GL differential
equation 'may be neglected, yielding an algebraic
equation in f.

In an applied axial field 0, =H the total vector po-
tential at the two films may be written (the currents
and vector potentials have only 8 components)

A (r )) =
2 p,pr &(H + J& d +Jz d).

(4)

A (rz) =
2 pprz(H + (rt /rz) J) d + Jz d)

so that

The current density may be expressed as

dH, (r) 1 d 1 dJ,= — * = — —— (rA,)—
dr pp dr r dr

eit ip i f n 22rA

m r

4pf tz n( 22rA (r))
1

2'7l ppA, r] 4 p

4pfzz nz 22rA (rz)2=J

where

4p f' n 2' A o

2m p,pg2 r 4p
and

ftz =1 —fz[nt/rt —2'm'A (r~)/4p]

(6)
= —a/p XZ'= rn/212oe

J p

)=4/2(2)'22rH, (T))L, e =h/2e

and a and p are the usual GL parameters.
We will consider a system of two concentric

fz I f [nz/fz 2%i A (fz)/@0]

Equations (4) and (5) may be solved for J~ and J,.
We write out the expression for J~ explicitly

@p(2X +f2rzd) f2

n pp[2)F(2X + fzrzd) +(2X'+f2rzd) f)'rid —f 2' rtrzd'(rt/rz)']

pl g p,pter riH

r]

1

fear&d nz ponrzH'
2hz+ fzzrz d rz @o

This and a similar expression for J2 when substituted
into Eqs. (6) allow a self-consistent determination of
ft, fz, J~, and Jz. However, the equations would
require numerical methods for their solution. Be-
cause of this complexity and because we shall be pri-
marily interested in very small cylinders we shall
from this point limit our consideration to cylinders
for which A. » r2d & r~d. This allows us to write

2

epfjz ni 2rlzortHJ)=——
2m pp~ ri @o

C'o fi'
P7]—

27k'p, pX r]
4(r2)

4p

where 4(rt) is the flux of 8 = p,pH within the radius
r~. In this approximation we have
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@oft' 1J, =—
27f JXpA. r]

@of2 1
J2 n2

2~

gpss

r2

q (r2)

4p

(7)

superconductor is given by '
G G„—'2ppH f dv+2ppJ M dv, (9)

~here M is the magnetization and 6„ is the Gibbs
function of the normal metal. For our case the mag-
netization is given by

(8)

These are not now self-consistent results since the
self-consistency has been lost in the approximations.

It can be shown that if f satisfies the GL
differential equation then the Gibbs function for the

M=(J, +J)d, r ~r, ,

J2d, r) «r «I2

M 0, r&r2

From Eqs. (5) and (6) we have

4'. 2 =(@o/4''t oA')fi'. 2(1 =f4) .

(10)

Using Eqs. (9)—(11) and u(P„~'= ppH, we o—btain

G —G„=wdltipH, rifi ——r2f2 +(r2d/li )f2 (1 f ) +(r—d/jp) (fi (1 —f) ) +2f) f2 [(1—fi )(1 —f2)]' ]

(12)

The last two terms are the magnetic energy. The
plus sign preceding the square root applies when Ji
and J2 are in the same direction and the minus sign
when they ary in opposite directions. In the approxi-
mation in which we are working (lP )) r d) this
magnetic contribution is negligible, so we have

(G —G„)/rrdl poH2 = —r ~ff —r2f24 =gi +g2

We see that to minimize the Gibbs function we must
maximize f2. From Eqs. (7) this would require that

ni and n2 change to the next higher value when
q (ri, 2)/@o = 2, 2, 2, etc. Since r2 ) ri this leads1 3 5

to the expectation that the outer cylinder will shift to
the next higher quantum number at a smaller field
than the inner cylinder. We can be certain that this
will occur spontaneously only if the order parameter
and g2 are driven to zero, To keep the sample in the
minimum Gibbs-function state each cylinder must-
change its quantum number when n~ 2

—4(ri 2)/4p is

—,. For g& 2 to be zero at this point Eqs. (8) require

that (/ri 2 «2.
We now wish to obtain an expression for the

Josephson current. To do this we will use the results
of Ambegaokar and Baratoff' for Jp. These must be
modified to take account of the magnetic field depen-
dence of the energy gaps which we obtain from Eqs.
(8) and the fact that h(T, H) ~ ~Q„~'f'. When the
energy gaps in the two films are unequal the expres-
sion given by Ambegaokar and Baratoff requires nu-

merical evaluation Near T,. where h(T, H) ((nkT.
their expression for Jp can be written

J (TH) =— ' tanh ' f f (13)2'„kT
~here 8„ is the normal-state junction resistance per

square meter. This expression applies when

hi(T, O) h2(T, O) but allows for unequal energy gaps

in the axial mai[netic field. Combining Eqs. (1), (8),
and (13) we have

n h(T, 0) t „h b (T, 0)

0, n) Wn2

@(ri)
4p

(r 2)

4p
n] n2

(14)

As an example of this result we will calculate IJ for
two tin Glms for which d =10 ' m, r2 =5 x 10 ' m,
and ri =4 x 10 m at a relative temperature
T/T, =t =0.988 (T, =3.72 K, T=3.677 K). At this

temperature A(T) =1.74 [1.76 b (0)](l —t)' '
-0.331 kT, and the maximum Josephson current is

from Eq. (13) Jp(T, 0) =0.04 Jp(0. 0). Using the
values &t, (0) =3.5 x 10 p m and gp =2.3 x 10 ' m we
calculate $(t) and k(t) in the dirty limit

((t) =0.855[&pl/(I —t)]'",
&(t) = h t, (0) [fpl2. 66l (1 —t)].'t'
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FIG. 1. Reduced Gibbs function for two cylinders of thickness 10 m and radius r& =4 & 10 m, r2 =5 x 10 m for case a.
I =6.9 x10-' m, g=10-' m.
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FIG. 2. Reduced Gibbs function for the two cylinders. Case b. l=3.4»&10 m, (=707 ~10™
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FIG. 3. Reduced Gibbs function for the cylinders. Case c. I =10 9 m, (=1.2 x 10 m.

We consider mean free paths (a) 6.90 && 10 ' m, (b)
3.45 && 10 ' m, and (c) 10 ' m to show three different
types of behavior. The reduced Gibbs functions are
shown in Figs. 1—3. Case (a) makes (g/r2)'=4 and

g2 is driven to zero when 4(r2)/4p =
2

so that the
outer 61m will certainly switch from n2 =0 to n2 =1
at this point. Similarly g~ is driven to zero when
42/@p =0.675 at which point 4~/4p =0.4. So for this
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FIG. 4. Josephson-tunneling current for three cases if the cylinders are always in the lowest available state.
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case the sample is always in the minimum Gibbs
function state. The Josephson current for this case is
shown as curve A in Fig. 4. Curve A does not reap-
pear beyond 4i/40=1. 5 because for larger fields the
cylinders are never in the same quantum state with
both order parameters nonzero. The second case
shown in curve B is more complicated since
((/r2) =2 and. (g/ri) 2 =3.25. Curve 8 shows the
behavior when there is some mechanism which
causes the cylinders always to assume their minimum
Gibbs function state. This mechanism might be end
eft'ects or some briefly applied current or field which
momentarily drives both fi2 and f2 to zero. For
curve C the mean free path is IO m so that (g/ri)'
is 0.0906. Again we make the presumption that the
sample is always in the minimum Gibbs function
state.

It is instructive to reconsider case b when there is
no auxiliary means of forcing the sample into the
lowest available state. Then cylinders can switch
quantum states only when gi and g2 become zero
(Fig. 2). This is shown in Fig. 5. This leads to
discontinuities in the Josephson current since fi' and
fi2 change discontinuously from zero to finite values
when the cylinders switch from meta-stable states to
the states of lowest Gibbs function. The results are
shown for both increasing (heavy solid curve) and
decreasing (lighter curve) magnetic field.

The parameters used in this example place rather
stringent but achievable requirements upon th'e ex-
periment. These requirements can be considerably
relaxed. By driving the superconductors briefly into
the normal state one can force them to assume their
lowest state. This should allow the effects to be

demonstrated on much larger cylinders. Further the
cylinders may be deposited upon an insulated super-
conducting wire of high transition temperature, say
niobium. Since the magnetic field is excluded from
the interior of the wire the factor (g/ri)' should be
replaced by g2/2ri k, where k is the penetration depth
in the wire. If this penetration depth is 5 x 10 m
the wire may be 4 p.m in diameter and the results for
the cylinders of tin will be essentially identical to
those in the examples. This technique will, there-
fore, allow the experimenter to increase the cylinder
diameter by a factor of 5 without'changing the results
shown in the figures.

Further one may tunnel from such a wire into a
thin cylinder. In this case the wire is always in state
n i =0 so that the tunneling occurs only when the
cylinder is in state n2 =0. Since the order parameter
in the wire would be una8'ected by the small magnet-
ic fields the Josephson current becomes
J(TH) =J(T, O) f2'. This would be an ideal arrange-
ment for measuring the change in the film's order
parameter as a function of the magnetic field, since
the Josephson current is proportional to a single ord-
er parameter.

With a cylindrical junction the energy gap can be
measured directly as a function of axial magnetic field
by observing the quasiparticle tunneling characteris-
tic. Since the Josephson current can also be deter-
mined one can obtain the empirical equivalent of Eq.
(13) or its modification above. It should be noted
that Eq. (13) and the fundamental ideas pres'anted
here are more general than the Ginsburg-Landau
theory which was used to calculate the order parame-
ters and Gibbs functions. The junction provides a

t ~ n2~
0I,n~)
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FIG. 5. Josephson current between cylinders for case b if there is no auxiliary mechanism for inducing transitions from meta-

stable states.
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means, therefore, of checking the predictions of this
theory.

If there is an electric potential differerice V between
the two cylinders then the Josephson current density
becomes

JJ -Jo(H) sin(n~ —n2) 8+ 60+ (2eV/@t

Therefore, there is an ac component when n~ n2
and no net ac current between the cylinders for

n~ W n2. There is, however, a sinusoidal ac current
density which rotates with angular velocity 2e V/t.
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